
© J. Fessler, February 19, 2024, 09:47 (class version) 1

Eng. 100: Music Signal Processing

DSP Lecture 7

Project 2: Touch-tone synthesizer / transcriber

Curiosity:
• https://www.youtube.com/watch?v=t1eRdL3dwSk (percussion transcription)
• http://supermegaultragroovy.com/products/capo/mac (guitar transcription: chords / tablature)

Announcements:
• Read Project 2 before lab this week! (Last set of reading questions.)
• HW3 / Lab 3 due this week
• HW4 on Canvas (Julia practice), due “next week” (after break)
•Midterm course evaluations soon

https://www.youtube.com/watch?v=t1eRdL3dwSk
http://supermegaultragroovy.com/products/capo/mac
http://en.wikipedia.org/wiki/Tablature
https://umich.instructure.com/courses/646958

© J. Fessler, February 19, 2024, 09:47 (class version) 2

Teamwork!

If you need to miss discussion/lab:
• Email your teammates and discussion / lab instructors.
• Arrange to zoom with them during lab / discussion time if possible.
• If not, at least find out what you missed / what they need you to do.

Your team needs your contributions, in E100 and beyond.
(Your grade depends on it too.)

© J. Fessler, February 19, 2024, 09:47 (class version) 3

Outline

• Part 0. Spectrogram examples

• Project 2: Touch-tone phone signals
◦ Part 1. Analyze spectra of touch-tone phone signals
◦ Part 2. Design/build (in Julia) a touch-tone keypad (tone synthesizer)
◦ Part 3. Design/build touch-tone transcriber (signals to phone number)
◦ Part 4. Test transcriber performance for noisy signals

Process: analyze / design / build / test : a preview of Project 3

© J. Fessler, February 19, 2024, 09:47 (class version) 4

Part 0. Spectra and Spectrogram examples

© J. Fessler, February 19, 2024, 09:47 (class version) 5

Violin spectrogram

play [wiki]

Recall
• horizontal axis: time segment
• vertical axis: frequency (Hz)
• color intensity: amplitude

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

5.982056

http://en.wikipedia.org/wiki/File:Spectrogram_of_violin.png

© J. Fessler, February 19, 2024, 09:47 (class version) 6

Nature’s spectrum analyzer (Audio)

Different sound frequencies are sensed at different positions along the cochlea!

The hair cell parts called stereocilia are essentially nature’s A/D converters.

http://www.ifd.mavt.ethz.ch/research/group_lk/projects/cochlear_mechanics

(from Encyclopaedia Britannica Inc.)

Engineers have designed direction-finding microphones using similar principles [1]

http://en.wikipedia.org/wiki/cochlea
http://en.wikipedia.org/wiki/Stereocilia_(inner_ear)
http://www.ifd.mavt.ethz.ch/research/group_lk/projects/cochlear_mechanics

© J. Fessler, February 19, 2024, 09:47 (class version) 7

Nature’s spectrum analyzer (Light)

A glass prism separates light into individual wavelengths
(electromagnetic waves with different frequencies)

[wiki]

FFT separates sounds into individual (audio) frequencies
• White light contains “all” visible wavelengths (frequencies)
• Q: What audio signals contain “all” audio frequencies?

A: ?? - later in this lecture

http://en.wikipedia.org/wiki/File:Light_dispersion_conceptual_waves.gif

© J. Fessler, February 19, 2024, 09:47 (class version) 8

Spectrogram application: Spirometer

Low-cost spirometer designed by WUSTL students (in biomedical engineering and mechanical engi-

neering) using microphone and spectrogram to determine air flow.

Note: “Short-Time Fourier Transform” = spectrogram Why “short time?” ??

http://mems.wustl.edu/aboutthedepartment/pages/news-story.aspx?news=335

http://mems.wustl.edu/aboutthedepartment/pages/news-story.aspx?news=335

© J. Fessler, February 19, 2024, 09:47 (class version) 9

Overview of Project 2 / Outline

Four parts:
• Part 1. Analyze spectra of touch-tone phone signals.

◦ Reverse engineer tone frequencies
◦ What method will you use? ??

◦ Determine pattern of frequencies for touch-tone keys
• Part 2. Synthesize (in Julia) a touch-tone keypad.

