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Examples of EECS 401 Prerequisite Material (Not Necessarily Completely IncIusiv#)

Differentiation from First Principles
flz) — f(z —9)

d o fla406) = fle) . . . i
dxf(x) = 51&& 5 = a{% 5 , if f(-)is continuous at and the limits are equal

whered \, 07 means$ approaches 0 from the right (positi¥g

Riemann Integration
If fis a continuous function ofa, b}, then

/b f(x)dr = lim —b 5” fla+ : (b—a)
a x n—oo n =1 n )
Similarly, if 0 is small, then

a+48
| f@desf@.

Multivariate Integration (Especially Double Integration Limits)
If A={(z,y): 22 +y?> <2, 2>0, y > 1}, then
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Simple Matrix Inversion

Leibniz's Rule

b(z) b(z)
If G(z) = / h(z,y) dy then %G(m) = h(z, b(m))ib(x) — h(z, a(m))%a(m) —I—/ —xh(x,y) dy

Geometric Series
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Fourier Transform
If h(t) = e *u(t), fora > 0, then

o . o . o ) -1 I 1
H(w) = / h(t)e I« dt = / e MWt gt = / e~ (atiw)t gy — e~ (atiw)t| :

—0 0 0 a+jw 0 a+jw
Discrete-Time Fourier Transform (DTFT)
If hy = al*!, for |a| < 1, then

oo ) 00 ) —1 ) oo ) 00 ) oo )
H(w) — Z hke—jwk — Z alkle—]wk — Z a—ke—jwk + Zake—]wk — Z(aejw)k + Z(ae—]w)k
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Convolution: Continuous Time
If h(t) = e~ u(t), fora > 0, andz(t) = e~**u(t), forb > 0, then

y(t) = (h*z)(t) = / - h(t —7)x(r) dr = / - e eIyt — Tu(r) dr = < /O t e at=T) b7 dT) u(t)

— 00 — 00

t
_ e—at (/ e—(b—a)r dT) u(t) _ e—at ( -1 e_(b—a)T
0 b —a

Convolution: Discrete Time
If hy = 20, — dk—1 @andgg = 9 + Og+1, thenhy x gr, = Z;‘i—oo hjgr—j = 20,41 + 0k — Op—1.
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Ch. 2 Basic Concepts of Probabilitj

Conceptual Framework

Every discipline has one.

Circuits: impedanceless resistors, resistanceless capacitors, ...

Linear Systems: impulse or delta functions, infinite duration sinusoids, ...

Abstractions + Math— Predictions (often agree with physical experiments despite simplifications) if not, the problem is abstrac-
tions (assumptions), not math (if done right)

Probability theory is math

Terminology

Random Experiment or Chance Experiment
A random phenomena (or experiment) having a known set of poszibdemes for which the particular outcome on a giveial
is unpredictable, and that can be (conceptually) repeated arbitrarily often under (essentially) identical circumstances.

Examples: roll a dice, disk controller receiving instruction to access a particular sector

A trial is a single instance of an experiment.
Repeated trialsare multiple instances under identical conditions.

Result of an experiment is called thatcomeor sample point denoted (zeta) by text. (I will uses).

The set of all possible outcomes is theiversal setor (only universal in the context of this experiment)sample spaceand is
denoted S.

Example: Coin Toss

S ={H,T}

S ={H,T,edg¢

S ={H,T,edge,vaporized by metdor
Probability theory is self-consistent for any of the above choices; whether the theory predicts reality depends on whether an
appropriate choice is made.

Example: Toss 2 Die
sS={(1,1),(1,2),(21),...,(6,6)
Example: Number of hairs on 34th birthday

s$={0,1,2,..}

Example: AC Voltage at random time instant

S =[-120v/2,120/2]
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Often we are more interested in aggregate phenomena, such as winning a game of poker, than about the specific outcome (exact
which hand).

Event

An eventis a collection (set) of outcomes.

A simple eventor elementary eventis a set consisting of a single outcome, e.g. f4} in coin toss experiment.
A compound events a set consisting of more than one outcome.

Example: Single Die
Sample space: Sf1,2,...,6
Event “even face” isd = {2,4,6}. NoteA C S

Example: Toss 3 Coins
Sample space: S fHHH,HHT,HTH,..., TTT} Q?: size =23
Event “two heads” isA = {HHT,HTH,THH}

Example: AC Voltage and Heart Attack (e.g. if voltage exceeds 100V)
A = [-120/2, —-100) U (100, 120+/2]

Unfortunately, for uncountable sample spacesatictubsets of S can be called events for a rigorous and self-consistent probability
theory. Fortunately, all subsets pfacticalinterest can be called events, so we won't worry about this in EECS 401.)

Clearly, to describe events we neset theory.
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Probabilities are numbers we assign &ventsthat indicate how “likely” it is that the events will occur when performing an
experiment.

To be useful in practice, probabilities should agree with the “relative frequency” concept.
Experiment: roll fair die. Event: A £Roll 5}

Then for a “large” number of trial& we would hope that however we defiffé A) it would satisfy:

2 Na _ #trials A occurred

P(A =
(4) N # trials (total)

So if we roll it N = 120 times, we expect abou¥, = 20 trials where we roll a 5. But not exactly, because it is a random
phenomena!

Properties of Relative Frequency

Sinced < N4y < N, we have

Ny
<4
O_N

<1

so apparently we warit < P(A) < 1.
The next property is calleddditivity .
Let A = {Roll 5 or Roll 6} = A5 U As whereA; = {Roll 5} andAs = {Roll 6}. Then

& _ #of5sor6’s #of5’s+#of6’s
N N N N

so apparently we want
P(A) = P(A5 U Ag) + P(As) + P(4e).
But not always! (And this is a common mistake)

Consider: A ={Roll 2}, B = {Roll Even} = {2,4,6
ThenP(A) =1/6, P(B) =3/6, P(AUB) = P(B) =3/6 # P(A) + P(B) = 4/6.

Q7? what is the problem?

What we really want is

|P(AUB) = P(A)+ P(B) it ANB=¢.|

Unfortunately, ‘N large” is not mathematically precise, so the relative frequency principle alone does not provide a rigorous
self-consistent probability theory. It is also impractical for complex problems (fly 1000 space shuttles?)

Next we present an axiomatic approach to probability that is mathematically rigorous, but still captures the basic idea behind
relative frequency.
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2.2
Axioms of Probability

Given a sample space S (a collection of outcomes for a random experimentpability law or probability measure P is a
function that assigns to each evehta numberP[A] called the “probability ofd” that must satisfy the following axioms.

Axiom 1: 0 < P[A] for all A (nonnegativity)

Axiom 2: P[S] = 1 (some outcome must occur)

Axiom 3: If AN B = ¢, thenP[A U B] = P[A] + P[B] (additivity)

Axiom 3" If A;NA; = ¢fori# j,thenP[J;, Ai] = > .2, P[A;]] (countable additivity)

By induction from Axiom 3:

n

U4

i=1

n

=Y PIA] it AinA;=¢ fori#j

i=1

P

Note: axiom= assumption (but history has shown that the above yield predictions that agree with reality).

(picture)

Course Goals Include:
* Parsing problem statements (learned by examples from lecture, text, HW)
e determine sample space
e extract “given” probabilities
(using symmetries, physical reasoning, experiments, assumptions of independence)
e translate question into a probability that is to be found

*x Apply probability tools to determine desired information
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Equally likely probability assignment
The simplest example of an initial probability assignment is the case where we assume all outcaqaalbrékely.

Note that this is often an incorrect assumption, and a common error is to apply this probability assignment to problems where is is
inapplicable!

Assumptions for equally likely probability assignment:
e Suppose sample spacdliscreteandfinite S = {a1,a9,...,a,}
e Suppose each outcomegqually likely P[{a;}] =1/n

Now suppose we want to compute the probability of a compound évesiich as = {a1,a4,a6} = {a1} U{as} U{as},i.€.a
union of elementary events.

Note: elementary events are always disjoint, since outcomes are inherently distifiat} $o{a;} = ¢ fori # j.
Thus by additivity:
PIE] = P[{ai} U{aq} U{ac}]

= P[{a1}] + P[{as}] + P[{as}]
= 1/n+1/n+1/n=3/n

More generallyif all outcomes arequally likely, then

_ #ofoutcomes i
"~ total # of outcomesin S

PE]

for equally likely outcomes

Example Roll 2 fair die

What is probability that the sum of dots is 8?

S ={(1,1),(1,2),(2,1)....,(6,8)Q? size =62

E ={(2,6),(3,5),(4,4),(5,3),(6,2)} (5 outcomes where sum is 8)
For fair die, all6> outcomes are equally likely, SB[E] = 5/36

Common Pitfall setting up sample space where outcomesatequally likely

Example: toss 2 fair coins. What is P[2 heads] ?

Right Way Wrong Way

S ={HH,HT,TH,TT} | S={0 heads, 1 head, 2 hegds

P[E] = P[HH] = 1/4 | P[E] = P[2 heads}- 1/3
no! because outcomes are not equally lik
(there are 2 ways to get 1 head)

37
<
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2.3
Combinatorics
¢ We have a set af (distinct) elements (such as balls in an urn numbéréd. . . , n).

e We intend to pickk items from the set “at random.”
We are interested in the probabilities of various events.

Context:

e Do we sample with replacement, or not? (determines total number of outcomes in S)

Questions: e For the event of interest, does thelerin which the items were drawn matter?

If we enumerate the outcomes exhaustively, then all possible outcomes are equally likely since we draw the elements “at random.’
So to compute probabilities using the “equally likely” formula, we must find the total number of possible outcoséthe
denominator), as well as the number of outcomes in events of interest (the numerator).

Denominator: How many total outcomes are there? (Must consider ordering so that all outcomes are equally likely.)
e Sampling with replacement (can have< n or k > n):

There aren possibilities for each draw, ariddraws, sav-n - ... -n = n*
e Sampling without replacement (must have: n):

n-n=1)-...-(n—k+1)= M) =nl/(n—k)!

Ordered Samples

Making an ordered samplgy drawingk items with replacement

Example: Urn contains a red, green, blue, and yellow ball.

What is the probability of getting the particular sequence of draivs:{BBBGGY}?

Answer: P(E) = 1/n* = 1/45.

What is the probability of drawing exactly 5 blue balls in a row in a sequence of 6 draws?

E = {BBBBBR, BBBBBG, BBBBBY, RBBBBB, GBBBBB, YBBBBB}, soP(E) = 6/46.
(Enginering application: disk media that require not too many bits of same sign sequentially.)

_ (#of outcomes ink)
= —

In genera| P[E] for an ordered sampl@rawn with replacement.

Making an ordered samplgy drawingk items without replacement

Example: deck of cardsi(= 52)

What is the probability of being dealt the hafBdh, 4, 5&, G, 7&) in that order?
Answer:1/(n!/(n — k)!) = (52 — 5)!/52! = 47!/52! = 1/311,875,200 ~ 3.2 - 10~°
What is the probability of being dealt the haf#d4, 5,6, 7) in that order, but any suit?
Answer:4%/(n!/(n — k)!) = 45(52 — 5)! /52! ~ 3.28 - 1076

# of outcomes irE/
In general P[E]| = ( (= ! )

for an ordered sampldrawn without replacement.
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Unordered Samples

Making an unordered samplsy drawingk items without replacement
(Think of taking balls from one urn and putting in a jar)

There aren!/(n — k)! ordered samples havirigitems.

But each of these samples can be rearratd@ifferent ways.

I
P ad

So the number of distinct unordered samples taken without replacen}eﬂ%ﬁm = < Z ) = < n >

Example:E = {3 heads in 5 flips of a fair coin what is P(E)?

How many length-5 sequences of H,T are there with 3 heads?

Think of urn with balls numbered 1 to 5. Pick 3 balls w/o replacement.

Set the corresponding positions to H, rest to T. (Order of balls unimportant!)

So number of length-5 sequences of H,T with 3 heac(s % ) SoP(E) = ( g ) /25

Making an_unorderedrawing ofk items with replacement

Make a list of length initialized with zeros; add a check fth entry list each time you draw thiéh item.
The number of such lists you can mak is” ~ ]1 +k =(" ;ile k

Caution: these lists amotequally likely, so the formula is rarely used for calculating probabilities.
Instead, we usually just resort to counting arguments.

Example: Wheel of fortune with 26 letters (A to Z).

What is probability of getting a vowel on each of 4 spins?
(With “replacement,” order unimportant)

Answer:5% /264 ~ 0.0014

P(4 distinct consonants in 4 spins) 21 - 20 - 19 - 18)/26* ~ 0.31

Formulas are simple. Be careful to pick correct case. (Examples!)

Summary

Urn: 4 Balls (Red, Green, Yellow, and Blue)

Ordered Unordered
RR) (RG) (RY) (R,B) (2,0,00) (1,1,00) (1,0,1,0) (1,0,0,1)
= (GR) (G,G) (GY) (G,B) (0,2,0,0) (0,1,1,0) (0,1,0,1)
£ (YR) (Y,G) (YY) (Y,B) (0,0,2,0) (0,0,1,1
€93 (B,R) (B,G) (BY) (B,B) (0,0,0,2)
=2 —1+k 5
o nk — 42 = 16 (” k+ ):(2>=10
- RG) (RY) (RB) {RG} {RY} {RB}
S| | ©R (GY) (GB) {6} {GB}
5€ (Y,R) (Y.G) (Y.B) {y.B}
28| [BR (BG ®BY)
=ao n! 4! n 4
7 i 2 (#)=(3)=
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Enumeration is tedious in more complicated problems, and inapplicable to problems where the outcomes are not equally likely. So
we need more general methods...

Properties of Probability Laws

Q)| P(A) = 1 — P(A)
SinceA N A = ¢, by additivity: P(AU A) = P(A) + P(A),butAU A = SandP(S) = 1,s0l = P(A) + P(A).
(2| PA) <1

By (1): P(A) = 1 — P(A) < 1sinceP(A) > 0.
©[P6 -0

By(1): P(¢)=1-P(S)=1-1=0.

(4)[If 4,0 4; = pfori # j, thenP(UZ, 4;) = Y1, P(4))
Proof by induction.

(5)| P(A - B) = P(4) - P(AN B)|
A=ANS=AN(BUB)=(ANB)U(ANB)and(ANB)N(ANB) = ¢.

So by additivity: P(4) = P(AN B) + P(ANB)

(6)| P(AU B) = P(A) + P(B) — P(AN B)] (exchangingJ andn)
AUB = (A—-B)U(ANB)U (B — A), and the three sets are disjoint. (Venn diagram)
Soby (4):P(AUB) = P(A— B)+ P(ANB) + P(B — A).

Now apply (5):P(AUB) = (P(A) — P(ANB))+ P(ANnB)+ (P(B)— P(BNA))=P(A)+ P(B)— P(ANn B)

(6)| P(AUB) < P(4) + P(B) ‘(called union bound”)

Follows from (6) smceP( —A)>
(7)\ If AC BthenP(A (B)
By (5): P(B—A) = ( ) — P(AN B) > 0 (by Axiom 1). SoP(B) > P(AN B), butAN B = AsinceA C B.

Tools

e P(A)=1- P(A)

e Break into disjoint events using set properties and apply additivity

e For inequalities, work towards the two known inequalitiés: P(A) < 1.

Example

Roll 2 fair die.

What is probability of rollingat leastone 47

Use above properties to avoid exhaustive enumeration:

Let A be the event “roll a 4 on die 1” P(A)=1/6
Let B be the event “roll a 4 on die 2~ P(B)=1/6
Let E' be the event “roll a 4 on either die”

E=AUB

Not disjoint!

By (7)P(EF)=P(AUB)=P(A)+P(B)—P(ANB)=1/6+1/6—1/36 =11/36
SinceA N B is the event “roll a 4 on both die.”
More elegant (and practical) than enumerating outcorfes: {(4, 1), (4,2),...} C S

Summary

Defined basic events

Expressed desired evehitin terms of basic event

Used set operations and probability properties toR)df)
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Joint Probability
If AandB are events, thpint probability of A andB is defined to b One way to find joint probabilities is to use

the formul4 P(AnB)=P(A)+ P(B)— P(AUB). ‘ More often we use conditional probabilities.

2.4
Conditional Probability
Often we want to answer questions such as “what is the probability the shuttle will fail given that the O-rings leak?”

Intuition: Dart Board (relative frequency)
P(A) = Area(A)/AreaS)
(bad dart thrower = “random” throws)

If AandB are two events and iP(B) > 0, then we define the conditional probability 4fgiven B to be

| P(A|B) = P(AN B)/P(B). |

To justify calling P(:| B) a probability law, it must satisfy the Axioms.

