Spectra of signals

This document reviews signal spectra. This course considers spectra only for signals that can be written as a sum of sinusoidal signals, including all periodic signals. (EECS 216 covers the spectra of aperiodic signals.)

1 Signal representations

• A plot of signal as a function of time: \(x(t) \) versus \(t \), such as

\[
\begin{array}{c}
0 & 0.05 & 0.1 & 0.15 & 0.2 & 0.25 \\
-5 & 0 & 5 & 10 & 15 \\
t 	ext{[sec]} & x(t)
\end{array}
\]

• A “complicated” formula, such as

\[x(t) = 8 \cos(2\pi 40t) - 6 \sin(2\pi 90t) \]

• A simple formula as a sum of sinusoidal signals (cosines), such as (using trigonometric identities):

\[x(t) = 4 + 4 \cos(2\pi 80t) + 6 \cos(2\pi 90t + \pi/2) . \]

• A list of the frequency, (positive) amplitude, and phase \((f_k, c_k, \theta_k) \) of each component, such as

\[
(0, 4, \text{N/A}); (80, 4, 0); (90, 6, \pi/2).
\]

The “N/A” means “not applicable” because the DC component does not have any phase.

• A line spectrum that shows the frequencies and amplitudes of each sinusoidal component, such as:

<table>
<thead>
<tr>
<th>f [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

(The technically this is called a magnitude spectrum because we ignore the phase in the figure.)

• Matlab commands, e.g.,

\[t = [0:99]/200; x = 4 + 4 \cos(2\pi 80t) + 6 \cos(2\pi 90t) ; \]

• The FFT output, i.e., the output of the Matlab command \(2/N*abs(fft(x)) \), such as:

Note that this Matlab plot is not exactly the same as the line spectrum that we draw by hand.

• The first array value is \(2c_0 \), so it is “twice as big as it should be.”

• The horizontal axis is not frequency \(f \) in Hz. (We could fix that by using another argument to stem command.)

• Each of the nonzero lines appears twice (mirror image).

Nevertheless, despite these differences, an engineer who understands the relationship between the “true” line spectrum and the Matlab stem plot can examine the stem plot and quickly determine what the true line spectrum is. Often we just do that “by eye.” But if we need numerical values, then we do the following.

• Divide the FFT output value in the first array element by 2 to get the DC value \(c_0 \).

• Ignore the 2nd half (mirror image) of the stem plot.

• Determine the frequency (in Hz) from the Matlab index \(k+1 \) using \(f = \frac{k}{N} S \).

For example, the first (non-zero) frequency component in the above stem plot is \(f = \frac{241-1}{600} \times 200 \text{Hz} = 80 \text{Hz} \).
2 Exercises

1. What is the fundamental frequency of the signal shown on the previous page?

2. Sketch the spectrum of \(x(t) = 7 \cos(2\pi 100t) + 8 \cos(2\pi 200t) \).

3. Sketch the spectrum of \(x(t) = 7 \sin(2\pi 100t) - 8 \sin(2\pi 200t) \).

4. Sketch the spectrum of \(x(t) = 5 \cos(2\pi 50t) + 12 \sin(2\pi 50t) \).

5. Sketch the spectrum of \(x(t) = \sin^2(2\pi 50t) \).

6. An array \(x \) contains 10 samples of a signal \(x(t) \) sampled at 200 \(\text{Sample Second} \). Determine a formula for \(x(t) \) when the output of \(2/\text{length}(x) \ast \text{abs}(\text{fft}(x)) \) is \([6 \ 0 \ 0 \ 0 \ 7 \ 0 \ 7 \ 0 \ 0 \ 0]\).

7. A signal \(x(t) \) has the following spectrum.

```
<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>438</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>442</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>f [Hz]</td>
</tr>
</tbody>
</table>
```

- Determine a formula for the signal \(x(t) \) that has that spectrum.
- Give a formula for a different signal \(y(t) \) that has the same spectrum. Hint: we are showing magnitude spectra.
- The signal \(x(t) \) is sampled with \(S = 1000 \text{Sample Second} \) for 4 seconds. The samples are stored in a vector \(x \). Suppose you do \text{stem}(2/N*\text{abs}(\text{fft}(x))) \). Sketch (by hand) what the stem plot will look like. Hint: first determine \(N \).

8. How fast would the signal \(x(t) = 8000 \cos^4(2\pi 50t) \) need to be sampled to avoid aliasing?
3 An improved Matlab spectrum plot routine

After understanding the relationship between Matlab's `fft` routine and the frequencies and amplitudes in a spectrum, one can write a simple Matlab function that shows the line spectrum directly with the proper horizontal and vertical axes. Here is an example. This example has a built-in “test” routine, so that one can type `line_spectrum_test` and it plots an example spectrum.

```matlab
function line_spectrum(x, S)
%function line_spectrum(x, S)
% | in
% | x signal vector of length N
% | S sampling frequency (in Hz)

if nargin == 1 && ischar(x), line_spectrum_test, return, end
if nargin < 2, help(mfilename), error(mfilename), return, end

N = numel(x);
Xf = 2/N * fft(x); % proper scaling
Xf(1) = Xf(1) / 2; % fix DC
k = 0:N/2; % only plot left half
f = k / N * S; % frequencies
Xf = abs(Xf(k+1)); % magnitude
good = Xf > 1e-3 * max(Xf); % show only peaks
bar(f(good), Xf(good), 0.02)
xlabel 'Frequency [Hz]'
ylabel 'Amplitude'

function line_spectrum_test
S = 8192;
N = S/2;
x = 3 + 4 * cos(2*pi*400*[0:N-1]/S) + 5 * sin(2*pi*700*[0:N-1]/S);
line_spectrum(x, S)
% ir_savefig cw line_spectrum
```

![Graph showing the line spectrum with peaks at 400 and 700 Hz](attachment:image.png)