◦ Straightforward GUI using Gtk.jl: similar to Project 1 keyboard.
• Part 3. Transcribe touch-tone signals to phone number.

◦ Can look for specific frequencies; do not need fft .
◦ New method for detecting frequency components: correlator

• Part 4. Investigate your transcriber performance for signals that are
degraded by white noise (cf., design, build, test)

This project is a “prelude” for a (typical?) Project 3
that involves both music synthesis and music transcription.

http://en.wikipedia.org/wiki/Cross-correlation
http://en.wikipedia.org/wiki/White_noise

© J. Fessler, February 19, 2024, 09:47 (class version) 10

Git is the way to collaborate for code!

Recommendation for P2 and P3:

• One team member: create a private repository for your team’s code
on https://github.com (or gitlab or such)

• Peer instruction for using git please!
• Use git software for collaborative code editing.
• An effective approach is the github-flow process.
• A useful tool is the (free) GitHub Desktop app.
• VS Code includes native Git support
• Github tutorial:

https://docs.github.com/en/get-started/quickstart/hello-world

Think of a git repo like “google docs” for collaborative code editing.

https://github.com
http://en.wikipedia.org/wiki/Git
https://docs.github.com/en/get-started/quickstart/github-flow
https://desktop.github.com
https://code.visualstudio.com/docs/editor/versioncontrol
https://docs.github.com/en/get-started/quickstart/hello-world

© J. Fessler, February 19, 2024, 09:47 (class version) 11

Part 1: Analyze touch-tone signals
(“reverse engineering”)

© J. Fessler, February 19, 2024, 09:47 (class version) 12

Analyze touch-tone signal spectra

• Tones from 12 keys on phone keypad in file project2.wav
◦ Each is sampled at 8192 Sample

Second for 0.5 second duration.
◦ Use (x, S) = wavread("project2.wav"); soundsc(x, S)

• Analyze spectrum of each tone using abs.(fft(...))
◦ Fact: each touch-tone signal is a sum of one or more sinusoids.
◦ Determine # of sinusoids and frequencies (in Hz) for each tone.
◦ How will you determine the # of sinusoids? ??

• Relate frequencies to touch-tone keypad
◦ Look for patterns.

(The frequency assignments were not random;
e.g., perhaps all odd buttons use a certain frequency?)

◦ Tabulate which button produces which frequencies.
• (Notice how brief this description is now.)

© J. Fessler, February 19, 2024, 09:47 (class version) 13

Part 2: Touch-tone synthesizer

© J. Fessler, February 19, 2024, 09:47 (class version) 14

Touch-tone synthesizer: keypad GUI

•
Create touch-tone keypad GUI
using Gtk (cf. Project 1)

• User “dials” (!) by clicking on a sequence
of GUI buttons

• Simplification: 0.5 seconds for each tone
(at S = 8192 Hz)

• Simplification: user clicks on “end” button, causing entire signal to be
played using soundsc and stored to file touch.wav via:
wavwrite(tones, "touch.wav"; Fs=S)
The named keyword argument Fs is crucial here!

• Synthesizer check:
(x, S) = wavread("touch.wav"); soundsc(x)
should sound like a touch-tone phone “dialing” play

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

2.158013

© J. Fessler, February 19, 2024, 09:47 (class version) 15

Part 3: Touch-tone transcriber

© J. Fessler, February 19, 2024, 09:47 (class version) 16

Transcribe touch-tone signals

• Input data: (x, S) = wavread("touch.wav")
• Output: string of numbers: 7631434

◦ Do not need to include * or # (not in phone numbers)
◦ No hyphens (dashes) needed

•
Q0.1 How to determine # of buttons pressed?
A: length(x) B: length(x) / 4096 C: length(x) / 8192 D:
length(x) / 16392 E: None of these ??

• How to determine which button was pressed for each tone?

0 20 40 60 80 100 120 140 160 180 200
−2

−1

0

1

2

n

x
(n

/S
)

© J. Fessler, February 19, 2024, 09:47 (class version) 17

Q0.2 Could arccos method work here?
A: True B: False ??

Q0.3 Could abs.(fft(...)) method work here?
A: True B: False ??