. P(A|B) >0
Clear from its definition

e P(S|B)=1
P(S|B)=P(SNB)/P(B)=P(B)/P(B)=1

o If AN A2 = ¢, thenP(A1 U A2|B) = P(A1|B) + P(A2|B)
P(A1UA5|B) = P((A1UA2)NB)/P(B) = P((A1NB)U(BNAy))/P(B)=P(A1NB)/P(B)+ P(A2NB)/P(B) =
P(A1|B) + P(A3|B), sinced; N Ay = ¢ implies that(A; N B) and(A42 N B) are disjoint.

e Similar proof for countable additivity.

Note also thaP(B|B) = P(BN B)/P(B) = 1.

Example

Suppose we have a light bulb that will fail at some (unpredictable) time after time 8.-S{, o).

Assume thaP[(t,00)] = e~*/%, i.e. the probability that the bulb fails after any given tim@n years, say) is~*/°.
(Later we learn that the mean lifetime of the bulb is 5 years here.)

Given that the lightbulb is still working at 4 years, what is the probability it will fail sometime after 6 years?
Let B be the event the lightbulb is still working at 4 yeafs = (4, ).

Let A be the event the lightbulb fails sometime after yead6= (6, o).

P[A|B] = P[AN B]/P(B) = P[(4,00) N (6,00)]/P[(4,0)] = P[(6,00)]/P[(4,00)] = e~%/%/e=4/%> = ¢=2/5 ~ 0.67
Compare taP(A) = e %/ ~ 0.3

Example

We roll two fair 20-sided die.

Given that the sum is 36, what is the probability that either die rolled a 19?
Ais event either die rolled a 19.

B is event that sum of dots is 36.

WantP(A|B)

S is 202 equally likely outcomes (diel,die2)

ANB=1{(17,19),(19,17)}

B ={(16,20), (17,19), (18,18), (19,17), (20, 16)}

P[A|B] = P[AN B]/P(B) = (2/20%)/(5/20%) = 2/5.
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We can rewrite definition of conditional probability to get an equally useful formula:

| P(AN B) = P[A[B|P|B]|

Especially useful fosequential experiments

Example: urn with 5 red balls and 3 green balls.
What is probability of drawing 2 red balls in 2 (random) draws w/o replacement?
Translate:

e D; =draw red ball on 1st draw? (D) = 5/8

e D, =draw red ball on 2nd drawR(D2|D;) = 4/7

o F= D1 n Dg, P(E) = P(Dl ﬂDg) = P(D2|D1)P(D1) = %% = 5/14

Easier than counting fro®- 7 outcomes inS

Chain Rule (useful for sequential experiments)

More generally:P(A; N AN ... A,) = P(A,|A1NAsN .. A, 1)P(An—1]A1NAsN .. Ap_2) ..

- P(A3|A1)P(Ay).

The following is another tool for computing prob. of complicated events from simple events

Total Probability

Suppose eventB, ..., B, partition S
RecallS =J;_, B;andB;NB; = ¢, i # j
Also assume thaP(B;) #0fori=1,...,n
Law of total probability :

P(A) =Y P(A|B,)P(B)

=1

Proof

n

P[A] = P[ANS] = PAN (U, Bi)] = PU(ANBy)] = Y P[ANB)| =) P(A|Bi)P(B))

i=1

Because fot # j, (AN B;) and(A N B;) are disjoint sinceB; N B; = ¢.

n

i=1

Example (a sequential experiment)
Three chests, each with 2 drawers, containing gold or socks

Chest]m Chest4G||S| Chest3s]s|s

Pick a chest at random, then pick a drawer at random from chosen chest
(This is asequential experimenta sequence of sub-experiments.)

Open drawer and find Gold!

What is the probability the other drawer also contains Gold??

Sample space: 7 outcomes (7 drawers)

Let C; be the event “picked drawef’ i = 1,2,3

Let A be the event “open drawer has gold”

Let B be the event “other drawer has gold”

WantP(B|A) = P(BN A)/P(A) = P(C,)/P(A)

Total probability: P(A) = 32 P(A|C))P(C) = (14+1/240) - (1/3) = 1/2
SoP(B|A) = P(C1)/P(A) = (1/3)/(1/2) = 2/3

P(C;) =1/3
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Bayes Rule or Bayes Theorem
Let A andB be any two events whet®(A) # 0 andP(B) # 0. ThenBayes Ruleis:

P(A|B)P(B)

P(BIA) = =55

“Exchange order of conditioning”

Proof: P(B|A) = P(BN A)/P(A) andP(A|B) = P(AN B)/P(B)
Use commutative law and rearrange

If eventsBy, ..., B, partitionS, then combining with law of total probability:
P(A|B;)P(B;) P(A|B;)P(B;)
P(B;|A) = = —
B =TTPWy T SL P@IB)P(B)

e P(B;) called “a priori” probability
e P(B;|A) called “a posteriori” probability

Applications to medicine, communications, decision theory, gambling...

Classic Example from Digital Communications
We transmit a O or 1 using an imperfect binary channel
Given that we receive a 0, what is the probability that a 0 was actually sent?
e Ay is event “a 0 was sent”
e A, isevent“a 1l was sent”
e By is event “rcvd. a 0"
e B;isevent“rcvd. al”
e AssumeP(A4,) = P(A;) = 1/2 (e.g. compressed data)
° WantP(A0|Bo)

Bayes rule:P(4o|Bo) = P(Bo|Ao)P(A)/P(Bo) = (1)(1/2)/P(Bo)
Total prob.:P(By) = P(Bo|A0)P(Ao) + P(Bo|A1)P(A;) = (1)(1/2) + ¢(1/2) = (1/2)(1 + €)
ThUS:P(A0|BQ) = 1/(1 + E)

Example

Box 1: 99 Red, 1 Green

Box 2: 102 Red, 98 Green

Pick box at random, then pick ball at random from chosen box.

Given that we chose a Red ball, what is probability we chose Box 1?
Sample space: 300 outcomes (but not very important).

B; denotes event “picked baX

R denotes event “picked red ball”

WantP(B:|R)

Total probability: P(R) = P(R|B1)P(B1) + P(R|B2)P(B2) = (99/100)(1/2) + (102/200)(1/2) = 3/4
Bayes rule:P(B;|R) = P(R|B1)P(B1)/P(R) = (99/100)(1/2)/(3/4) = 33/50

Alternate Experiment

First mix all balls into one urn

Randomly pick a ball from the urn.

Given that we chose a Red ball, what is probability it originated in Box 1?
WantP (B |R)

All balls equally likely now, saP(R) = (99 + 102)/300 = 201/300

P(B; N R) = P(red ball from Box 3 = 99/300

P(B;1|R) = P(B1NR)/P(R) = (99/300)/(201/300) = 99/201

N.B.: Conditional probabilities (and ordinary probabilities too) depend on experiment!
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Independence
Two events4 and B are said to bstatistically independent(or justindependen) iff

P(ANB) = P(A) - P(B)

If P(B) # 0, then
P(A|B) =P(A)
is an equivalent definition, sinde(A|B) = P(AN B)/P(B) = P(A) iff P(ANB) = P(A) - P(B)
Likewise, if P(A) # 0, then
P(B|A) = P(B)
is an equivalent definition. (cf fortune cookie)
This is one of the most useful methods for finding probabilities of interesting events from known probabilities of simple events. If

we can assume (because of physics, reasoning etc.) that two eventsB areindependentthenP(A N B) = P(A) - P(B)
gives us the joint probability in terms of the prob. of the individual events.

Independent Events vs Disjoint Events

S S S

IH

LU

Independent Event?(A N B) = P(A) - P(B) Disjoint Events:AN B = ¢, soP(AN B) = P(¢) = 0.

Independence of Multiple Events
We sayAi, A, ..., A, areindependentevents iff the prob. of any intersection of tig’s is the product of the individual prob’s.
e P(A;NA;) = P(A;)P(A;), Vi # j (pairwise independence)

[ N

i P(ﬂlll 4) = H?:l P(4;)

Total of 2™ — n — 1 conditions to verify!

Pairwise independence alodees nofimply independence.

Example

Suppose we roll a loaded die 3 times, witi{roll 1}) = 1/5.

What is probability of rolling 3 ones?

62 outcomes. Buhotall equally likely now!

Let A; = {roll 1 onith roll}

Want P(E) wherdl = A; N Ay N As

Since rolls are physically independent, it is reasonable to assume they are statistically independent,
SOP(E) = P(A1 N Ay N A3) = P(A1)P(A3)P(A3) = (1/5)3
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Combinations of Independent Events
If A,..., A, are independent events, thdnis independent of any set combination of eveis..., 4;_1, Ait1,..., An.
Example: ifA, B, andC are independent events, then

P[AN(BUC)] = P[4]- PIBUC]

JJ

1 2 —}_/ Random Switches
] 3 4 -
Example What is probability of a closed path from input to output?

Old way: A = {CCOC, OOCC, CCC§ sample space hds outcomes.
If all switches are independent and equally likely to be open or clgsed1(/2) then all4? outcomes equally likely (explain why
using independence!) aréi A) = 3/16 (counting method).

For system reliability applications (e.g. Russian space station oxygen system) hopefulyl/2, so all4? outcomes ar@ot
equally likely, so must calculat®(A) another way.

Let C; ={ith switch is closedl

e assumeP(C;) = p

e C; = {COOO, COOC, COCQ,..,CCCC} (8 outcomes)
e AssumeC;’'s are independent events.

P(A) = P[CysN(C3U(CLNCY))
= P[
= P[C4]- (P[C5] 4+ P(C1 N C2) — P[C1 N C2N Cs])
= P[C4]- (P[C3] + P(C1)P(C2) — P(C1)P(C2)P(C3)])
= p +p —p
Independence let us express the probability of an interesting event in terms of individual probabilities of basic events.

Can now assess how reliable each component needs to be to ensure overall reliability of system.
Caution with assumptions: Apollo 13 - independent failures of subsystems?

Example

Suppose we have a biased coin wiH ) = 4/5.

Flip coin 3 times.

23 outcomes. Bunotall equally likely now!

WhatisP[(HHT)]i.e. P(HiNHyNT5)?

Since flips are physically independent, it is reasonable to assume they are statistically indepenB¢hl; SoH, N T3) =
P(Hy)P(Hy)P(Ts) = (4/5)2(1/5)"

Independent Subexperiments

As in preceding example, experiments often consist of a sequence of subexperiments; often it is reasonable to assume the sube
periments are independent. Then we assume that events associated with different sub-experiments are independent, and we do r
have to verify all the conditions above.
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The canonical example of a sequence of independent subexperiments is called:

Bernoulli Trials

A Bernoulli Trial is a random experiment with 2 outcomes called “success” and “failure” (cf H,T yes,no 1,0 etc.)
We usep = P{ successandq = P{ failure} =1—1p

Bernoulli Trials a sequence of independent Bernoulli trial subexperiments
Question: what is B{successes in trials) ?

Example: 3 toss of a biased coin with= P(heads) What is probability of getting 2 heads (exactly)?

P({HHT,THH,THH}) = P({HHT})+ P({THH}+ P({THHY})
= P(H)P(H)P(T)+ P(T)P(H)P(H) + P(T)P(H)P(H)

3 .
= 3p'(1-p)'= < 5 )p2q3 2

In general

P({k successes in trials}) = (# of ways to gek successes in trials) - p*¢" % = < Z ) pFqnF

called theBinomial Probability Law

Note: if p = ¢ = 1/2 (fair coin), then all outcomes are equally likely, 8k inn) = < Z > /2™ which agrees with earlier

counting method.

Binomial theorem{a + b)" = >~} _, < Z ) akpn—k where< Z > is called theBinomial coefficient

Example: Binary data on CD player in 8-bit words.
Probability that a given bit is flipped &
Assume bit errors are independent.
Error-correcting code fails if 3 or more bits are flipped (hypothetically)
What is probability of failure?
By, = {k bits flipped
E = {failure} = B3 U...U Bs
8

P(E) = S5y P(By) = Lk = 3° < K ) pha*
Such calculations surely done by philips and sony engineers

Approximations

Stirling’s formula:m! ~ /mm - m™ - e=™ for m large

DeMoivre-Laplace approximation:

( v ) A L exp (—L — np)2>
k V2mnpq 2npq

(follows from Central Limit Theorem) ifi, k, n — k all large andk — np|/\/npq < 1

Poisson approximation (for largep small):

( Z )p’“q”"C ~ (np)ke_”p/k’!
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Random Variables
In many engineering problems, the random quantities of interest are numerical (voltages, currents, forces, strains).
“Random variables” provide a rigorous but convenient tool for describing and analyzing numerical random phenomena.

Example
Toss biased coin 3 timeg.=P(H)
Win $1 for each head and lose $1 for each tail.

Outcome| Probability | “Winnings”
s P({s}) X(s)
HHH 3 3
HHT p%q 1
HTH p2q 1
THH p2q 1
HTT pg? -1
TTH P> -1
THT P> -1
TTT ¢ -3

The functionX (s) is called a random variable because it maps each possible outcome into a real number.
From the point of view of a gambler, the value ¥fis all that matters, not the specific outcome
So the properties ok characterize the problem more parsimoniously.

In fact, all events of interest (to a gambler) can be expressed in terms of the possible values of
Example:WW = {Win money}

Old way: W = {HHH,HHT,HTH, THH}

New parsimonious wayiV = {X > 0} = {s € S: X(s) > 0}

P(W)=P[X >0]=P[(X =1)U(X =3)] = P[X =1] + P[X = 3] = 3p%q + p°

(doesn’t do justice to power of random variables)

\oltage across a resistor vs state of all electrons within...

Definition

Given a sample spacs we callX a random variable i (s) is a function that assigns to each outcame S a real number.
Formally: X : § — [—o0, 0]

Technical conditions:

e Theeven{X < z] = {s € S: X(s) <z} must be an event whose probability we can determine forany

e P[X =+400] = P[X = —0] =0.

We alwaysuse capital letters to denote random variables, usually from end of alphabet.

This formal definition allows us to connect random variables with the Axioms of Probability etc. As we go on, we will develop
tools for manipulating random variables “generically,” without reference to the underlying sample space, in the same way that a
linear systems course describes generic methods for analyzing signals, without reference to the physical phenomena that generat

those signals.
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Example

Circular dart board, uniformly distributed throws.

S ={(a,b) : vVa% + b2 < 30}

Each outcome € S is a coordinate pais = (a, b)

If AC S, thenP(A) = aredA)/(730%)

For dart player, numerical quantity of interest is distance from center:
X(s)=+/(a—1)2+ (b—2)2

Range ofX is [0, 30]

For a betting dart player, probability of interest is:
P[X < r]forvariousr.

If 0 <r <30, thenP[X < 7] =nr?/(7302%) = (r/30)>
If » > 30, thenP[X <r] =1

If r <0,thenP[X <r] =0

Example

Fair wheel of fortune

S =10,360)

If [a,b) C S,i.e.if0 < a <b< 360, thenP][a,b)] = (b—a)/360

Consider
180

~ 180 — 5
Note: P[X = oo] = P[{s € §: X(s) = oo}] = P[{180}] =0
The outcomeX = o is “possible,” but its probability is 0.

Probability O does not mean “impossible.” Only “extremely unlikely.”
The relative frequency concept does not quite explain P=0.

