Generating Random Variables On Computers

EECS 501, J. Fessler

Most computers have random number subroutines that can generate random variables having a Uniform[0,1] distribu-
tion. These subroutines actually produce a cyclic sequence of numbers, so in fact they are not exactly independent, and
are therefore often called “pseudo-random” numbers. For short sequences of numbers one can usually safely ignore the
dependencies. For long sequences however, such as when quantifying the probability of bit errors of a communication
system where one might have p ~ 10~!! for example, one must be very careful to check the cycle length of the random
number generator.

This note addresses the question: how can we convert uniform random variables into a random variables having a
desired distribution function Fix(z)? We would like to find a transformation X = g(U), where U ~ Uniform[0, 1].
First consider the transformation Y = g(X), where g(z) = Fx (). In other words, suppose we map X through its own
distribution function. For simplicity, assume that X is a continuous random variable. Then Fx(-) will be monotone
increasing (no flat segments). Since 0 < Fix () < 1, the range of YV is clearly [0, 1]. Following the usual derivation, for
y € [0,1] we have

Fy (y) = P[Y <] definition of Fy
= P[Fx(X)<y] sinceY =g(X) and g(z) = Fx(2)
= P[X < F3'(y)] monotonicity of Fx(-)
= Fx(Fx 1(y)) definition of Fx

=y monotonicity of Fix(-).

Note that if Fy(y) = y for y € [0, 1], then Y has a Uniform[0,1] distribution. Thus mapping a random variable through
its own distribution function Fx(-) yields a random variable with a uniform distribution on [0, 1].

It turns out that the reverse is true as well: if we map a uniform random variable “backwards” through the inverse of a
desired distribution function, i.e. X = F;l(U), then we generate a random variable having that desired distribution.
Again, we assume that F'x is monotone increasing. Then

Fx(z) = P[X < 2] definition of Fx
:P[Fil(U) <z] since X = g(U) and g(u):F)}l(u)
= P[U < Fx(z)] monotonicity of Fx(-)
= Fy(Fx(z)) definition of Fyy
= Fx(z) since Fy(u) = u for u € [0, 1] assuming U is uniform R.V.

Exercise: modify the above derivation to accommodate arbitrary random variables, rather than just continuous random
variables.

But what happens if F'x or F_1 is a complicated function, or has no closed form expression (such as is the case for the
Gaussian distribution)? One approach is the “rejection method described in many texts, e.g. p. 158 of Leon-Garcia:
“Probability and random processes for electrical engineering.” Fortunately, for the Gaussian case there is another
approach (p. 254 of Leon-Garcia):

e Generate Uy and Us, two independent random variables Uniform][0,1].
o Let R =+/—2loglU; and © = 27Us.
o Let X = Rcos® and Y = Rsin O.

Then using the Jacobian technique in Section 3.4 of Stark and Woods, one can show that X and Y are independent
Gaussian random variables with mean 0 and variance 1. Thus one can generate Gaussian random variables from
uniform random variables fairly efficiently.