© J. Fessler, February 19, 2024, 09:47 (class version) 18

Pattern recognition using correlation
(new signal processing method)

• For this application the possible signal patterns are few:
◦ There are only 12 buttons, each with a unique signal.
◦ Each signal is sum of a very small number of sinusoids.
◦ We know all the possible frequencies.

• Do not use abs.(fft()) . It is unnecessarily expensive!
• New approach: a type of pattern recognition

◦ Find specific frequencies using correlation operation,
also known: matched filter, dot product, inner product.

◦ We try to find the sinusoids that “best match” the signal. [wiki]
◦ Correlation is quite robust to noise / interference.
◦ Correlation is even faster / cheaper than FFT when # of possible

frequencies is much smaller than # of signal samples.
◦ Correlation is the foundation of deep learning (aka AI / machine

learning) using convolutional neural network (CNN) methods

http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Cross-correlation
http://en.wikipedia.org/wiki/Matched_filter
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Correlation#Sample_correlation_coefficient
http://en.wikipedia.org/wiki/Deep_learning
http://en.wikipedia.org/wiki/Convolutional_neural_network

© J. Fessler, February 19, 2024, 09:47 (class version) 19

Correlation example: ∑
N
n=1 x[n]p[n]

20 40 60 80 100
−1

−0.5

0

0.5

1
(110 Hz)

p
1

[n
]

20 40 60 80 100
−1

−0.5

0

0.5

1
(120 Hz)

p
2

[n
]

20 40 60 80 100
−1

−0.5

0

0.5

1
(130 Hz)

p
3

[n
]

n

20 40 60 80 100
−10

−5

0

5

10
x[n] = x(n/S)

n

x
[n

]

20 40 60 80 100
−10

−5

0

5

10

x
[n

]
p

1
[n

]

x .* p1 (110 Hz)

sum=70.9

20 40 60 80 100
−10

−5

0

5

10

x
[n

]
p

2
[n

]

x .* p2 (120 Hz)

sum=175.1

20 40 60 80 100
−10

−5

0

5

10

x
[n

]
p

3
[n

]

x .* p3 (130 Hz)

sum=50.9

n

© J. Fessler, February 19, 2024, 09:47 (class version) 20

Correlation implementation: Basic

• Correlation method: multiply and sum.
◦ Multiply input signal x by (each) candidate pattern signal.
◦ Sum the resulting product signal: gives correlation value.
◦ Choose candidate pattern with largest correlation.

• Example implementation in Julia:
◦ freqs = [110, 120, 130]

(The candidate frequencies in this example.)
◦ Matrix-vector multiplication version:
corr = cos.(2pi*freqs*(1:N)’/S) * x sizes!

Alternative version using Julia comprehension loop:
using LinearAlgebra: dot
corr = [dot(cos.(2pi*f*(1:N)/S), x) for f in freqs]
Either returns vector of 3 correlation values for the candidate frequencies.

◦ index = argmax(corr)
Returns index of largest correlation value in corr array.

◦ freqs[index]
frequency of the sinusoid that best matches signal x

© J. Fessler, February 19, 2024, 09:47 (class version) 21

Correlation implementations in Julia

Given two (column) vectors of same length:

Mathematical formula:
Correlation(x,y) = ∑

N
n=1 xnyn .

x =


x1
x2
...

xN

 y =


y1
y2
...

yN


Fortran/BASIC/C/C++ style implementation in Julia:

function correlate(x, y)
corr = 0
for n in 1:length(x)

corr += x[n] * y[n]
end
return corr

end

© J. Fessler, February 19, 2024, 09:47 (class version) 22

Faster Julia “vectorized” style implementation (cf. math):

corr = sum(x .* y)

Using Julia’s dot function (most descriptive way):

using LinearAlgebra: dot
corr = dot(x, y)

Even less typing Julia implementation (for column vectors):

corr = y' * x

Here the y’ is the transpose of the vector y .
This last form is convenient for correlating many signals with x .

Again, these all compute a dot product of two N-dimensional vectors.

http://en.wikipedia.org/wiki/Dot_product

© J. Fessler, February 19, 2024, 09:47 (class version) 23

Correlation implementation: Improved

The preceding implementation works fine for a cos signal,
but not if it is sin. We want it to work for both.
In fact we want it to work for a sinusoid of any phase.