X (s)

Fora > 1:

PX<al=P{ses: \181583\ <a})
P({s:]180 — s| > 180/a})

P({s:180 —s>180/a} U {s:s— 180 < 180/a})
=P({s:s<180(1 —1/a)} U{s:s>180(1 + 1/a)})
P(
P

$:8<180(1—1/a)})+ P({s:s>180(1+1/a)})
[0,180(1 — 1/a)]) + P([180(1 + 1/a), 360))

1
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All the events of practical interest can be expressed as set combinations of the following two types of events:
e Events of the forniX = z]
e Events of the forniX < z]

We calculate probabilities for such events using the method of “equivalent events.”
[XeB]l={seS:X(s)e B} = X'(B)

P[X € Bl=P(A), whereA={s€ S: X(s) € B}

Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) of a random variakilés defined to be

Fx(z) =P[X <z, for —co <z <0

Read: the probability of the event that the random varidblakes on a value in the set oo, z]
The X subscript reminds us which r.v. when more than one in a problem
The argument is just a placeholdetx (a) = P[X < a] is equally good

Unit step function ulz)
u(z) = { 0 r=0 ' ]
11, z>1
& - T

Note: u(0) = 1is crucial!
Examplez CD_F of discrete random variable Fx(z) = (1/4)u(z) + (1/2)u(z — 10) + (1/4)u(z — 20)
Toss 2 fair coins 1
X is 10 times number of heads

3/4 — O
Sx = {0, 10,20}
PX=0=1/4
P[X =10]=1/2 1/4
P[X =20 =1/4 — , T

10 20

Role of CDF for random phenomena analogous to role of Fourier transform in linear systems theory: generic description

Properties of CDF
o ( S Fx(:l,‘) S 1
o lim, .o, Fx(z) =1
o lim, , o Fx(z)=0
e Fx(x) is monotone nondecreasingdf< b, thenFx (a) < Fx (b)
Proof: (—o0, a] C (—o0,b] if a < b.
e Fx(z) is continuous from the rightt’x (b) = Fx (b*) = lims~ 0 Fx (b + 6), (for § > 0).
o Pla< X <b]=Fx(b) — Fx(a)
Proof: ifa < b, then(—oo, b] = (—o0,a] U (a,b],s0[X <b] =[X <a]UJa < X <D, (usual trick)
SOP[X <b]=P[X <a]+Pla< X <}
° P[X = b] = Fx(b) — Fx(b_), WhEI'EFx(b_) = limg\o Fx(b — (S)
Proof: P[b— 6 < X <b] = Fx(b) — Fx(b—0)andP[X = b] = 5500 — 6 < X < D]
Thus, if cdf is continuous &t, thenP[X = b] =0
o PIX >z]=1—-Fx(z)

If 2-5 hold, thenFx is a valid CDF
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Probabilities of Other Intervals

Pla< X <b]?

[a<X <b=[a<X <bU[X =0bsS0P[a< X <b]=Pla<X <b+ P[X =1b]
ThusPla < X < b] = Pla < X <b] — P[X =)

Types of Random Variables
e Discreterandom variables
Rang€X) is a finite or countably infinite set.
Examples:Sy = {-3,—1,1,3}orSx = {2,4,8,16,...} General:Sx = {z1,z2,...}
e Continuousrandom variables take a continuous range of values.
Formally: P[X = z] = 0 forall =
e Mixed random variables are neither of the above.
Examples: half-wave rectified random voltage, waiting time in queues that empty (Ex. 3.6).

Discrete random variables have “stair step” CDFs
(zero slope everywhere except a countable number of jump discontinuities)
Continuous random variables have continuous CDFs: no jump discontinuities.

CDF of Discrete Random Variables
Let X be a discrete r.v. with rangex = {z1,...,2,}
(finite for illustration, could also be countably infinite)

X <z]= | U =2

Thus
PX <z]= Z PIX = x;] :ZP[szi] u(z — x;)
{i:z; <z} 1=1

sinceu(xz — z;) is one ifz; < x and zero otherwise.
Thus for discrete r.v.:

cf previous examples

Sometimes we use the shorthand notatiB(;) = P[X = x;]

This form is often called thprobability mass function (PMF)

Note that)""" |, P(z;) =1

Height of jump discontinuity at; equalsP[X = z;]

CDF is a bid redundant for discrete r.v. sinBéz;) = P[X = x;] completely describes r.v., but included for consistency with
continuous r.v.

Histogram for Discrete r.v.
Height of bar isP[X = x;]
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Mystery CDF
(illustrates that CDF tells all)
CDF of Uniform r.v.
Experiment: spin fair wheel of fortune.
S =10, 360)
For0 < a <b < 360, P([a,b)) = (b — a)/360 (uniformly likely)
DefineX (s) = /360
Sx =[0,1)For0 <z <1P[X <z]=P[0 <X <z|]P[0 < s/360 < z] = P([0,360z]) = x

0, <0

Fx(z)={ 2, 0<z<1

1, 1<z

For anya € [0,9/10] Pla < X <a+1/10] = Fx(a+1/10) — Fx(a) = (a 4+ 1/10) — (a) = 1/10. independent of

X is equally likely to fall in any interval of length 1/10 in [0,1]
Can replace 1/10 by any small positive number
random number generator is like spinning a wheel and normalizing to [0,1]
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RecallPla < X <b] = Fx(b) — Fx(a)
If Fx(-) is continuous, then by calculus:
b+ d
Pla< X <b]=Fx(b) — Fx(a) = @FX(:L‘) dz
at

This representation is so useful and important that it has its own name. (it is even more useful than cdf)

Probability Density Function (pdf)
The probability density function (pdf) of a random variaBdds defined to be

(details about nondifferentiability dealt with soon)

Example: pdf of Uniform(0,1) R.V
From wheel-of-fortune example:

0, <0 0, <0
Fx(z)=1} z, 0<z<1 so fx(z)=<¢ 1, 0<z<1
1, 1<z

equally likely to take any value between O and 1...

Properties of pdf
o fx(z) >0Vzx
. ffooo fx(z)dr =1

Proof: ffooo fx(z) de = limp_ fOT fx(z) dz + lim7 s ff’} fx(z) dx
= limT%oo Fx(T) — Fx(O) + limT%oo Fx(O) - Fx(—T) =1- Fx(O) + Fx(O) —-0=1

zt
o Fx(z)= [ fx(t)dt
o Pla< X <b= ["F fx(z) dz = Fx(b) — Fx(a)
If 1st two hold, thenfx is valid pdf

Interpretation of pdf
Plz—6< X <a]=[" ; fx(z)dz ~ §- fx(x) for small§

So fx(x)d is approximately the probability of the event that the Kvtakes a value in an interval neaof width 4.

Higher density = more likely: cf bell curve
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pdf of Discrete Random Variables
Recall if X is a discrete r.v. with rang&x = {z1,...,z,}, then

SO
fx(x) =Y P[X =] %u(m —x;) =Y PIX =2 0(z— ;)

Similar to Histogram!

Dirac Delta “Function”
The Dirac Delta function is the (generalized) derivative of the unit step function

The unit step function is the integral of the Dirac delta:

u(x) = /; o(t) dt

Properties
areais 1
sifting

derivatives three cases
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Memorize: uniform, exponential, Gaussian pdf

Exponential Distribution
fx(x) = ce_‘”/“u(:z:)
What isc? Need[ fx(z) dz =1s0

0 )
1= / ce /M dy = c(—p) e o/n , =
0

Thusc=1/pu

This density is a popular model for the (random) lifetime of systems.

X denotes the failure time relative to some starting time (typically 0, h&hizthe lifetime of the system)
w is called the mean lifetime (units: time)

P[3< X <4] = [} fx(z) de = Fx(4) — Fx(3)

Fx(z) = [y e "/* dtu(z) = (1 — e*/*)u(z), (cdf of r.v. with exponential distribution)
SOP[3< X <4]=(1—e ¥/t — (1 —e3/1) = 3/1) — e~4/n

If = 3years, therP[3 < X < 4] = e3/3 — e74/3 ~ 0.104

(cf extended warranty on VCR)

New perspective: assume some model for a random phenomena, then compute probability of interest.
As opposed to starting with some sample space with assigned probabilities, defining a random ¥asald€unction on that
sample space, then deriving the pdfof

Application of Exponential Distribution to Reliability

Suppose a system fails whanyof its n components fail.

Let X; denote failure time ofth component; =1,...,n

LetY denote failure time of system.

Find cdf of Y

Y <t]=[X; <t]U---U[X, < t] (system fails before timeif any component fails before timg
ThusP[Y <t]=P([X1 <tjU---U[X, <t])

Not disjoint events! But suppose we assume component failure times are independent:
PlY <t]=1-P(Xi>¢n---N[X, >t]) =1-[[", P[Xi > {]

ThusFy (t) = 1 — ;L (1 — Fx, (t))

So reliability of system related to reliability of components.

A generalrelationship independent of any underlying sample space

If each X, has exponential cdf with mean thenFy (t) =1 — [[[_ e /# =1 — e /k =1 — e t/(W/m)
which is exponential cdf with megn/n, so mean lifetime reduced by factorof
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Some important discrete random variables

Bernoulli (1 with prob.p, 0 with prob.1 — p)
fx(z) = (1 =p)d(z — 1) + pd(z)

Binomial X ~ Binom(n, p) (number of successesinindependent Bernoulli trials with success prpp.

n

=Y PIX=kbz—k) =) < L ) PP —p)"*o(x — k)

k=0 k=0

PoissonX ~ Poissoif\) (useful for counting number of occurrences within a finite time window)

:ip[xz Zn:e AN /RIS (2 — k)

k=0 k=0

) is mean number of occurrences

Scale and Shift of Random Variable

Let X be ar.v. with cdfF'x (z)

DefineY =aX +bfora >0

Find cdf and pdf oft”

Back to definition:Fy (y) = P[Y <y]=PlaX +b<y]=P[X < (y—0b)/a] = Fx((y —b)/a)

Taking derivative w.r.ty using chain rule to find pdffy (y) = /dyFy(y) =d/dyFx((y—b)/a) = fx((y —b)/a)/a

Fy(y) = Fx (yT—b> fr(y) = —fX ( b)

Analogous to scale/shift formula for Fourier transforms: signal independent; (here it is pdf independent)
Important to learn steps in such derivations, not just final formula
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Gaussian Distribution (aka Normal distribution or “bell curve”)
Of great importance in engineering, in part due to central limit theorem
We sayX is a Gaussian r.v. iff its pdf has the form

_ 1l w2
fx(@) = 27me ’
1 called mean or location parameter (average value)
o2 called variance or scale parameter (spread)
o called standard deviation
Shorthand to avoid writing pdfX ~ N (i, 0?)
Read: “X has a normal distribution with meanand variance?
It is often more convenient to work with a “standardized” r.v. with mean 0 and variance 1
If X ~ N(u,0?), thenforZ = (X — p)/o we haveZ ~ N(0,1),i.e. fz(z) = e /2
fz(2) = s£e=*"/? is called the standard normal distribution.
Proof: by scale/shift propertyz(z) = o fx (zo + 1) = %e*zw
The transformatiol = (X — u)/o is called standardizing.
’ ie_tz/2 dt
o

Fz(z) = P|Z < z] =/
— 0o

Unfortunately, no closed form for cdf of standard Gaussian

In engineering, it is customary to work with “the Q function:”

1

— e 2 gt ~ [

—22/2

Q(z) =1—-Fz(z) = P[Z > £] :/

z

™
€
2 (m=1)z+ V22427
Tabulated in most books, or use approximationar 0. By symmetryQ(—z) = 1 — Q(z)
Calculating probabilities for Gaussian (must express in terms of Q function to use table or approximation):

—u X-—p b-— - b—
P[a<X<b]:P[aa“< U“< U“]:P[aa“<2<7“]

b— - —~ b—
= P (5 - P (R = (=H) - (=)
From table(1.96) ~ 0.025, thus

X —p
g

P[-1.96 <

< 1.96] = Pl — 1.960 < X < pn+ 1.960] = Q(—1.96) — Q(1.96) = 1 — 0.025 — 0.025 = 0.95

so a Gaussian r.v. takes values within 2 standard deviations of its mean about 95% of the time
If X ~ N(u,0?)thenFx(z) =1 - Q(%:2)

o

Also commonly used is error function

erf(x) :/0 %e*f dz
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Conditional CDF

RecallP(B|A) = P(AN B)/P(A) andFx(z) = P[X < z]

The conditional CDF of a random variable given eventA for which P(A) # 0 is defined to be
Fx(z|A) = Fxja(z|A) = P[X < z|A]P([X <xz]NA)/P(A), for —oo <z < o0

Read: the prob. of the event that the Avtakes on a value in the setoo, | given that eventd occurred

Properties of conditional CDF (all same as ordinary cdf)

e 0 < Fx(z]4) <1

o lim, ,o Fx(z]4) =1

o lim, , o Fx(z|A)=0

e Fx(x|A) is monotone nondecreasingdf< b, thenFx (a|A) < Fx(b|A)

e Fx(z|A) is continuous from the rightt'x (b|A) = Fx (b™|A)

e Pla < X <b|A] = Fx(b|A) — Fx(a|A)

° P[X = b|A] = Fx(b|A) — Fx(b7|A), WhereFX(b*|A) = limg\o Fx(b — 5|A)

Conditional pdf
The conditional pdf is defined as the derivative of the conditional cdf:

Fx(al4) = Fria(eld) = & Fx(al4)

Properties of conditional pdf
o fx(xz|4) >0V
o [T fx( :z:|A)da:—1

o Fx(z|A) = f_ Ix( t|A ) dt

e Pla< X <b|4] = f fx(x|A) de = Fx(b|A) — Fx(a|A)

Same conventions for nondifferentiable corners and jump discontinuities

Fact: derivatives of cdfs exist except at most on a set of countably infinite poiRts in

If Fx(z|A) has a jump discontinuity aty, then “at”z = z¢: fx(z|4) = (Fx(x0) — Fx(xg)) - 6(x — x0)

Total probability for cdf and pdf
If A, A, ... partition S, and ifP(A;) # 0 Vi then

= Fx(x|A:)P(4;) since P[X <z] =) P[X <a|Aj|P(A)

Similarly

= Z fx(x|A;)P(A;)
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Example (pdf from conditioning on events)

Company 1 makes 10Dresistors with 10% tolerance
Company 2 makes 10Dresistors with 5% tolerance
You buy 25% of your resistors froifi; and 75% fromC’,
Pick resistors at random from common storage bin.
What is the pdf of resistance value?

Plausible assumptions:

fx (x|C1) is Uniform(90,110)

fx (x|C2) is Uniform(95,105)

fx(z) = fx(2|C1)P(C1) + fx(x|C1)P(Ch)

Conditioning on interval (homework problem, example 3.10)
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Conditioning on point X = z

How do we define/computB[A| X = z], i.e. prob. of snow tomorrow, given todays high temperature was 33 degrees?
P[A|X =z] = P(AN[X = z])/P[X = z] ok for discrete r.v., but not for continuous r.v. sinB&X = z] =0

Define

. . PANz—0<X <z
= = - < =
P[A|X = x] 61\1,41(1)1+ PlAlz —d < X < 7] 51\1}& Plo—0<X <4

provided limit is well defined

Now apply Bayes rule (assumid@(A) # 0):

Pz -56< X <z|APA) 5[, s [xtA)dl Fx(z|A)P(A)
Thus fx(xl4)P(4)
PAX =2 ="

providedfx (z) # 0 and pdfs sufficiently regular
Rearranging we have
fx(z|A)P(A) = P(A|X = z)fx(z)

so by integrating both sides over

P(A) = /P(A|X =z)fx(z) dz

(another version of total probability)
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Functions or transformations of a r.v.

SupposeX is a r.v. with known cdfF’x (z) and pdffx (z)
DefineY = g(X) for some functiory : R — R

Find cdf and pdf oft”

Two approaches:

e Method of events: always works

¢ Plug-and-chug formula: only works for certajrfunctions

Note that (for all practicay) Y is a well-defined r.v., defined By (s) = g(X (s))

Transformations by method of equivalent events
General procedure to find cdf & whenY = g(X):
For eachy find [Y" < y] in terms of corresponding values &f. Formally:

Y <yl=[gX)<yl=[Xe{zeR:g(z) <y} =[X € g ((—o0,¥])]

so
Fy(y) = P[Y <y| = P[X € {z: g(z) < y}]

Typically we find the last prob. by integratinfg over the se{z : g(x) < y}, which is usually one or more intervals.

If By ={z:g(z) <y}, then
Fy(y) = fx(z) de = fx(x)dz
( ) /By ( ) /{x:g(w)<_y} ( )

Virtually always must find cdf ot first, then differentiate to gefy (y)

Example

SupposeX is a voltage with a Uniform[-5,15] distribution

DefineY = X 2. What is cdf/pdf ofy?

First: RangeY’) = [0,225] so fory < 0, Fy (y) = 0 and fory > 225, Fy-(y) = 1

Fory >0
Y <yl =[X?<y]=[-v¥ <X <y
SO v
Fr(y) =Pvi<X <Al = [ fxlo)ds
VY
For,/y <5,

VY VY
/ fx(z) d:z::/ 1/20 dx = 2,/y/20
VY VY
Forb < VY < 15,
VY VY
/ Fx(a) do = / 1/20 dz = (\/ + 5)/20
N _5

Thus
0, y <0
_J /10, 0<y<25
Fy(y) = (VI +5)/20, 25<y<225
1, 15<y
Taking derivative
ﬁ, 0<y<25

0, otherwise
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A mixed random variable (introduces transformations)
SupposeX is a voltage with a Uniform[-5,15] distribution
LetY be a new r.v. defined to bE¥ half-wave rectified:

0, X<0
Y_gay_{x X >0

What is cdf/pdf ofY?

