Homework #2, EECS 556, W21. Due **Thu. Feb. 04**, by 9:00AM

Skills and Concepts _

• 2D FS, 2D FT, resolution, 2D FT via lens, 2D sampling

General hint. There is a jinc function in the MIRT package.

Problems

1. [50] (a) [10] Determine the 2D Fourier series representation of the following periodic signal:

$$g(x,y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} 5 \operatorname{rect} \left(\frac{1}{2} \sqrt{(x-3m)^2 + (y-4n)^2} \right).$$

Hint. Use the relation between Fourier series coefficients and Fourier transforms derived in the lecture notes.

(b) [40] Follow the example in the lecture notes to display images of both g(x,y) and its (truncated) FS approximation

$$g_K(x,y) = \sum_{k=-K}^K \sum_{l=-K}^K c_{k,l} e^{i2\pi(xk/T_X + yl/T_Y)}$$
.

Do this for (at least) two levels of truncation K—one where Gibbs artifacts are quite visible, and one where the reconstruction looks reasonably close to the original signal.

2. [10] Determine the 2D FT of the following 2D image using properties and tables, not integration

$$g(x,y) = \begin{cases} 2, & (x-5)^2 + (y-7)^2 \le 9 \\ 0, & \text{otherwise.} \end{cases}$$

Hint: first rewrite g(x, y) in terms of rect(). Your answer should contain a jinc().

3. [10] Using FT properties, determine the 2D FT of an ellipse function:

$$g(x,y) \triangleq \begin{cases} 1, & \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \le 1\\ 0, & \text{otherwise,} \end{cases}$$

where a > 0 and b > 0 denote the half-widths of the ellipse along the x and y directions, respectively. Hint. Let $\alpha = 2a$, $\beta = 2b$ denote the long axes of the ellipse, and rewrite g(x, y) in terms of a rect function.

4. [10] A lens with focal length F is distance F from a translucent cancer cell on a slide and distance F from a sensor. The cell is illuminated with light of wavelength λ . For simplicity, suppose the cell transparency is the sum of a disk function and an ellipse function:

$$t_0(x,y) = \operatorname{circ}\left(\frac{r}{r_0}\right) + e(x,y), \quad e(x,y) \triangleq \begin{cases} 1, & \left(\frac{x-x_0}{r_X}\right)^2 + \left(\frac{y-y_0}{r_Y}\right)^2 \le 1 \\ 0, & \text{otherwise,} \end{cases}$$

(Optional: if you want to sketch this, use $r_0 = 100$ um, $r_X = 200$ um, $r_y = 100$ um, $x_0 = 300$ um, and $y_0 = 0$; it might look like the cell has recently divided.)

Determine the optical intensity recorded on the sensor.

Hint. Use Pr. 3 and FT properties, not integration! In your answer, let $d_0 = 2r_0$ denote the disk diameter, and let $d_X = 2r_X$, $d_Y = 2r_Y$ denote the long axes of the ellipse. It suffices to find $U_F(x,y)$ and express your final answer in terms of that U_F .

5. [10] The signal $g(x,y) = 48 \operatorname{sinc}_2(6x,8y)$ is sampled with sampling intervals (Δ_x, Δ_y) .

Sketch the spectrum $G_s(\nu_x, \nu_y)$ of the "sample-carrying" signal $g_s(x, y)$ in eqn. (4.3) for the following two cases.

- (a) $(\Delta_x, \Delta_y) = (1/8, 1/12)$
- (b) $(\Delta_x, \Delta_y) = (1/5, 1/12)$

Optional problems _

- 6. [0] Find the just-resolved distances (according to Rayleigh's resolution criterion given in the notes) for a system having a "square" frequency response $H_1(\nu_{\rm X},\nu_{\rm Y})={\rm rect}_2\Big(\frac{\nu_{\rm X}}{2\nu_{\rm max}},\frac{\nu_{\rm Y}}{2\nu_{\rm max}}\Big)$ and for one having a "disk" frequency response $H_2(\rho)={\rm rect}\Big(\frac{\rho}{2\nu_{\rm max}}\Big)$, where $\nu_{\rm max}=5{\rm mm}^{-1}$. Which system would you rather use for imaging and why? Hint: MATLAB's fzero function may be useful here, or JULIA's Roots.find_zero function.
- 7. [0] Find an expression for the 2D FT of the circularly symmetric function $g(r) = \cosh(r/3)$. Hint. The answer is *not* $3 \cosh(3\rho)$.
- 8. [0] Prove Parseval's theorem for the 2D FT.
- 9. [0] Prove the rotation property of the 2D FT.
- 10. [0] Find a version of Parseval's theorem that is appropriate for circularly symmetric functions.