Improved implementation to be used in Project 2 (your frequencies will
be different; from Part 1):
N = length(x); S = 8192
freqs = [110, 120, 130]
c = cos.(2π * freqs * (1:N)'/S) * x
s = sin.(2π * freqs * (1:N)'/S) * x
corr = s.^2 + c.^2
index = argmax(corr) # "argument that maximizes"
fbest = freqs[index]

• Basic idea: find which candidate frequencies best match x
either as a cos or as a sin wave.

• After finding frequencies, decode which button was pressed for each
0.5 second segment of synthesizer output.

© J. Fessler, February 19, 2024, 09:47 (class version) 24

Illustration
S = 8192; N = 80
x = cos.(2π * 119 * (1:N)/S .- π/4) # 119 Hz with phase shift
freqs = [110, 120, 130] # candidate frequency list
c = cos.(2π * freqs * (1:N)'/S) * x # correlated with cos
s = sin.(2π * freqs * (1:N)'/S) * x # correlated with sin
corr = s.^2 + c.^2 # combine sin and cos correlations
@show argmax(c) # returns "1" :(
@show argmax(s) # returns "3" :(
@show index = argmax(corr) # returns "2" :)
fbest = freqs[index]

Combining correlations with both cos and sin works the most robustly for
finding specific sinusoidal components.

Q0.4 What is the final value computed by this code?
??

© J. Fessler, February 19, 2024, 09:47 (class version) 25

Summary of Transcriber Specifications

• Length of each phone digit known: 0.5 sec.
• Sampling rate known: S = 8192 Sample

Second.
• Touch-tone signal written to file touch.wav .
• Use correlation method to find best match for each segment
• Do not use abs.(fft()) : too much computation!
• Do not use numerous if statements: inefficient
• Output: String of phone digits without hyphen.

© J. Fessler, February 19, 2024, 09:47 (class version) 26

Part 4: Investigating transcriber accuracy
in the presence of noise

© J. Fessler, February 19, 2024, 09:47 (class version) 27

Transcriber accuracy in noise: Overview

• Phone signals, wired or wireless, have noise present.
(Music signals too.)

• So far we have mostly ignored noise.
• Noise: What exactly is noise?
• Performance: How well does your transcriber work when noise is

present (as in real world)?
• Figure of merit: Numerical measurement of performance of a system

(detector, estimator).

This is a first taste of the “design, build, test” engineering process.

© J. Fessler, February 19, 2024, 09:47 (class version) 28

Zero-Mean Additive White Gaussian Noise

y(t)︸︷︷︸
measured

signal

= x(t)︸︷︷︸
ideal
signal

+ ε(t)︸︷︷︸
additive
noise

• Additive White Gaussian Noise (AWGN) is a good model
for many actual sources of noise.

• Why called white? ??

• At each time t: ε(t) has a Gaussian distribution (bell curve).
• At any two times t0 and t1, no matter how close:

◦ ε(t0) and ε(t1) are completely uncorrelated:
◦ knowing ε(t0) will not help one predict ε(t1)
◦ In words, ε(t) is “completely random”

• Zero-mean implies the DC value (or average value) is zero.

http://en.wikipedia.org/wiki/Additive_white_Gaussian_noise

© J. Fessler, February 19, 2024, 09:47 (class version) 29

White Gaussian Noise Example

To hear it:

z = randn(8000); soundsc(z, 8192); play

Why does it sound like the wind or the ocean surf? ??

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

0.83591837

© J. Fessler, February 19, 2024, 09:47 (class version) 30

Touch-tone transcriber performance measure

• Noise level rises =⇒ transcriber gets more digits wrong.
• We want to investigate and quantify this error rate.
• Key factor: signal level relative to noise level.
• Signal-to-noise ratio (SNR) in decibels (dB):

Mathematically:

SNR = 10log10

(
∑

N
n=1 x2

n

∑
N
n=1 ε2

n

)
= 10log10

(
x2

1+ · · ·+ x2
N

ε2
1 + · · ·+ ε2

N

)
In Julia:
SNR = 10*log10(sum(x.^2) / sum(noise.^2))

where:
◦ x is vector of ideal signal values
◦ noise is vector of noise values.

http://en.wikipedia.org/wiki/Signal-to-noise_ratio
http://en.wikipedia.org/wiki/Decibels

© J. Fessler, February 19, 2024, 09:47 (class version) 31

Transcriber error rate plot

• SNR is on horizontal axis;
• error rate (percentage) is on vertical axis.