First: RangeY) = [0,15] so fory < 0, Fy (y) = 0 and fory > 15, Fy(y) =1
Fory = 0: Fy(y) = P[Y <0] = P[Y =0] = P[X < 0] =5/20

For0 <y <15 Fy(y) = PlY <y]=P[Y =0] =P[X <y] = (y+5)/20
Thus

0, y <0
Fy(y)=< (y+5)/20, 0<y<15
1, 15<y
Taking derivative

fr(y) = 70) + 55 (uly) — uly — 15)) = 700) + 51 p<yrs)
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Monotonic increasing, continuous, differentiable transformations of a continuous r.v.
SupposeX is a continuous r.v. with known cdfx (z) and pdffx (z)

DefineY = g(X) for some functiory : R — R

Assumeg(x) is monotonic increasing, continuous, differentiable

Find cdf and pdf of”

Intuition

y+dy //ZQ(X)

y = g(x) _—

/|

Y

T T +dx X

Equivalenteventsy <Y <y+dy] = [z < X <z + dz]
ThusPly <Y <y +dy] = Plz < X < x + dx]
So for smalldy we havefy (y)dy = fx(x)dx for the value ofc such thay(z) = y.
Denote this value = g1 (y).
Inverse exists due to monotonicity of)
 fx(@)  fx(x)
dy/dx 9'(x) z=g~1(y)

fr(y)

whereg/(z) = dy/dx = L g()
Noteg’(x) # 0 sinceg is monotone increasing

Alternative derivation (via equivalent events)
Y < g(z)] = [9(X) < g(2)] = [X < z]
sinceg monotone increasing. Thus
PlY <g(z)] = P[X <z] so Fy(g(z)) = Fx(z)

Differentiating using chain rule:

fr(g(2)g'(x) = fx(z) or fy(y)=

For monotonic decreasing transformatiofyg/dx is negative.
General formula for monotonic (strictly increasing or decreasing), continuous, differemtiable

_ Jx(2)
g’ ()|

Iy (y)

z=g"(y)
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Continuous, differentiable g with “no flat segments”

Now there can be multiple’s for whichg(z) =y

Letn, be the number of’s for which g(z) = y (depends omy)
So there are:1, z3, . . ., z,, roots for whichg(x;) =y

Yy

[y<Y <y+dyl=[r1 <X <ay+de]U[ra < X <2 +dag]U--- Uz, < X <z + day)

Thus

Ny

Ply<Y <y+dy| =) [ < X <z +duy]

i=1

fx(x:)
)= Y x(
{zi:g(zi)=y} |g (mz)|

Example:y = X*

Roots atr = +/y fory > 0

g'(x) = 42°

Atz = + ¥y, we haveg'(z)| = 4y*/*

Ix(¥y) | fx(=&y)
Frly = et g v 20
0, otherwise

Sanity checkY = aX +b

|9'(z)[ = lal
Solutiontoy = ax +bisz = (y —b)/a

foy) — Pxw—)/a)

(same as before)

Linear transformation of Gaussian r.v.
SupposeX ~ N(ux,03)
LetY =aX +0

Frly) = Ix(y=b/a) 1 (_((y—b)/a—ux)2>/|a|

= e
a] Vomox P 20%

1 ) exp (_ (v —2(&/;);)—2 b))2> _ \/%UY exp (_%>

V27 (lalox
whereuy = aux + bandoy = |ajox
Y ~ N(py, 012/)
aX +b~ N(apx +b,a’c%)

Thus linear transformation of a Gaussian r.v. yields a new Gaussian r.v.
(Gaussian distribution preserved under linear transformations)
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Functions of a discrete r.v.
SupposeX is a discrete r.v. with ranggry, o, . . .} and known pmfP[X = ;]
DefineY = g(X) for some functiory : R — R
ClearlyY is a discrete r.v. and the range¥fis Sy = U;{g(z;)}
Itis easy to find the pmf oY
If y € Sy, then
PY =yl =Plg(X)=yl= > P[X=uz]

{izg(zs)=y}
i.e. the probabilityt” takes the valug is the sum of the probabilities that takes those values for which g(z;) = y.
If g(-) is monotone increasing or decreasing, then there will be only onexsualue for eachy, namelyr = g~ (y)

Computer generation of r.v.
(reverse of above thinking!)

Computer generation of discrete r.v.

Recall from computer assignment:

to generate Bernoulli r.v. witlP[Y = 1] = p andP[Y = 0] = 1 — p we usedU ~ Uniform(0, 1) and then define®” = g(U)
where

1, u<p
g(u) = { 0, otherwise

This approach can be generalized for other discrete r.v., just split up interval...

Computer generation of continuous r.v. by “Transformation Method”

Most computing languages provide subroutines only for generating pseudo-random numbers from the(Unifatistribution.
To generate realizations of a continuous random vari&bleith cdf Fx (z) we must first generaté’ ~ Uniform(0, 1) and then
transform it byX = ¢(U) for some functiory(-).

How to generat&X ~ Uniform(3, 8)?

Intuitively: X = 5U + 3.

From scale and shift of pdffx (z) = L fur(22)

Note: scaled down since “stretched out” but must integrate to 1

X
A
8
X =5U+3
3
—-U
0 1
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“Transformation Method” for generating continuous r.v. (on a computer)
To generate realizations of a continuous random vari&bleith cdf Fx () we must first generaté’ ~ Uniform(0, 1) and then
transform it byX = ¢(U) for some functiory(-).
In general we must use:
X = FM(U) = g(U) whereg(u) = Fy*(u)

whereF' () is the inverse of the functiof’x .

Note that sincé’y is monotone increasing for continuous ar.v., so the inverse is well defined.

In practice we find this inverse by settidtx () = « and solving forz in terms ofu. That gives us some relationship= g(u)
and we subsequently ugé = ¢(U) in the computer.

Proof (that if we use the above transformation, th&will have the desired cdf'x.
P[X < 2] = P[g(U) <z] = P[F5'(U) < 2] = PlU < Fx ()] = Fx(x)

sinceF’y is monotone increasing for continuous r.v.
sinceFy (u) = u for U ~ Uniform(0, 1)

Caution

Note that )

~ Fx(u)

i.e., a number raised to thel power is the reciprocal of the number.
But F'i' (u) is the value ofr that satisfiesy (z) = u, which is almost never the reciprocal Bf; (u)

[Fx (u)] ™!

Example
Recall that for the 30-cm circular dart board example the CDF of th&r(distance to center) was
Fx ()
1
0, <0
Fx(z) ={ (x/30)%, 0<z<30

1, 0Lz | 30':c
Setu = Fx(x) and solve for.
(We only need to considér < u < 1 sinceU is a Uniform(0,1) r.v.)
Sou = (2/30)?%; thusz = 30y/u
Thus, to generate a r.v. with the above CDF, Xse- 30+/T.
In Matlab, to generate 1000 realizatioxs:= 30 * sqgrt(rand(1000,1))

(book does exponential)
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Synopses of the properties of a r.v.

The pdf is a complete description of the behavior of a r.v. (any probability can be computed from it). Often, due to lack of data or
no known model for a random phenomena, one must resort to simpler quantities that characterize part of the random behavior, bu

are less complete than the entire pdf.
Example: summarizing mean and std. dev. after an exam

A

fx ()

Y

Possible “summary statistics:”

e median: point such that/* _ fx(z) dz = [.° fx(z) dz = 1/2.
e upper quartile: poink such thatfbOO fx(z)dx=1/4

e mode: value ofc wherefx () is maximum

e “center of mass” or meani = f_o; xfx(x) dx

e “moment of inertia” or variances? = [ (z — p)? fx () dz

If fx(x) is symmetric about some poing, then mean = median = moders

The most important of the above is usually mean and variance,
or standard deviatios, which is square root of variance

Mean or Average (essentially equivalent concepts for discrete r.v.)
Interpretations:

If n students in class with ages, . . ., a,, then average age: = % Z;‘zl a;
There are onlyn possible ages, . .., z,, €.9.19,20,...,28

Letn; be the number of students whose age;is

Note that)~!" | n; = n

Another way to compute mean is

m m
1 n;
n “ ‘ n

=1 =1

Take board of lengtlm + 1 cm, label19, 20, . . ., 28 put a 1gram weight at age of each student.

Balancing point (center of mass) will he

So far no r.v.! Now suppose have each student put age on a slip of paper and put in a hat. Draw one out at randdm, atl it
it back, and draw out another one, calkit. etc. Take “average(X; + ...+ Xy )/N for a large number of drany’

By “law of large numbers” this average will be approximatgly
In this experiment, fof = 1,..., m we haveP[X = z;] = n;/n
So from above

=1

This is the most useful formula for computing the mean of a discrete R.V.

Example: roll fair die. What is average?= Zle i-(1/6) =3.5

Note that mean does not need to be in the range of r.v.!
Think: toss die repeatedly and take long-term average...

)
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Example
Let X be the number of Bernoulli attempts required to get one success, wher(success)
Geometric:P[X = k] = P[k — 1 failures followed by a succelss: (1 — p)*~1p

Mean:

00 sl ° 1 1

=Y kPIX =k =Y k(1-p)f'p=p> k(1l-p*'=p (;) ==
k=1 k=1 k=1

sensible!

Note for|a| < 1:

> _ d & d a l1—a—a(-1) 1
k=1 _ @& k_ @ — -
;ka B dakz::la da (1—a> (1—a)? (1-a)?

The formulay = 3, x; - P[X = z;] is perfect for any discrete r.v.,
but we also need a similar concept for continuous r.v. and mixed r.v.,
hopefully one that is consistent with the discrete r.v. interpretation.

All r.v's have a pdf
so express above formula in terms of pdf

The pdf of X (for discrete r.v.) is:

ZP 0(x — x;)

so from (1):

/jo:z:fx( da:—/ xZP §(z — ;) d:z:—ZP z‘/:$5($—$i)d$_ZP[X—xi]a:i—,u

This gives us a universally useful formula for the mean of anyX.v.
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Expectation
BIX) = ux == [ afx(a)do

oo

provided
E[X|) = / 2] fx (&) dex < o0

(otherwise we say the meanusadefinedr does not exijt

Note: E[X] is a property of the pdfx (z), not of the values oX in a particular realization of the experiment.

If P[X = a] =1, thenE[X] = a, but the converse is not true!

Example: Uniform r.v. If X ~ Uniform(a, b) then

° b 12—a?> b+a
E[X]:/ me(x)dx:/xb_adx:§ e 3

sensible! |

Y

Symmetry Property

If fx(z)is symmetric aboutr, i.e. fx(m + z) = fx(m —z) (i.e. fx(z) = fx(2m — z)) thenE[X]| =m

Proof:

M:["m(m) dx:/oomfx(Zm—x) dm:/oo(Qm—y)fx(y) dyzzm[ZfX@) dy—/

[e ) —00 —00

Thuspy =m
Agrees withy = (a + b)/2 for Uniform(a,b)

[e )

—00

yfx(y)dy =2m —p

Gaussian
The pdf of a GaussiaX ~ N (u,0?) is symmetric about.
ThusE[X] = u, so we were justified in calling the mean!



© J. Fessler, January 2, 2001, 17:25 39

Mean of a function of a r.v.
Suppose we want[g(X)] for some functiory : R — R
Note thatg(X) is a random variable
Example: roll die repeatedly, take averagesqéiareof number of dots
Hard way:
e DefineY = g(X), now we wantE[Y] = E[g(X)]
e First find pdf fy (y) of Y’
e ThenintegrateE[Y] = [ yfy(y) dy

Easy way:

Bl = [ " o) fx (@) de

This alwaysworks for any functiory used in engineering
Only defined if

Ellg(x)) = [ " 9@ fx (@) do < o0

o0

(a technical condition we won’t worry about too much)

Function of discrete r.v.
[ o(2) fx (x) dz = [ o) Y PIX = 26(e — ) do = 3 PIX = ) [ o(@)3( — 1) dz = 3 PIX = wilg()

SO

Elg(X)] = ZP[X = z]g(x;)

For die example we will geE[X?] = (12422 +--- +62)/6 = 91/6

Proof that the two methods are equivalent wheis monotone increasing, continuous, and differentiable.
(The proof for more general case is beyond the scope of this course.)
Recall that fory monotone increasing, continuous, and differentiable:

xz
fy(y) = f),(( )
9'(®) lomgmry)
Now make the change of variablgs= g(z) in the integral, noting thay = ¢/(z)dz andz = g (y):

Blv) = [ Ty (y) dy = / " o@D () = / " g(@)fx (@) da

. g'(x)

Scale and Shift
IfY =aX +0b,i.e.Y = g(X) whereg(x) = ax + b then

E[Y] = E[g(X)] :/ o(2) fx (@) dac:/ (az + b)fx () dmza/oo 2fx(2) dx+b[O Fx () dz = aB[X] + b

—00 —o0 —

oo o0

thus

ElaX +b] =aE[X]+b
In particularE[b] = b (the average value for ar.v. that is just a constant is the constant)
And E[X + b] = E[X] + b, so we can shift the mean of a r.v. by adding a constant to it

Linearity
If g(X) =3_;9;(X) then
Elg(X)] = E[Z 9;(X)] = Z Elg;(X)]

So can exchange summation and expectation Byt X )h(X)] # E[g(X)]E[h(X)] in general.
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Indicator Function
If

La(z) = 1, z€A
AT =19 0, otherwise

then

E[l4(X)] = /jo 1x(z)fx(z) de = /AfX(:z:) dx = P[X € A

Conditional Expectation
E[X|A] :/ zfx(z|A) dz

for discrete r.v.:
E[X|A] = Z z; P[X = x;|A]

Example: roll 6-sided fair die. What iB[X|X > 2]

6 6
E[X|X >2] = Z (X =i[X >2] =) i(1/4) =45
=3

since

P[X—z‘|X>2]—P([X—z’]m[X>2])/P[X>2]—{ ?1/6)/(4/6):1/4’ ;:;Z
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Moments of r.v.

The mean only tells us the average value taken of ar.v.

It doesn’t tell us other important factors such as how “spread out” the valu€saoé (e.g. 10Q resistorst-?), or about asymmetry
of pdf.

The moments of a r.v. tell us that information. Most important (central) moment is the variance.

Moments about the origin
Thenth moment about the origin of a r.X is defined to be:

[e )

un = E[X"] :/ 2" fx(z) dz

—00

po =1
w1 = p = px = E[X], the mean ofX

Central Moments
Thenth central moment of a r.\X is defined to be:

o= BIOC = )] = [ (o = )" (o) do

mo = 1

mi = 0

mo = E[(X — px)?] = 0% = Var[X], the variance of{

ms = E[(X — px)?] is called the “skewness” of . If pdf of X is symmetric, themns = 0

Standard Deviation

StdX] = /Var[X] =ox
Units:
If X has units volts, thep ando x also have units voltsfx (x) has units 1/volts, and VBX| has units volts

Gaussian
If X ~ N(u,o0?),then VafX] = o2

o0 o0 1 2 2 o0 1 2
Var[X| = z—u)?fx(z da::/ x — p)? e~ (@=m)7/(20%) g — 2/ 2 eV /2 dy = o?
X = [ @-wits o= [ @-wi— 7 [ ey =

lettingy = (x — u) /0o, since by integration by parts:

/oo 2 1 g,y
e =
_Ooy V2T Y

so callingo? the variance was correct

Relationship between variance and moments about origin
VarlX] = E[(X — px)?] = B[X? - 2X px + pk] = E[X?] = 2EB[X]ux + pk = BIX?] - 2u% + pk = E[X?] - pk

SO
ok = B[X?] - (B[X])?

often (but not always!) easier than applying definition directly:[¥ar= f_o;(a: — px)?fx(z) dx
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Effect of shift and scale on variance
VarjaX +b] = E[(aX +b—E[aX +b])?] = E[(aX +b—(aE[X]+b))?] = E[(a(X — E[X]))?] = *E[(X — E[X])?] = a*Var[X]

so shift has no effect on variance, but scalingiscales variance hy?
Var[b] = 0

Var[X + b] = Var[X]

VarfaX] = a?Var[X]

(3.7)
Although the moments of a r.v. are very useful, a finite set of moments does not in general tell you the whole pdf, so you cannot
compute exact probabilities knowing only the moments. We can compute bounds on the probabilities though.

Markov Inequality
If X is a nonnegativer.v., i.e?[X > 0] = 1 with known mean

E[X]

PIX >d] < fora>0 if P[X>0]=1

Proof:

oo

E[X]:/Ooomfx(x) dac:/oamfx(m)dac—l—/:omfx(x) dacz/aoomfx(ac) dxz/a afx(z) dz = aP[X > d]

Example: suppose mean age in class is 20
Let X denote age of randomly selected student
P[X > 25] < 20/25 = 0.8, so no more than 20% of class can be over 25 years old

Chebyshev Inequality
Useful when meaand varianceof a r.v. X are known
LetY = |X — ux|?. Clearly P[Y > 0] = 1, so by Markov inequalityP[Y > a?] < E[Y]/a? fora > 0

ButeventdY > a?] = [|X — px| > a] are equivalent. An&[Y] = E[| X — ux|?] = Var[X]
fx (@)
Varl X
Pl|X —ux|>a] < [Q]fora>0
a
Sensible: ag — oo, P — 0 | n—a I w+a x

Often gives fairly loose bounds
Perhaps more useful for theoretical derivations (e.g. law of large numbers) than for practice

Expected value minimizes mean squared error
E[(X — ¢)?] > Var[X], and the minimum is achieved iff= E[X]

E[(X = ¢)*) = E[(X — ux — (¢ = px))*] = BI(X — px)*] = 2B[X — px](c — px) + (¢ — px)* = Var[X] + (c - px)*
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Characteristic Function (Fourier transform)

d(w) = Ele?X] = / 9% fy (x) dx
j=+/—1,5052=—-1land—j-j=1
The above integral always exists. Note thafw)| < ®(0) =1
Generate moments from derivativesiaf an
E X" =(—j)" —@
X = ()" )|
Proof:
o 2w = Zw e’ fx(z) do = a o ©fx() de = Zw(jx)"ejwmfx(x) dx
S0 i -
d—nfb(w) = j"/ 2" fx(x) de = jPE[X"|
w w=0 —00
Example: X exponential with meap
, oo S | > q . 1
®(w) = E[e?X] = / e fx(x) de = / 10T Z e/ dg = / —em(M/H=iw) gy = ,
— o0 0 p o M 1 —jwp
d Jju .
—¢ = — = =
o (w) 0= jop)? ju atw =0
By induction:
d" __Gwtnt _
dwnfb(w) = 0= jop T jhp'n! atw =0
SOE[X™] = u™n!
In particular VafX| = E[X?] — u? = 2u® — p? = p?
Moment Generating Function (Laplace transform)
[e.e]
M(s) = E[e*X] = / ¢ fx (2) do (Text usesEfe—*X])
— 0o
dn
E[X"] = = M(s) (for E[e~**] multiply by (—1)™)
s=0

Advantage: avoids complex numbers. Always exists¥anonnegative fog < 0.
Disadvantage: integral may not always exist

Probability Generating Function (Z-transform)
For discrete nonnegative integer valued r.v.

G(z) = E[zX] = szP[X = k]
PIX =K = & a(:)
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Most engineering problems deal with multiple numerical quantities.

Random vectors (or vector random variables) are a general tool for analyzing such random phenomena.
The development of random vectors completely parallels that of random variables:
e 4.1, 4.5: Definition

e 4.2,4.5: Joint cdf, pdf

e 4.3, 4.5: Independence (new)

e 4.4, 4.5: Conditional cdf, pdf, Bayes rule, total probability

¢ 4.6: TransformationsZ = ¢(X,Y)

e 4.7: Expectation, Moments

e 4.7: Correlation, covariance (new)

e 4.8: Gaussian random vectors

e skip 4.9, 4.10

4.1

Random Vectors (or vector random variables)

Given a sample space S, arandom vedfor (X1, ..., X,) is an-tuple of random variablesX; : S - R, i =1,...,n.
Thus each sample point is mapped into a vectot tfal numbers, oX : S — R

The behavior of a random vector is completely describes by
e thejoint probability mass function (joint pmf) for discrete random vectors, and
e thejoint probability density function (joint pdf) for continuous (or mixed) random vectors.

Event Shorthand
Example:[X =5, Y <3| ={se€ S: X(s) =5andY(s) < 3}, i.e., the “,” denotes “and” or intersection:
[X=5Y<3]=[X=5Nn[Y <3

Joint Probability Mass Function (Joint PMF) for discrete r.v.
roll | 1 2 3 4 5 6| (outcomes or sample poinis= S)

Example: roll fair 6-sideddie. X |0 0 3 0 0 3| 3ifnumberofdotsis a multiple of 3, and 0 otherwise
Y |0 2 0 2 0 2| 2ifnumberofdotsiseven, and 0 otherwise

Sx = {0,3}, 8y ={0,2}

PMF Shorthandp(z;, y;) = P[X = z;, Y = y;]

p(0,0) = P(rolllor5)=2/6

p(3,0) = P(roll3)=1/6

p(0,2) = P(roll2or4)=2/6

p(3,2) = P(roll6)=1/6

Note thaty®,  p(zi,y;) =1

Can answer any question, BLXY > 5] = 31, ).aesx yesy ay>sy LDIX =4,V =y = P[X =3,V =2| = 1/6

For a random vector with two components (a pair of random variables), the joint pmf can be displayta ldseogram
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Equivalent Event approach to calculating probabilities for random vectors

Example: uniformly-likely circular dart board

Sample spaces = {(a,b) : a® + b < 30%}

Two random variables defined on S:

e Distance from center: i§ = (a, b) thenR(s) = va? + b2
e Angular position9(s) = tan™(b/a)

Random vectorX = (R, ©) i.e. X(s) = (R(s),O(s))

Induced sample spac8x = [0, 30] x [0, 360]

Questions: what i®[R cos© < 10] andP([R < 20] N [45 < © < 90]) ?
Answer: findequivalent event(set of sample points that satisfy the conditions)

For 2nd question, area(wedge)/area(board}6?/8/(r30%) = 1/18

General formula:

[XeBl={secS:X(s) € B} =X"(B) so P[Xc B]=P(A), whered = {sc S: X(s) € B}

The latter question is said to be in “product form”
In general an event of the forth = [X; € B1] N [X2 € Bo]N---N[X,, € B,]is inproduct form
Since[X; € Bi|N[X2 € Bo]N---N[X, € By]=[X € BlwhereB= By X By X -+- X By,
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Any event of interest can be formed from (limits of) unions of events in product form. Therefore, if we know all the probabilities
of the form
P([Xi <z|N[X2 <z2]N---N[X, <x,]) = P[X; <21, X3 < 22,..., Xy, < )]

we can compute any probability of interest
(although really we will use the above to get joint pdf and then integrate to get probabilities)

4.2
Joint Cumulative Probability Distribution Function (Joint CDF) (Joint Distribution)

Fx, x5, . x.(®1,22,...,2n) = P[X1 < 21,Xo < z9,...,Xp <zp|for —co<z; <o0,i=1,...,n

Read: the probability of the event that the X4 takes on a value in the intervgl oo, 1] and the r.v.X, takes on a value in the
interval (—oo, z2] and ...

Properties of Joint CDF (for 2-vector(X, Y') only, generalization ta-vector is straightforward)

o0 S FX,Y(xvy) < 17 Vx,y

(] FX7y(OO,OO) =1

o Fxy(—00,y) = Fxy(z,—o0) =0, Y,y

e Monotone nondecreasingx,y (z1,y1) < Fx vy (z2,y2) if z1 <2 andy; < y2

o F'x y(z) is “right” continuous:Fx y (z, y) = lims\ o Fx,y (z + d,y) = lims\ o Fx, v (z,y + 0) (for 6 > 0)

o Plr; < X <5,Y <y| = Fx,y(z2,9) — Fxy(71,y) (sketch)
b P[X <z, 1 <Y < yQ] = FX7Y($,y2) - FX,Y(x7y1)

o Py < X <z, y1 <Y <yo] =Fxy(z2,92) — Fxyv(z2,91) — Fx,yv(z1,¥%2) + Fx,v(z1,%1)

¢ P[X =x,Y =y] = lims, ,olims, 5o Plz — 6, < X <2,y -9, <Y <y|]=...?

Example: circular dart board witR and® as defined above

0, r<orf<0

(r/30)20/360, 0<r <30,0<6 < 360
Fre(r,0) =P([R<r, ©<f)=P(R<rN[O<0) =1 35, r > 30,0 <6 < 360

(r/30)2, 0 <r<30,0> 360

1, r > 30,60 > 360

Marginal CDF or Marginal Distribution
Fx(z) = Fxy(z,00), Fy (y) = Fx,y(y,0)

Fyy(2,00) = P(X <] N[V < oc) = P(IX <] N S) = P(IX <a]) = Fx(a)

In preceding example

0, 0 <0
Fo(0) = Fre(00,0) = 55, 0<0 <360
1, 6>360

which is Uniform(0,360): makes sense.
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Proof of relation between probability and CDF
(21 <X <@g, 1 <Y <yo] = ([z1 < X <z N[Y <o) N[Y <
sinceP(AN B¢) = P(A) — P(AN B):
Plzy < X <2, y1 <Y <] =Plr1 < X <29, Y < o] = Plz1 < X <22, Y < 31
Applying same approach t& yields:
Plo1 < X <29, n <Y <ya] =P X <23, Y <] —P[X <21, Y < o] - (P[X <22, Y <] - P[X <21, Y < 1p1])

= Fxyv(z2,y2) — Fxyv(z1,y2) — Fx,yv(z2,y1) + Fx,v(z1,91)

Discrete random vector

CDF:
Fxy(z,y) Z PIX =2, Y = yjlu(z — z:)u(y — ;)
since
PX<uz = Y > PX=uzY=y]
{#:zi<z} {jry; <y}
pdf:

fxy(z,y) ZP =i, Y =y;]0(z — @i,y — y5)
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Computing probabilities vi®@[z; < X < 2, y1 <Y < ] = Fxy(22,%2) — Fxy(22,91) — Fxy(21,92) + Fxy(z1,91) is
inconvenient. Integrating a pdf would be easier

Joint Probability Density Function (pdf)
The joint probability density function (pdf) of @dimensional random vectd¥ is defined to be

d’n

= —Fx, x,...x. (®x1,22,...,2,
dmlde__.dmn 15025000y n( ’ ’ ’ )

Ix1 Xo,x, (X1, 22, .., Tny)

(details about nondifferentiability similar to 1D case)

Example: Joint pdf of?, © for circular dartboard:

2r 1
== 0<7r<30,0<6<360
_ 302 360° ’
fre(r,8) = { 0, otherwise

Properties of joint pdf (for 2-vector only) (generalization straightforward)
o fxvy(z,y) >0Ve
o [T I fxy(zy)dedy =1
zt y+ oo / /

o Fxy(z,y)= [ [7 fxy(a y)d dy
o Fx(x) = ff; ffzo fxy(@,y) dx’ dy sinceFx(z) = Fx y(z,00)

00 +

Fyry) =2 [P fxy(z,y) dedy

o Plz; < X <, .7J1<Y§y2]:f;1;r

b P[(Xv Y) € B] = ffB fX,Y(xvy) dx dy
If 1st two hold, thenfx y is valid joint pdf

.
U fxy(e,y) dr dy

Interpretation of joint pdf
Plx—0, <X <z,y—0, <Y <y]~ 8,0, fxy(z,y) for smalls’s
Higher density = more likely

Example:P[R < 20, /4 < © < 7/2]

200 r7/2 9p 20 9 71/2 — 1/4 1 2% 1
:// fR,e(r,o)drdaz/ / 3—(;2—drd0:/ 3—(;7”27”/drd0: - ==
{(r,0):r0<20} 0 Jr/a @ 0 @ 8 30%[,_, 18

r

(same as before)
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Marginal pdf
d d fl?+ oo , , oo
fx(z) = %Fx(l‘) =7 fxy (@' y)dz' dy = fxy(z,y) dy
Similarly
fr( / fxy(x,y)dz andingenerafx,(z; f/ / Ixi,ox, (@1, Tp) doy -+ - dxgy dxgy - day,

Example: Joint pdf ofX, Y for circular dartboard: (we can finally formalize!)

1

2
. —=, TW+y° <r . .
fxy(z,y) = { g otherwise uniform over entire dartboard

SOP((X,Y) € A] = [[, =z dedy = Area(A)/(nr?)

SX = [—T, T]
o N}
1 Vr2 —z2, for|z|<r
= d - 5 d = wr? B
fx(z) [Oo fxy(z,y) dy /_m el { 0, 0.W.
(Picture)

Intuition: why peaked at center?

(skip)

Example: a 1-meter stick breaks “randomly” into 3 pieces.
What is probability a triangle cannot be formed from 3 pieces?
Let X andY denote break points. Assume

1, 0<2<1,0<y<1 ,
fxy(zy) = { 0. otherwise (2d uniform pdf)

A = { cannot form trianglé = { longest piece> 1/2} = A; U A3 U A3
whered; = [X <1/2,Y <1/2], A2 =[X >1/2,Y > 1/2], A3 =[|X - Y| > 1/2]

P(Ay) = / [ (o) do dy = Area ) = 1/4

P(A) = 3/4

As Ay

Ay
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Recall that evental and B are independent ifP(A N B) = P(A)P(B)
We want an analogous concept for random variables.

4.3
Independence of Random Variables
We sayXy,..., X, are independent r.v.s iff any of the following equivalsaparabilityconditions hold/z, ...z, € R:
PX; <z1,X0 <mg,..., X, <z,] = P[X1<z|P[Xs <] -+ PlX, <z,
= Fx,(21)Fx,(22) - Fx, (xn)

fx (1) fx, (22) -+ fx, (Tn)
P[X, € Bi]--- P[X», € By]

fX17X27~~~,Xn (371,.172, ceey T

Fx, x,,..x,(®1,Z2,...,%n)
P[Xl €Bl, ,Xn GBn]

For discrete r.v., joint PMF must factor into product of marginal PMFs:

P[Xlzml,,Xn:J}n]ZP[Xlzml]P[Xn:J}n]

Example: Joint pdf of?, © for circular dartboard:

r L 0<r<30,0<6<360

— 302 360°
Tre(r0) = { 0, otherwise

2r 1
=, 0<r<30 ==, 0<6 <360
— 302 — 360°
Ir(r) { 0, otherwise fo(0) { 0, otherwise

So R and© are independent farircular dartboard. (BufX andY are dependent!)
(In contrast, foisquaredartboardX andY are independent, bt and® are dependent!)

Property of Independent R.V.s
If X4,...,X, areindependentr.v.s, then functions of disjoint subsets okifgare independent.
E.g.,ifY; = X; + X5, Y5 = X7e¥X4, Y3 = log X5 thenYy, Y, andY; are independent r.v.s.

Independence arises two ways. In some problems (such as dart board above) we know how the r.v. is defined (from sample
space) and we form joint CDF and then check to see if independent or not. In other problems we are given that some of the r.v.s
are independent (for example if they come from independent sub-experiments), and we use that fact to calculate other things o
interest.
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Example: a satellite has two power supplies, a primary and a backup that switches on if the primary fails.
The failure timeX of primary (relative to launch time) is exponential with mean 1 year.

The failure timeY” of backup (relative to engaging) is exponential with mean 1 year.

Assume lifetime of two supplies is independent.

What is prob. that satellite still works after 3 years?