−35 −30 −25 −20 −15 −10
0

10

20

30

40

50

60

70

SNR [dB]

%
 e

rr
o
rs

Transcriber error rate vs SNR

© J. Fessler, February 19, 2024, 09:47 (class version) 32

Touch-tone performance investigation

• Transcriber gets some digits wrong.
• Error rate: Fraction of wrongly decoded digits.
• Need to “survey” many digits to get accurate measure.
• For each SNR: use 100 digits, count # decoded incorrectly.
• Each call to randn generates new noise values.
• Random digits versus same digit each time?
• Plot: error rate vs SNR for several SNR levels.

© J. Fessler, February 19, 2024, 09:47 (class version) 33

Transcriber Performance: Comments

• Any potential transcriber customer will want to see your plot
of error rate vs SNR.

• Below some threshold SNR, error rate will rise rapidly
• What transcriber error rate is acceptable?
• What noise level can your transcriber tolerate?
• How to achieve even better performance?

Error-correction. Digital communications: EECS 455

© J. Fessler, February 19, 2024, 09:47 (class version) 34

Outline of Julia Program for Error Rate Study

Investigating transcriber performance in noise (pseudo-code)

x = "?? signal_for_button_1 ??"
errors = zeros(Int, 10); snr = zeros(10)
for level in 1:10 # 10 different noise levels

noisesum = 0
for trial in 1:100 # 100 trials for each noise level

noise = 5 * level * randn(size(x))
y = x + noise # this will be very noisy!
noisesum += sum(abs2, noise) # sum of noise.^2
apply your transcriber to signal "y" here
if "?? transcriber_does_not_output_1 ??"

errors[level] += 1 # count errors
end

end
snr[level] = 10*log10(sum(abs2, x) / (noisesum/100))

end
plot(snr, errors, marker=:circle, ...)

© J. Fessler, February 19, 2024, 09:47 (class version) 35

Explanation of Error Rate Code Template

• Outer loop over 10 different SNR levels:
different noise strengths because of 5*level*randn()

• Inner loop over 100 trials;
each trial with different random noise realization

• Use the signal for button "1" each time; makes things easier.
• Count # of errors in 100 trials;

By using 100 trials, this will be error rate as a percentage.
• nsum/100 is average noise power over 100 trials
• sum(abs2, x) is signal power, i.e., ∑n |xn|2

• snr and errors are both vectors of 10 values.

© J. Fessler, February 19, 2024, 09:47 (class version) 36

Typical Error Rate vs. SNR Plot

−35 −30 −25 −20 −15 −10
0

10

20

30

40

50

60

70

SNR [dB]

%
 e

rr
o
rs

Transcriber error rate vs SNR

Note the threshold at an SNR of about -20 dB.
◦ Below this, error rate increases dramatically
◦ For any SNR below 0, the noise level exceeds the signal level,

yet your transcriber still works down to about -20 dB!
This is because correlation is very robust to noise.

© J. Fessler, February 19, 2024, 09:47 (class version) 37

Summary of Project 2

1. Reverse engineer touch-tone frequencies using fft
2. Design/build simple GUI for touch-tone synthesizer
3. Design/build touch-tone transcriber based on correlation

Your transcriber will work perfectly in absence of noise
4. Test: investigate how your transcriber error rate increases

as noise level increases (SNR decreases)

Correlation is one of several “pattern recognition” techniques used in nu-
merous signal processing applications, including SONAR, RADAR, ultra-
sound imaging, fingerprint recognition, retina scans, ...

Read Project 2 before lab this week!

(Return to aliasing if time permits.)

© J. Fessler, February 19, 2024, 09:47 (class version) 38

References

[1] H. Esfahlani, S. Karkar, Hervé Lissek, and J. R. Mosig. Exploiting
the leaky-wave properties of transmission-line metamaterials for single-
microphone direction finding. J. of the Acoustical Soc. of America,
139(6):3259–66, 2016.

	Outline
	Spectra / Spectrogram
	P2 Overview
	Git
	P2-Part1: Analyze
	P2-Part2: Synthesize
	P2-Part3: Transcribe
	Correlation
	P2-Part4: Accuracy

	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