Translate{satellite still works after 3 yeajs= [X + Y > 3]

PIX +Y >3] = / / (@, y)dedy=1-— / / Fx (@) fy () de dy
{(z,y):x+y>3} {(z,y):x+y<3}

33—z 3 3
=1- / / e e Vdxdy=1- / e *1—e B ) de=1- / e ®—e3dr=4e3
o Jo 0 0

Two aspects of region to consider:
e Where isfx y nonzero, L
e what subset of that is the event of interest?

also: Buffon’s needle
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‘ 4.4 Conditional Probability and Conditional Expectation

Fx(z) =PX <uz| | Fx,,.. x,(x1,...,2n) = P[X1 <z1,..., X;, <]

fX(J}):%FX(J?) fX1 ----- Xn(x1,~-~,1‘n):mFX1 ----- Xﬂ,(l‘l,...,l‘n)

Conditioning on Events

Conditional CDF
Fx(z]|A) = P[X < z|A]

Conditional pdf (given an event)
fx(z|A) = L Fx(z|A)

Total Probability for CDF, if{ 4;} partition S
Fx(z) =3, Fx (2| 4:) P(A:)

Total Probability for pdf, if{ 4;} partition S
Ix(z) =22, fx(z[Ai)P(A;)

Total Expectation, if A;} partition S

Elg(X)] = >, Elg(X)|Ai] P(4:)

Point Conditioning and Events

Bayes rule for point conditioning
P(AIX = z) = fx(z|A)P(A)/fx (z)
Total Probability for event from pdf

P(A) = [% P(AIX =2)fx(z)dx

Two random variables (NEW)

Bayes rule for two r.v.s

Frix(le) = fxpy (ly) fr (v)/ fx (@)

Total probability for two r.v.s

() = [T fvixwle) fx (@) de = [T fxv(z,y)da

Law of iterated expectation for two r.v/s

ElY] = EE[Y|X]] = [T E[Y|X = afx(z) dz
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4.4
Interval conditioning

PlY <y, x1 < X < x9)

P[Jﬁl < X< 272]
S Iy @y ) dady' [T [ fx, Y(x y')dmdy’
T fxy @y dady’ 2 fx(

Fy(y|lez1 < X <z)=PlY <y|z1 < X <z3] =

Define the conditional pdf
S '3 Y(fl? Y )dxdy 2 fxy(zyy) da
S fx (@ Jo fx (x)dz

Note that naturally as; — —oo andzs — oo, fy (y | 1 < X < x2) = fr (y).

d d
fr(y | <X<$2)—d—yFY( |$1<X<962)—d—

Point conditioning and conditional pdfs
Recall that earlier we defined point-conditioning probabilities by

P(A'X_x)_}%PMlx—MXw)—%&fw

Now let A be the evenfy” < y], then

PY<yz—-d<X<=z
Fyix(yle) = PlY <y [ X =a] =lm P[Y <y|z - <X < 2] = lim [P[xy—6<X<x] ]

i Fxy(z,y) — Fxy(z—08,y) _ lim 3 (Fxy(z,y) — Fxy(z —6,9)) _ LFxy(z,y)
50 Fx(z) — Fx(z —9) 50 %(Fx(a})—Fx(:]}—é)) fx(z)

Define the conditional pdf

d £Fxy(z,y) _ fxy(x,y)

d _ fxy(z,y)
dy  fx(z) fx(z)

fx(z)

Frix@lz) = L Fy x(yl) = s0 | fy x(ylz) =

dy

Also useful is the rearrangement:

‘fX,Y(fl?,y) = fy|x(ylz) fx () ‘

Similarly

Ixiy (ely) = hfyig)y)

So combining yield8ayes rulefor pdfs:

fY\X(y|$)fX($)

fX\Y(x|y) = fY(y)

“Total probability” for pdfs:

y) = /jo fxy(z,y)de = [Oo frix(ylz) fx (x)dz so| fy(y) = /jo Frix (yle) fx (z) da

Calculating probability from condition pdf:

P[Y € BIX = ] = /B Frix (ylz) dy
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Conditional pdfs in general

IX1 X0, X5, X4, X5 (21, T2, T3, T4, T5)
Ix5,x4,%5 (T3, T4, T5)

le,Xz\XS,X4,X (271,5172 | 583796471‘5)

etc.

Chain rule for pdfs

f(mlv cee 7xn) = f(-’l?n|{171, cee ,$n,1)f($n,1|51,‘1, cee 7xn72) o f(:l,‘2|:1,‘1)f(11,‘1)

(with lazy notation omitting subscripts)

Example (4.23 reworded)

Packets arriving at a router.

The number that arrive during any time inter{al, ¢2] is a Poisson r.v. with meab\(t; — ¢1)

Assume that the amount of tiffeneeded to process the packet is a r.v. with exponential distribution with inean
(random due to routing tables, etc.)

Router has 8 packet buffer. What is P(overflow), i.e., 9 or more new packets arrive while processing “the first” packet.
NeedP[N > 9], whereN is the number of (new) packets that arrive while “the first” packet is being processed.

Find the PMF ofN.

N is discrete r.v. withSy = {0,1,2,...}

Let T be the time required to process specified packet. We are given:

fr(t) = e Mu(t).

Also:

PN =k|T =t] = (ﬁ)ke—ﬁt.

By “total prob” (eqn 4.35)

PIN = k] = [o PIN = k[T = t)fr(t) dt — /OOO %e—me—xt dt

o0

BN e e g B _<A><ﬁ>k
B k!/o e dt_(ﬂﬂ)kﬂ_ B+A)\B+A

since [ a*e~** dz = k!/a*!, so

iﬁﬂ <5+A)j_ <%>k

Note: large means overflow, unlesslarge enough to keep up.

Specific application: suppoge= 2/usec (on average 2 new packets per microsecond)

How large must\ be to ensure that only 0.1% of the time will more then 8 new packets arrive while during processing?
WantP[N > 9] < 0.001 =p

(%)k <psoA>p3(1/¥p—1)=2(1/v0.001 — 1) ~ 2.31 per usec.

Needyp < 1/2.31 = 0.43usec / packet.

Naive design: usg = 0.5usec so thah = 2/usec.
ThenP[N > 9] = (1/2)? = 0.002 or 0.2% of the time there will be overflow.



© J. Fessler, January 2, 2001, 17:25 55

Independence and conditional pdfs
If X andY are independentr.v.s, theiy v (z,y) = fx(z)fy (y) SO

fyix(ylz) = fxy(@y) = Ix (@) fr(y) = fy(y) equivalently Fy(y|X € B) =Fy(y)VB € B

fx(x) fx(z)

Similarly
fX\Y(f’f|y) = fx(z)

this gives us two alternate conditions for testing independence

Conditional Expectation

oo

EY|X = 1] = / yfyix(wlz) dy

Note thatE[Y'| X = z] is a function that maps any valuginto a number.
Call this functiong(z) = E[Y|X = z] ThenE[Y|X] = g(X) is a random variable

Independence and expectation
If X andY are independentr.v.s, then

E[Y|X = 2] = E[Y] and E[X|Y]= E[X]

However, the converse imttrue
Example: circular dart board with
1 2 2 2
_ ) mm T Ay ST
Fxy(z,y) { 0, otherwise

then deriving the conditional pdfy| x (y|z) is symmetric about 0 s&[Y'| X = x| = 0. Also the marginal pdfy (y) is symmetric
about 0 sa&[Y] = 0. ThusE[Y|X] = E[Y] = 0. But X andY are not independent.

Law of Iterated Expectation
EE[Y|X]] = E[Y]

BBy X = [ BYiX =slix@)de = [ [ upxlolody s de

=[:/_:yfx,y(w,y)da:dy=[:yfy(y)dy=E[Y]

Example: mean of packets arriving (earlier)
Intuition: E[N] = BE[T] = /A

E[N] = E[E[N|T]| = / T EINIT = ) (t) di = / (B0 fr(t) dt = BE[T) = 5/A
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4.6
Functions or transformations of a random vectors
Let X1,..., X, ber.v.swhose joint pdf (perhaps via jcdf) is known.

LetZ = g(X1,...,X,) whereg : R* — R. Want to find pdf (via cdf) ofZ in terms of joint pdf ofX;’s.

Method of Equivalent Events
Let

R, ={(x1,...,2,) €R" : g(x1,...,2,) < 2} = g ((—00, 2])
then[Z < z] is equivalent to the evefiX’ € R,], so

Fz(z)zp[zgz]zp[ge}zz]://--./R Foms (@1 ) doy -+ dan

Not really any simple plug-and-chug formula! (except Jacobian)

Typical problems for pairs of r.v.&Z = g(X,Y).
Z=X+Y,Z=X-Y,Z=X)Y,Z=max(X,Y), Z=min(X,Y), Z=vVX2+ Y% Z=|X -Y|,X = RcosO,...

Example: Z =X +Y
Equivalent eventis easy inthiscadé: < z] = [X +Y < z] = [V <z - X] = [(X,Y) € R.] whereR, = {(z,y) € R? :
x+y<z}

AY

Fz(2)=P[Z<z]=PX€eR,] = /_Oo /_Z_w fxy(z,y) dy dx

gives cdf ofZ in terms of joint pdf ofX andY
d o0
fz(z) = EFZ(z) = / fxy(z,z—x)de

gives pdf ofZ in terms of joint pdf ofX andY

Sums of Independent r.v.df X andY are independentr.v.s, then

f22) = [ Fx(@)fy (e - o) do = (fx* 52
which is a convolution integral. More generally Xfi, ..., X,, are independentr.v.s asfil= X; + --- + X,,, then

fz(2) = (fx, * fxo %% fx,)(2)

(well defined because convolution is a commutative and associative operator)

Convolution

f(@) = (g h)(x) = (hxg)(z) = /OO g()h(x — 1) dt = /jo h(t)g(z —t) dt

— 00 o0
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Example: sum of 2 independent exponential r.v.s is Erlang
AssumeX andY are independent and have exponential distributions with same mean
fx (@) = e7*/* [pu()
LetZ = X + Y and find pdf ofZ
Since range oX andY is nonnegativeS; = [0, co) so only need to consider> 0
(oo} z 1 1
F22) = (fx* 5)) = | fx@)fy =) do= [ el e o go
—o0 0o M K
z
1 2/ Z o
= —e de = = e */Pu(z
/0 p? p? =)

so0 Z has an Erlang distribution.

Sums of independent r.v.gcan be shown using above convolution approach)
o N(u1,0%) + N(pz,03) = Ny + 12,03 + 03)

e Poisson{\;1} + Poisson{\s} = Poisson{\; + A2}

e Binomial(ny, p) + Binomial(ns, p) = Binomial(ny + ns, p)

Example: method of equivalent events
Y = max(X;, X2, X3) whereX's are assumed independent. Find pdiof

FY(y) = P[Y < y] = P[maX(X17X27X3) < y] = P[Xl < an2 < y7X3 < y] = FX1(y)FX2(y)FX3(y)

v ooy oy
= / / / Ix1,%0, x5 (21, T2, 23) dxy day dos
— 00 — 00 — 00

Thus by chain rule (for independekits case):

orin general:

d

fy(y) = d_y

Fy (y) = fx,(Y) Fx, (¥) Fx5 (y) + Fx, (Y) fx, (W) Fx, (y) + Fx, () Fx, () fx5 (y)

For this case the equivalent event could be found without picture. Usually a picture is needed.
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4.7
Expectation, Mean, Average, or Expected Value of function of vector random variables
For function of 1 r.v.:

Blg(x)) = [ " g(@)fx (@) do

oo

For function of multiple r.v.s:

Elg(X1,..., X)) :/ / 9@, wn) fxy o x, (X1, Tp) day <o day,
provided
Ellg(Xy,...,Xn)|] :/ / lg(z1, ..., zn)| fxu,. xo (@1, ., T0) dzy -+ day, < 00

(otherwise we say it isndefinedr does not exijt
(hard way would be to leY = g(X1,..., X,,), find pdf of Y, then useE[Y] = [ yfy (y) dy

Discrete random vector

Elg(X1,.... Xn)l= Y - > glar,...,z)P[X1 =m1,..., X, = 2]

1’163}(1 JCnESXn

Linearity Properties

X +Y)= [[@rofsy@y dedy= [[ater@yydodys [[ sy dedy= [ofc@ ot [ dy
SoE[X +Y] = E[X] + E[Y]. By similar argument more generally:

E[Z gi(X1,..., Xn)] = ZE[gj(Xl, X))

so we can exchange expectation and summation.
Note that linearity of expectation does not require independence!

Example (mean of Binomial(n,p))

Let X4, ..., X, be independent Bernoulli random variables (1 if success, 0 if failure) with success prohability
SinceX; is adiscrete r.v.E[X;] = 1p+0(1—p) =p

LetY = X; + --- + X,, be the number of successesiitrials, soY has Binomialg, p) distribution

E[Y] =", E[X;] = np, which is much easier than earlier approacttp¥] = >_;'_  kP[Y = k]

Conditional Expectation

Elg(X1,..., Xn)[4] :/ / 9(T1,- ) e, x, (@1 T |A) dy - day
If A1, Ao, ... partition S:

Elg(X1,...,X,)] = ZE[g(Xl, ..., Xn)|A;]P(4;) (“total expectation”)
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Example (expectation of sum of dependent r.v.s)

Suppose: concertgoers check their hats at a coatroom. The coat checkers randomly rearrange all of the hats before returning then
to the concertgoers. What is the expected number of concertgoers that get their own hatack? (

Hard way: find PMF o, and then sumE[Y| = Y_7_  kP[Y = k.

Easy way: letX; be 1 if theith concertgoer gets his or her own hat back, and 0 otherwise. Bf¢e= 1] = 1/n,

1 1

SinceY =Y | X;
EY|=E])_Xi|=) E[Xi]= Z% =1 independentof. !

Independence
If X4,...,X, areindependentr.v.s, then

Elg1(X1)g2(Xs) - - - gn(Xn)] = [O - --[o 0121 (@) Fxers (@1 oy n) dy -+ dan

oo [e )

—/_:...Z:gl(xl)...gn(xn)fxl(:zzl)...,an(:z:n) doy - dxn:/ gl(:cl)fxl(xl)dxl.../ o) (@) da

= Elg1(X1)|E[g2(X2)] - - Elgn(Xy)]
do not apply this formula to dependentr.v.s!
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4.7)
Moments

Marginal moments are same as before (mean and variance of ar.v.)

Now what is interesting is the moments that relating to the coupling between two r.v.s
e Thecorrelation between r.v.s andY is defined to beZ[X Y]

o If E[XY] =0, then we sayX andY areorthogonal

e ThecovariancebetweenX andY is defined to beCov{X,Y} = E[(X — pux)(Y — py)]
Cov{X,Y}

0Xx0y

e Thecorrelation coefficientof X andY is pxy =

o If px y = 0, then we sayX andY areuncorrelated
¢ Note thatpx y = 0 is essentially equivalent t€ov{X, Y} = 0. (caution: potentially confusing terminology)

Properties of Covariance

e Cov{X,Y} =FE[XY]— uxpy

Cov{X,Y} = Cov{Y, X}

Cov{X, X} = VarX]

Cov{aX +b,Y} =aCov{X,Y}

| Cov{X,Y}| < oxoy (called theSchwarz Inequality)

° ThUS|pX’y| <1

e If X andY are independentr.v.s, thé&f{XY] = pxpy S0 Cov{X,Y} = pxy = 0.

e The reverse isiot truein general (uncorrelated does not ensure independence); an exception is Gaussian.

o Cov{¥,X:, %, Y5} = 5, %, Cov{Xy, Y}

Correlation and Linearity
Suppos€” = aX +b. Findpx y. Note thatv? = a®0% anduy = apx + b, S0Y — py = aX +b— (aux +b) = a(X — px)

OX0y OX0y oxlalox N oxlalox B |al B

~ Cov{X,Y} E[(X —ux)Y —py)] ElX —px)a(X —px)] ao% a { 1, a>0
PXY = =

- -1, a<0

Holder Inequality (Proof uses Jensen inequality)

If 1/p+1/q=1forp>0andg > 0, then:| E[XY]| < E[|XY]] < (E[| X [P)Y?(E[]Y|9])"/2

Variance of Sum of two r.v.s
If Z=X +Y thenE[Z] = E[X]| + E[Y] by linearity

VarlZ] = E[(Z — piz)’] = E[(X +Y — (E[X] + E[Y]))*] = E[(X - E[X] +Y - E[Y])?]

= E[(X — E[X])?| +2E[(X — E[X])(Y — E[Y])?] + E[(Y — E[Y])?] = Var[X] + 2 Cov{X, Y} + VarY]

note pattern:; express new things concisely in terms of old
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4.8

61

Bivariate Gaussian r.v.s(important for signal + noise models)
We sayX andY are jointly Gaussian r.v.s iff their joint pdf has the following form:

fxy(@,y) = ﬁexp (2(1_—1,02) l<f’7 ;;X>2 —2 <x ;;X) (y;jy> i <%>21>

e Marginal pdfs ofX andY are GaussianX ~ N(ux,0%),Y ~ N(uy,o%)
e pin jpdfis indeed the correlation coefficient, ang, uy, 0%, o are means and variances
e Entire jpdf is specified by only the two means, variances,@and
e If p = 0 (uncorrelated) theX andY” are independent (not true in general!)
e Linear transform of Gaussian still GaussianZlf= aX + bY thenZ ~ N(apx + buy,a?c% + b*0% + 2abpoxoy)
o Conditional pdf ofX givenY = y is Gaussian (ux + p—=y, 0% (1 — p?))
oy
Practical reasons for using Gaussian: central limit theorem, and only first and second order moments needed.

Gaussian random vectors

X1 x1 H1 B[X]
x=| i L a=| | mx=| =] :
X, Tn Ihn E[X,)]
1 1 _
1510 = ey 0 (e~ O )

where|Cx | denotes matrix determinant, attk is then x n covariance matrix of X, where
[Cxlij = Cov{Xi, X}
Inn = 2 case,
Cv — Cov{X1,X1} Cov{X1,Xa2} | _ o2  poioy
= | Cov{X2, X1} Cov{Xo, X2} | | poio2 o3
so|Cx| = (1 — p*)oio3 and

-2 —P

1 71 1 T, — 2 T Ty — Ty —
-1 _ 0109 so 2T0y = 1— M1 _9 1— M1 2 — U2 2 — U2
Ox 1—p2 | Z£ -2 £ Oxe 1—p? l( o1 P o1 o2 N o2

0102

Thus the bivariate form is indeed the= 2 special case of the general form

Minimum mean squared error
The constant that minimizes this mean squared erréi{g(X1, ..., X,) — ¢)?]isc = E[g(X1, ..., X,)]
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5.1
Characteristic Function for sums of independent r.v.s
If Z =X, +---+ X,, where theX;'s are independent then

@Z(w) — E[ej“’z] — E[ejw(X1+...+Xn)] _ E[ej“’Xl ..... eijan] — E[ej“’Xl] e ~E[ej“’+X"] =dy, (w) cee Dy (w)

Thus char. fun. foZ is product of char. fun.'s oX;’s

Computed for each r.v., multiply, then Fourier transform to get pdibf
Easier them-fold convolution

For largen can still be a pain - central limit theorem can help

Example: Sum of (independent) Gaussians is Gaussian
If X ~ N(M7J2) thenq)X(w) = ejWM7w252/2

DefineY = >"" | X, whereX; ~ N(u;,0?) andX;’s are independent.
We know the 1st and 2nd moments¥of py = Y"1 | pi, 0% = >, o? (to be shown shortly)
For the entire pdf ot

n n n

By (@) = [ @x. () = [J? "2 = expl Y (s — w207 /2)] = ePorr —"ov /2
=1 =1 =1
ThusY ~ N(uy,o%), i.e. sum of (independent) Gaussians is still Gaussian! (EvenXyithhaving different moments.)
Similarly, sum of i.i.d. exponentially distributed r.v.s has Erlang dist'n
Unfortunately, in general the pdf of the sum of r.v.s may be intractable. Often it is sufficient just to look at the moments.

Sum of Independent (actually just uncorrelated) r.v.s
LetY = X, +--- + X,, whereX; andX; are uncorrelated far# j
RecallE[Y] = Y, E[X;] by linearity so

Yy = 30X — Y BN = Y (K - BIX)

K3

VarlY] = E[(Y — uy)’] = E[(Z(Xi - E[Xz'])> | =) El(Xi - EIXi])’] + Y Bl(Xi - E[Xi])(Xi — E[X;))]
i i 1,1#£]
Thus in general
Var)d " X;] =Y VarX;] + ) Cov{X;, X;}
i i i#£j
Easier derivation:

Var» " X;] = COV{Z X, ZXi} =33 Cov{X;, X;} = Var[X;]+ ) Cov{X;, X}
2 [ 7 7 7 7 i#£]
And in particular if the r.v.s are independent (or simply uncorrelated) then{ X;, X;} = 0 for # j so

Var)» " X;] = Var|X;]

Special case:
Var[X + Y] = VarX] + Var[Y] + 2 Cov{X,Y}

Example: easier derivation of variance of Binomial

Let X; be the r.v. that takes 1 or O for success or failure inithef n Bernoulli trials.
LetY = > " | X;, so that” has a Binomial PMF.

Since theX;’s are independent, the variancelofis the sum of the variances of thg's.
If P[X; = 1] = pis the success probability, thé#{X;] = p andE[X?] = p.

So VaifX;] = p — p* = p(1 — p) = pq. Thus VafY] = npq.
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5.2
Sample Mean

Often we collect repeated measurements of some random phenomena under (essentially) identical conditions.
We sayXi, Xo, ... areindependent and identically distributed (i.i.d.) r.v.s iff

e the X;’s are independent

e fx,(z) = fx(z) Vz Vi (same marginal pdf) and hence same momeli;] = ux, VarX;] = 0%, Vi

The sample mean is tteverageof the X;’s:

Moments: . . .
. 1 1 1
Bl = B[ 3" Xl = = S BIX] = =3 jux = ux
i=1 =1 i=1
1 — n n 1 o2
Var[lu‘] = Var[ﬁ ZXz] = _gvar[z Xz] - -5 ZVar[XZ] = F Zo’i- = 7X
=1 =1 =1 =1

Weak Law of Large Numbers
SupposeXy, Xo, . . . i.i.d. r.v.s with finite meanux and finite variance% . Then

1 n
P E;Xi—ux

<e] — lasn — oo foranye > 0

Proof:
Var[% i Xil . ok
 ne?

P >el <

— 0 asn — oo foranye > 0

1 n
E;Xi_ﬂX

by Chebyshev inequality.
¢ Do not really need i.i.d., only independence and r.v.s with the same meamd variance
e Can relax assumption of finite variance!

€2

Strong Law of Large Numbers
SupposeXy, Xo, ... are i.i.d. r.v.s with finite meap x and finite variance?.. Then

P

RN
Jﬂ@;&W]l

Originally we said that to be meaningful and useful, probabilities of events should have properties similar to relative frequencies.
Now we have the above results that confirm that the theory derived under the axioms of probability predict that large-sample
averages will be close to the underlying mean.
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5.3
Central Limit Theorem

The random phenomena in many engineering problems is the aggregate of a multitude of small contributions,
Such as electrons in resistors, magnetic domains on magnetic tape, photons, etc.

The distribution (cdf) of the sum of many i.i.d. r.v.s is approximately Gaussian

SupposeXy, Xo, ... are i.i.d. r.v.s with finite meap x and finite variance?.. Then

1 - Xi_MX 1 2
P|l—=) 2 2 < —>1—Qz:/ ——e"/?2dtasn — coforanyz € R
\/ﬁ; ox () —co V21 y

Utility: approximation for finiten.
Most accurate foe near 0, hence “central”

Example

Toss coinn = 10000 times. If 4884 heads, do you think it is a fair coin?
Let X; = 1 if head onith toss, 0 o.w.

EX;]=p=1/2

Var[X;] = p(1 —p) =1/4

10000 10000 10000
P[> X; <4884] = P[ ) (X; —1/2) < 4884 — 5000] = P[ ) |
=1

i=1 i=1

X;—1/2 < 4884 — 5000]
1/100004/1/4 — 50

10000 Xz . 1/2

=7l ; v10000+/1/4

so not very likely to be a fair coin!

< —2.32] ~ 1 —Q(—2.32) = Q(2.32) = 0.01

Proof (see Ross)
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Example: how large shouldn be?

Computer program is supposed to generate fair coin tosses.

Want to test ifp = 1/2.

Can't just toss 100 times and conclude it works if number of heads is 50.
Use CLT

P|M, -1/2|>¢]=a<x 1

P[M, —1/2| <¢] = Pl < M, —1/2 <] = P|-e < %Z(Xi ~1/2) <€

= Pl-evifox < 2= YO(Xi— 1/2)/ax < eyi/ox] = Pl-cyijox < 2 < ev/i/ax]

%

1 X;—1/2
Z=_—_N /=
R NE
easy to showE[Z] = 0 Var[Z] =1

Pl-evnjox < Z < evnjox] = Fz(evn/ox) — Fz(—evn/ox) =1 - Q(ev/n/ox) — (1 - Q(~ev/n/ox))
=1-Q(evn/ox) = Q(evn/ox) =1 -2Q(ev/n/ox)

P[|M,, —1/2] > ¢] = 2Q(sv/n/ox)

2Q(ev/n/ox) = a =0.01
from table Q(2.6) = 0.005
evn/ox) =26
n = (2.60x/¢)?
if € = 0.013 thenn = 10%.
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6.1
Random Processes
Modem example: frequency shift keying

A random procesX (t) for t € I is an indexed collection of random variables.
Index setl
e Continuous-time r.p, typically = R or I = [0, 00)
e Discrete-timer.p, typically = {...,-2,-1,0,1,2,...} orI ={0,1,2,...}
Discrete-time r.p. also calledndom sequencewith notationX,,, n € I

Two useful ways of thinking:
e Fix tg, thenX (¢o) is a random variableX (¢o, s) for s € S
e Fix sg € S, thenX (t, s9) vst € I is called arealization or sample pathor sample function

Example decaying cosine with random amplitude (not a very “random” random process...)
LetY have a Uniform(1,3) distribution
DefineX (t) = Y (1 + e *cost) fort € I = [0, 00)

Can do simple calculations:
e Variance function: VX (¢)] = Var[Y (1 + e~ cost)] = Var[Y](1 + e * cost)? = (1 + e~ " cost)?
o First-order cdf:P[X (t) < z] = P[Y (1 + e tcost) < x| = P[Y < z/(1+ e tcost)] = Fy(z/(1 + et cost)]

The above calculations only describe tharginal properties of the r.p. To fully characterize a r.p. we need:

6.2
kth-order joint cdf

Fx(t) o x @) (@1, 28) = PIX () <@y, X(8) < 23]

If we know this fork = 1,2,...and forallt; € I andforallz; € R, j =1,...,k, then we can compute any statistical quantity
of interest about the r.p.

Equivalently can work wittkth-order joint pdfs

dk

fX(tl),...,X(tk)(mla oy Tg) = day - --

i Fx(ey,..x@)(@1, -, T)

For adiscrete-valuedr.p., use théth-order joint pmf.

The above could be painful in general, fortunately many r.p.s have properties that simplify their statistical characterization, as
follows.
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Independent Increments
Ar.p. X(t) is said to havendependent incrementsiff for any £ = 1,2,... and anyt; < to < --- < t; wheret; € I, the
following r.v.s are independent:

X (t1), X(t2) — X(t1), ..., X (tx) — X (tx—1)

Example: Poisson process, random walks

Markov r.p.
Ar.p. X (t)is said to beMarkov iff forany k = 2,3,... and anyt; < ta < --- < t; wheret; € I,

Ixen) (@el X (te—1) = Th—1, .o X(t1) = 21) fx (1) (Tn] X (tr—1) = T—1)

conditional statistics at timg, depend only on most recently given value of r.p.
An independentincrements r.p. is also a Markov r.p., but the converse is not true in general.

Stationary r.p.
Ar.p. X(t) is calledstrict-sense stationaryiff its kth-order joint cdfs (or pdfs or pmfs) are all time-shift invariant:
Fx),ox) (@1, 2k) = Fx(t40), X (te ) (T2, - -+ Tk)

forallk=1,2,.. forallz; ¢ Rforallt;1
o If I =R, must hold for allr € R
o If I =10, 00), must hold for all- > 0

Given a segment in time, can you predict what times it came from? If so, then nonstationary.

Even then, for many r.p.s, a full statistical characterization is intractable.
So often we focus on the moments.

Mean Function

() = BLX(0)] = [ " efxo(a) de

oo

reflects trends in thaveragebehavior of r.p. over time

For studying relationship between different points in time (e.g. predicting stock market), the 2nd-order moments are more useful.

Autocorrelation Function (autos: Greek for "self”)

Rax(t1,t2) = E[X(t)X (t2)] = [ [ e Fx e x (@ y) de dy

Autocovariance Function

Cx (t1,t2) = E[(X(t1) — px (t1))(X (t2) — px (t2))] = Rx (t1,t2) — px (t1)px (t2)

Variance Function
Var[X (t)] = E[(X (t) — px ())*] = Cx (t,1)

If X (t) is a Gaussian r.p. (the joint pdf of any finite collection of time samples is jointly Gaussian) then all joint pd{s)adre
completely specified by the mean function and autocovariance function.
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6.3 Discrete-time random processes

i.i.d. random process
We say a discrete-time r.[X,, is ani.i.d. random processiff vk =1,2,...andvVz; e R, j=1,....,k

k
Fx,, . .x.(z1,...,21) = Fx(x1)Fx (z2) - - - Fx (1) = HFX(l'k)

for some common cdf’x (z)

Example:Bernoullir.p.: P[X, =1] =pandP[X,, =0]=1—-pforn=1,2,... (and independent)
Properties

e Ani.i.d. random process is strict-sense stationary!

e E[X,] = pux aconstant for alh

e Cx(n1,n2) = Cov{X,,, Xn,} = 0%0n, —n, Where the Kronecker delta function i&; = { é’ Z ; 8

Random Walk Procesgdrunkard’s walk) (e.g. net auto traffic by incrementing and decrementing counter)
Let D,, be the modified Bernoulli r.p. witf?’[D,, = 1] = pandP[D,, = -1]=1—p

anzn:D“ n:1,2,...

=1
W, is called a random walk process. (Picture)

Moments

pw(n) = EW,] = E[Y_Di] =) (Ip—1(1—p)) =n(2p—1)
=1 =1
Var{W,,] = Var[» _ D;] = no}, where o7, = E[D}]— (2p—1)* = 1°p+ (=1)*(1—p) — (2p—1)> = 1 — (4p” —4p+1) = 4pq
i=1
so VafW, ] = ndpq (increases with)
Suppose: > m then (trick for any sum process):

Cw (n,m) = Cov{W,, Wy} = Cov{Wm + > Di,Wm} = Cov{Wp, W} + Cov{ > Di,Wm} = Var[W,,,]

i=m-+1 1=m-+1

Repeating forn < m we see
Cw (n,m) = min(n, m)o?,

Note that the range d¥,, is {—n,—n+2,...,n —2,n},i.e. Ry, = {—1,1} andRy, = {—2,0,2} etc.
The pmffork =0,...,n:
P[W,, =2k —n] = P[W,, = k — (n — k)] = P[k of the D;’s are 1's and the other — k are -1'§ = ( Z > pF(1 —p)nk

Pickn > m then
P[Wn_Wm:k|Wm:wm]:P[Dm+1_|_..._|_Dn:k|D1+...+Dm:wm]:P[Dm+1_|_..._|_Dn:k]

Thus the pmf of¥,, — W,,, is independent ofV,,, for n > m, soW,, hasindependent increments
Also, the pmf of the incremei,, — W,

PW, =Wy, =k =P[Dpy1+ -+ Dn=k=P[D1+-+-+ Dy, = k|

depends only on. — m and not onm, soW,, is said to havestationary increments
But not stationary, since moments dependuqef Bernoulli and random walk)

Sum process
In general a sum process formed by summing an i.i.d. r.p. will have independent increments and stationary increments.
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6.4
Poisson Process

A counter increments every time a new packet arrives at a port on an asynchronous network.
The interarrival times are r.vE, Tb, . . ., so thenth packet arrives at timg,, = > | T;

Let N (t) denote the number of packets that have arrived by tirtypical sample function folV (¢):

A N(t)

5 ——

4 o——

3 -——

2 o—

1 o—————

Sl S2 S3 S4 SS ot
T T T35 Ty T
We sayN (t) is aPoisson processf
e N(0) = 0 (counter starts at 0)
e N(t) has independent increments
e Forany0 <t; <tyandk=0,1,2,...
P[N(t2) = N(t1) = k] = [A(ta — t1)]Fe 271 /k

so in particulatV (¢) has a Poisson pmf:
P[N(t) = k] = (\t)ke ?/E!

Properties:

e PIN(t+0)—N(t) >1]=1—P[N(t+0) — N(t) > 1] =1—e2°((A5)°/0! + (X&)} /1) = 1 — e (1 + \J)
SoP[N(t+d) — N(t) > 1] — 0 asé — 0: only one new arrival at a time.

e PIN(t+8) — N(t) >0l =1—e"2(X)°/0! =1 — e = A\ for § =~ 0.
So arrival probability roughly proportional to time interval.

Example: McDonalds opens at 8:00AM and assume arrival of customers is Poisson. with meas iHtinute.
If by 8:30AM 90 customers have been served, what is probability that by 9:10 over 200 customers will have been served?

P[N(70) > 200|N(30) = 90] = P[N(70)—N(30) > 200—90| N (30) = 90] = P[N(70)—N(30) > 110] = Z 120%e =120 /|
k=111
sinceA(ty —t1) = 3-40 =120

Since independent increments, joint pmf easy
Moments:E[N (¢)] = At, hence\ is mean number of arrivals per unit time.

Autocovariance function (a trick for all independent increments r.p.s)
Chooséy > t1:

Cn(t2,t1) = Cov{N(t2),N(t1)} = Cov{(N(t2) — N(t1) + N(t1), N(t1)} + Cov{N(t1), N(t1)}
= Cov{N(t2) — N(t1),N(t1)} + Cov{N(t1), N(t1)} = 0+ Var[N(t1)] = A1
Repeating fot; > t; and combining:
Cn (t2,t1) = Amin(ty, ta)
(Notw.s.s.)
Interarrival pdfs are exponential with meaf\. Partial argument fofy, for¢ > 0:
P[Ty > t] = P[N(t) = 0] = e s0 Fr,(t) = (1 — e M)u(t)

Arrival times .S,, are Erlang since sum of i.i.d. exponentials
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6.5
Stationarity
Some r.p.s are easier to handle because their statistical behavior does not change with time, in some sense.

Stationary r.p.
Ar.p. X(t) is calledstrict-sense stationaryiff its kth-order joint cdfs (or pdfs or pmfs) are all time-shift invariant:
Fx),ox) (@1, 2k) = Fx(ty40), X (be4r) (T2, - -+ Tk)

forallk=1,2,.. forallz; € Rforallt;]
e If I =R, musthold for allr € R
o If I =10, 00), must hold for all- > 0

Given a segment in time, can you predict what times it came from? If so, then nonstationary.

Wide-sense stationary
s.s.s. can be hard to verify, so sometime we settle for time-shift invariance of the first two moments.
Ar.p. X(t) is calledwide-sense stationaryff
e E[X(t+7)] = E[X(t)] = px is independent of time
e Cx(t1,t2) = Cx(t1 + 7,12 + 7) depends only on the time differenge— ¢;.
Thus we hav&'x (t1,t2) = Cx(0,t2 — t1) = Cx(t2 — t1) where we drop the unneeded first argument.

If X (t) is stationary, thed’x ;) (z) = Fx @4r)(2)VL, T, 2.
Thus the marginal moments are independent of time, and in partiE(f(¢)] is a constant.
Furthermore, the 2nd-order joint pdf can be written

Ix(t),x(t2) (%1, 22) = fx(0),X (t2—t:)(T1, T2)

so it only depends on the differencetef— ¢, thus

Cx(t1,t2) = / / T1%2fX (1), X (1) (%1, T2) do1 dzg — P = / / T1%2 fx(0),X (t2—t1) (T1, T2) dwy ds — pi

depends only on the time difference

Conclusion: IfX (¢) is s.s.s., theX (¢) is also w.s.s.
The converse is not true in general.
Exception: Gaussian and w.s.s. implies s.s.s., since joint pdfs of Gaussian depends only on 1st and 2nd moments

Poisson process: not stationary sidggV (¢)] = At depends om

Example: sinusoid with random phase.

© ~ Uniform(0, 27).

X(t) =sin(t + ©)

px(t) = E[X(t)] = Efsin(t + ©)] = [Z7sin(t + ¢) 5= dp = 0

Rx(t,t+7) = E[X(t)X (t+7)] = Elsin(t + ©) sin(t + 7+ ©)] = 3 E[cos(7) — cos(2t + 7 + 20)] = 1 cos(7) Autocorrelation
depends only on time differeneeso X (¢) is w.s.s.

Properties of autocorrelation function for w.s.s. r.p.

e Average powerRx (0) = E[X?(t)]

e Symmetry:Rx (1) = Rx(—7)

e |[Rx(7)] < Rx(0) since Schwarz InequalityE[XY]| < E[|XY|] < v/ E[|X]?|E[|Y|?]
e If continuous at origin, then continuous everywhere.

Proof:
|Rx (7 +8) = Rx(7)| = [|E[(X(r+6) — X(1))X(0)]| < E[X(r+38) - X(r)]| E[| X (0)]
= V2(Bx(0) - Bx(8))Rx(0),
soif |[Rx(0) — Rx(d)] — 0asd — 0, then|Rx (7 +¢) — Rx(7)| — 0aséd — 0 for anyr.
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e Measure of rate of change of r.p. see 6.59, p 360.
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1st order stationarity does not imply s.s.s
X, Bernoullir.p. LetY (t) = X, fort € [n,n + 1)
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Often need multiple random processes, such as signal + noise.

Pairs of Random Processes

Complete statistical characterization throygint finite-dimensional cdfs (or pdfs or pmfs):
FX(41),0 X (40),Y (51)s0Y (55) (T15 5 Ty Y155 Y5) = PIX () <y, X () < 2, Y(s1) <y, Y(s5) <yl
X (t) andY (¢t) arejointly strict-sense stationaryr.p.s iff their finite joint cdfs are time-shift invariant, i.ér € R:
FX(t1),...,X(tk),Y(sl),...,Y(sj)(xly s Tk Y1y - - 'ayj) = FX(t1+T),...,X(tk+‘r),Y(sl+T),...,Y(Sj+‘r)(x17 s Ty Y1y - - 7yj)
X (t) andY (¢) areindependentr.p.s iff their finite joint cdfs factor into the product of their individual cdfs:

FX(tl),...,X(tk),Y(sl),...,Y(sj)(-7717 vy Ty Y1y 7yj) = FX(tl),...,X(tk)(xh cee ,mk)FY(sl),...,Y(sj)(yh cee ,yj)
(or jpdfs or jpmfs)

If X(t) andY (¢) are jointly strict-sense stationary, then they are individually strict-sense stationary. The reverse is not true in
general. Exception: i (¢) andY (¢) are independent and individually s.s.s., then they are jointly s.s.s.

Moments of Pairs of Random Processes
e Cross-correlation Function

Ry (t,t2) = ELX(0)Y (t2)) = [ aufxuyion 2,0) do dy
e Cross-covariance Functiormeasures linear coupling:

Cxy (t1,t2) = E[(X(t1) — px (t1))(Y (t2) — py (t2))]

e X (t)andY (t) are calleduncorrelated r.p.s iff Cxy (t1,t2) = 0 Vi1, t2 € 1

Properties of Moments of Pairs of Random Processdall for all ¢1,t2 € R)
e Hermitian symmetry:

Rxy(ti,t2) = Ryx(t2,t1), Cxy(t1,t2) = Cyx(t2,t1)
e Autocorrelation function from cross-correlation function

Rx(t1,t2) = Rxx(t1,t2), Cx(t1,t2) = Cxx(t1,t2)
e Cross-covariance / cross-correlation relationship:
Cxy(t1,t2) = Rxy (t1,t2) — E[X (t1)]E[Y (t2)]

e Schwarz inequality for cross-correlation:

|Rxy (t1,t2)| < v/ Rx(t1,t1)Ry (ta,t2), |Cxy(t1,t2)] < /Var[X (t,)]VarX (t2)]

e Mutual independence and cross-covariance:
If X (t) andY (t) mutually independent, theixy (1, t2) = 0
The converse not true in general. Exception: wigft) andY (¢) are jointly Gaussian r.p.s.
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We sayX (t) andY (t) arejointly Gaussian random processedff all of their joint finite-dimensional density functions have the
normal form with the appropriate mean and covariance, i.e.

[ X(tl) 1 [ E[X(tl)] 1T Cx(tl,tl) Cx(tl,tk) ny(tl,sl) ny(tl,Sj) 1
X(tk) Y E[X(tk)] Cx(t.k,tl) Cx(t.k,tk) ny(.tk,sl) ny(.tk,sj‘)
Y(s1) ElY(s1)] || COvx(s1,t1) --- Cyx(s1,tx) Cy(s1,81) -+ Cy(s1,5s5)

L Y(sy) | | EY(s)] | | Ovx(st1) - Cyx(siutn)  Cy(syst) - Cy(sys;)

for all appropriate values of the indices.

Joint wide-sense stationarity
We sayX (t) andY (t) arejointly wide-sense stationaryr.p.s iff
e Each ofX (t) andY (¢) are individually WSS, and
e Theircross-correlationis invariant to time shiftsRxy (t1,t2) = Rxy (t1 + 7,t2 + 7) V7 € RandVity,t2 € R
In other words Rxy (t1,t2) = Rxy(0,t2 — t1) = Rxy (t2 — t1) depends only on the time differente— t;, or equivalently
Rxvy(t,t + 1) is independent of

If X(¢t) andY (¢) are jointly strict-sense stationary, then they are jointly wide-sense stationary. In general, the reverse is not true.
An exception is jointly Gaussian, jointly WSS random processes.

ExampleY (t) = AX(t) + N(t) whereX (t) andN (¢) are jointly WSS.
AssumeX (t) and N (¢) are independent of r.\A.

IsY(t) w.s.s.?

E[Y (1)) = E[AX(t) + N(t)] = E[AIE[X(0)] + EIN(t)] = papx + px
so mean is independent of time

Ry(t,t+7)=EYQ)Y(t+7)]=E[(AX(#)+ N@®)(AX({t+7)+ N(t+ 1))
= EB[A2X ()X (t+7)] + E[AX(t)N(t + 7)) + E[AX(t + T)N(t)] + E[N(t)N(t + 7)]
= E[AQ]Rx(t,t—l-T)—l-/LARXN(t,t+T)+MARXN(t+T, t)—l—RN(t,t—l—T) = E[AQ]R)((T)+/LARXN(T)+MARXN(T)+RN(T)
ThusY (¢) is w.s.s.

Considering the case wherkis a constant, we have shown that the sum of two jointly w.s.s. r.p.s is w.s.s.

Product:Z(t) = X (t)Y (t) whereX (¢) andY (¢) are w.s.s. and independentr.p.s
E[Z(t)] = EIX(®)Y (t)] = EIX)IE[Y ()] = pxpy

Rz(t,t+7)=E[Z®)ZE+7)]=EX®O)YHO)XE+1Y({t+7)]=EXH)XE+7)EY®)Y(t+ 7)|]Rx(T)Ry (1)
SoZ(t) isw.s.s.

White Noise

Consider triangular autocorrelation function as width goes to 0 but area stays constant (so heightgoes to

We sayN(t) is white noiseif its autocorrelation function is the Dirac delt&y(7) = ad(7) or equivalentlyRy (t2,t1) =
ad(ta — t1) for some constant

Continuous-time generalization of i.i.d. random sequence



© J. Fessler, January 2, 2001, 17:25 74

Binary Communications (at last a fairly real example...)
We transmit a rectangular pul$é- s(t), whereX is 1 or 0 depending on whether we send a 1 or 0.

Received signalY (t) = X s(t) + N(t) whereN(t) is additive white Gaussian noise (AWGN) with mean zero.
Sensible receiver?Z = %fOTY(t) dt
Hopefully Z is close to 1 ifa 1 is sent, and 0 if a 0 is sent.

1 /7
EZ|X =x] = /Y ) dt| X =x] = /E )X =z] dt = T/ zs(t)dt ==
0

E[Z%X =] = E[(%/ Y(t) dt)?|X = ] = / Y (t) dt)( / Y () dt')|X = z]

T2// Y(t)dtdt'|X =z] = T2// Y(#)|X = z] dt at’

E[Y )Y (t)|X = z] = E[(zs(t) + N(t))(zs(t') + N(t'))] = 22s(t)s(t") + zs(t)E[N (t')] + zs(t')E[N(t)] + E[N(t)N(t')]

= 22s(t)s(t") + ad(t —t')

Now

SO
E[Z?|X = 2] = T2/ / 22s(t)s(t') + ad(t —t')] dt dt’ = x? +—/ adt’ =2*+a/T

Thus
VarlZ|X = z] = E[Z*X = x| — (B[Z|X =2])> =2 + o/T — 2> = /T

Note that largetx means more variance fdf, but larger timel” reduces variance

Natural decision rule: choose 14f > 1/2 and 0 otherwise.
Probability of error?

P[E] = P[E|X =0]P[X =0]+ P[E|X =1]P[X =1]=P[Z > 1/2|X =0]P[X =0] + P[Z < 1/2|X = 1]P[X =1]
If X =0, thenZ has Gaussian distribution with mean 0 and variantg.

P[Z>1/2|X—0]—Q<1\//ZTTO> —Q< %)

Hence importance af function to EE’s

Many concepts:

e Random processes: white noise - wide-sense stationary

e Moments: mean and variance

¢ Probability: conditional probability, total probability

e Random variables: Gaussian pdf., calculating probabilities by integrating pdf
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Summary (new concepts in Ch. 4, 5, 6 over previous)

Multiple Random Variables

o Joint pdf, cdfP[(X,Y) € B] = [[,, fx,y(z,y) dz dy

e Independence: jpdf factors, simplifies calculatifP@nd moments

e Functions of multiple r.v.sZ = ¢g(X,Y") by method of events (cdf then pdf)

e Moments: correlation, covariance, correlation coefficient. Independence implies uncorrelated (zero covariance).

Sums of Random Variables

e Mean of sum is sum of means (always).

¢ Variance of sum is sum of variances, if independent, otherwise must include covariance of all cross terms.

e Sample mean is unbiased, its variance3s/n — 0 asn — oo

e Weak Law of Large Numbers: proof by Chebychev, P[sample mean is close touréaoes to 1 as — oc.

e Strong Law of Large Numbers: almost all sample means converge to mmean

e Central Limit Theorem: sum of standardized r.v.s normalized byn approaches a Gaussian distribution for langso can
calculate approximate probabilities.

Random Processes

e Simplifying properties: strict-sense stationarity, independent increments, Markov

e Moments: mean function, autocorrelation function, autocovariance function

¢ Wide-sense stationarity (need Ch. 7 to fully realize utility)

e Sum processes: random walk, Binomial process. have independent increments, stationary increments, calculated moments
e Poisson counting process: useful for “random” arrivals

e Pairs of random processes: independence, cross-correlation, cross-covariance

e Signal+noise and applications...
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7.2
Linear Systems

Y(t) = (X xh)(t) = /fo h(s)X (t — ) ds

AssumeX (t) is w.s.s.

- E[/_Oo h(s)X(t — 5) ds] = [o h(s)E[X (t — 5)] ds — [o h(s)ux (t — 5) ds = jx /_Oo h(s) ds = px H(0)

independent of time

Ry(t,t +7) = Y ()Y (t + 7)] = U h(s t—s)ds/_:h(r)X(t—f—T—r)dr]

/ / X(t—s)X(t+1—1) dsdr—/ / (r)Rx(t+s—r)dsdr

independent of, soY (¢) is also w.s.s.!

WSS Random Processes and LS| systems

e For BIBO LSI system, WSS input yields WSS output, and input and output are jointly WSS.

e Power spectral densityix (w) = [ Rx (t)e 7** dt. (Fourier transform of autocorrelationfunction.)

e For LSI system with |mpulse respona¢t) and transfer functio (w) = [ h(t)e~“! dt, the input-output relationship is
Sy (w) = |H(w)]*Sx (w).
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Total probability with conditioning
Recall if A;'s partition S, then

= ZP(B|Ai)P(A1-)
Fact:
P(B|C) =) P(B|A;,C)P(Ai|C)
Proof:
P(BNA;NC)P(AinC) _ Y, P(BNANC) 3, P(BNC|A)P(A) _ P(BNC) _
RHS = Z P4;,nC)  PlC) P(C) - P(C) - P(O) i

Gambler’'s Ruin Markov Chain
Gambler starts withX, = $10, plays game repeatedly, wins $1 with probabifityand loses $1 with probability= 1 — p.
This problem statement implies the following:

p, j=k+1
PXnp1=jlXn =k =4 ¢ j=k—1
0, otherwise.

This is a Markov random process because PMF of the next state only depends on the previous state, not on earlier states.

Gambler must stop playing iX,, = 0 (ruined).
Gambler decides in advance to stop playingjf = 20.

Hitting times:
To =min{n >0: X,, =0} T = min{n >0: X, =20}
Main probability of interest i.(10), where:
’U,(k‘) = P[To < T20|X0 = k‘]
i.e., what is the probability of being ruined rather than walking away with $20?
If p = 1/2, then expect:(10) = 1/2. But most casino games haye< 1/2.

End conditionsu(0) = 1 andu(20) = 0.
Trick: using above total probability fdr < &£ < 20

P[TO < T20|X0 = k]

:P[To <T20|X0:k’,X1 :k'—f—l]P[Xl :k+1|X0:k]+P[To <T20|X0:k’,X1 :k'—l]P[Xl :k'—1|X0:k’]

thus
u(k) =ulk+1)p+u(k—1)g

Solution to this recursive equation with end conditions is (See Hoel, Port, Stone):

X MaY 1= (/)
u(k) = Z?i}l(q/p)j = (a/p) 1— (¢/p)® fqg#p
Note if p = ¢ = 1/2, then as expected
uk) = 2% 50 w0y =12

20

But more realistic value might he= 0.45. In which case:(10) = 0.88.
So very high odds of running out of money before doubling money!



