
VSPLINE: a subroutine library for non-parametric fixed-interval
smoothing with vector splines

Jeffrey A. Fessler∗

Information Systems Laboratory
Department of Electrical Engineering

Stanford University· Stanford, CA 94305
E-mail: fessler@isl.stanford.edu

(415) 723-1904

VSPLINE Software and Documentation
Copyright c©1989

The Board of Trustees of the Leland Stanford Junior University.
All Rights Reserved.

July 10, 2003

1 Introduction

This document describes a software library called VSPLINE that is available via electronic-mail from
NETLIB [1]. The VSPLINE library contains a set of subroutines that computes a non-parametric estimate
of a smooth vector-valued function from noisy measurements, both linear and nonlinear. The algorithms are
derived and described in detail in [2,3]; this documentation briefly outlines the main ideas and explains the
source code interface.

2 Spline smoothing of vector measurements

Consider thevectormeasurement model:

yn = f(g(tn)) + εn, n = 1, . . . ,N, (1)

g(tn) ∈ <
M , εn,yn ∈ <

L, εn ∼ N(0,Σn), E{εnε
′
m} = 0, n 6= m,

with known symmetric and positive-definite error covariancesΣn. The goal of smoothing is to estimate the
smooth vector-valued functiong, given the measurements{yn}Nn=1.

The nonparametric approach to this problem prescribes a compromise between the conflicting goals of
fit to the data and smoothness of the estimated functions. An estimate is obtained by using the following

∗This work was supported in part by National Institute of Health contract NO1-HV-38045 and grant R01-HL-39045, National
Science Foundation contract ECS-8213959, and GE Medical Systems Group contract 22-84.

1



criterion, which is the natural generalization of a similar criterion used for scalar measurements:

ĝα = argmin
g

N∑
n=1

(yn − f(g(tn)))
′Σ−1n (yn − f(g(tn))) +Rα(g), (2)

where

Rα(g) =
M∑
m=1

αm

∫
(g̈m(t))

2 dt.

The smoothing parameterα controls the tradeoff between residual error and smoothness. Althoughĝα(t) is
a continuous function, it is uniquely determined by its values at the knotst1, . . . , tN , denoted̂yn = ĝα(tn).

Thevspline library contains special purpose subroutines for efficiently minimizing (2). Two cases are
implemented: “linear” smoothing forf(g) = g, and “nonlinear” smoothing where the nonlinear functionf
and its derivatives must be implemented by the user.

Subroutinevspline , described below, computes{ŷn}Nn=1 givenα, {yn}Nn=1, {tn}
N
n=1, and{Σ−1n }

N
n=1.

The computational requirements [2] areO(M3 ·N).

3 Choosing the smoothing parameters - Cross Validation

The smoothing parameterα can be chosen automatically [2] by minimizing the cross validation (CV) score:

αCV
4
= argmin

α
CV(α),

CV(α)
4
=
1

N

N∑
n=1

(yn − f(ĝα,−n(tn)))
′Σ−1n (yn − f(ĝα,−n(tn))). (3)

ĝα,−n is the solution to the smoothing problem (2) with N-1 data points, posed while excluding the pair
(tn,yn). Each data pair is dropped in turn, the smoothed curveĝα,−n is estimated, and the predicted value
ĝα,−n(tn) is compared with the unused measurementyn. If the CV score is small, then we have chosen the
smoothing parameter that makes the estimated curve a good self predictor.

Although equation (3) illustrates the idea behind cross validation, it is computationally inefficient. We
have shown that, in the linear case, one can rewrite (3) as:

CV(α) =
1

N

N∑
n=1

‖Σ
− 1
2
n (IM −A(nn)(α))

−1(yn − ĝα(tn))‖
2, (4)

whereA(nn)(α) is then’th M ×M block diagonal submatrix of the influence matrix. In the nonlinear
case, (4) is a useful approximation, as shown in [3]. The properties of this approximation are not completely
understood.

By using the Hutchinson and de Hoog algorithm [5], (4) is computed in only O(M3N ) operations.
Subroutinebestcv , described below, computesαCV andĝαCV . The VSPLINE library also contains

routines for computing Generalized Cross Validation and Unbiased Risk scores [2].

4 Software Interface - Linear Problems

4.1 Conventions

We have adopted the Numerical Recipes in C [4] convention of using unit offset arrays where convenient
(almost everywhere). If an array is declareddouble vect[100]; then(&vect[0]-1) or (vect-1)
should be passed to the subroutines below.

2



4.2 Subroutinevspline

The syntax forvspline is:

int vspline(ys, alpha, tn, yn, inv_sigma, iid, M, N)
float *alpha;
double *ys, *tn, *yn, *inv_sigma;
int iid, M, N;

Mis the dimension (length) the measurement vectorsyn. N is the number of samples.alpha is theM
smoothing parameters.tn is theN sample points. If the samples are uniform, then settn to (double
*) NULL . The measurements are stored inyn in the order{y1,1, . . . , y1,M , . . . , yN,1, . . . , yN,M}. If iid
is 1, the covariances are assumed to be identical, andinv sigma is theM2 elements ofΣ−1, stored by
columns or rows (it is symmetric). However, ifiid is 0, the covariances can vary withn, andinv sigma
is aN ·M2 array of the concatenation of the elements ofΣ−11 , . . . ,Σ

−1
N in the natural order.

On return,ys is theN ·M array of ŷ1, . . . , ŷN , stored in the same order asyn . vspline returns
1 if all goes well, 0 if there is an error. The possible errors are: running out of memory,tn not strictly
increasing, or singular covariance matrices.

4.3 Subroutinebestcv

The syntax forbestcv is identical to that ofvspline . The difference is thatalpha is used as an initial
estimate forαCV. On return,alpha is set toαCV, andys is the smoothed estimate at that value ofα.

4.4 Subroutinecubic interp

Each component function of̂gα(t) is a scalar cubic spline. To compute values ofĝα,m(t) for values oft
other than the knots, callcubic interp .

int cubic_interp(yk, tn, ys, tk, N, K)
double *yk, *tn, *ys, *tk;
int N, K;

tn is theN sample points, andys is theN smoothed estimates for one of the component functions, e.g.
{ŷn,m}Nn=1. tk isK new points at whicĥgα,m(t) is to be evaluated. On return,yk is theK interpolated
samples.cubic interp returns 1 if successful, 0 otherwise.cubic interp is not very efficient, and
may not be exact for values oft outside of[t1, tN ].

5 Installation

VSPLINE is distributed as a Bourne Shell “bundle”. Create a directory calledvspline , move the bun-
dled file to that directory, and typesh filenameat a UNIX prompt. The fileREADMEcontains important
installation instructions.

When installed, the C source code resides in several subdirectories.matrix contains very general vec-
tor and matrix utility subroutines. Simply by changing the definitions inmatrix/matrix.h , one could

3



use a different library.smooth contains utilities for banded matrices, and the smoothing subroutines them-
selves. Finally,Test contains programs we used to test the library. The test programs were applied to the
data files inData ; to verify your installation, follow the instructions inData/README. OneMakefile
in the parent directory controls compilation of all three subdirectories. This Makefile creates five libraries:
libnonlin.a, libsmooth.a, liboptima.a, libmatrix.a, libiodep.a , which should
be linkedin the order givenwhen compiling. The Makefile in the Test directory provides a good example.

vspline resides insmooth/example1.c , bestcv in smooth/example2.c . A subroutine
called vect smooth in smooth/example1.c gives another example of how the VSPLINE library
can used.cubic interp resides insmooth/interp.c . The LATEXsource for this document is in
smooth/Doc .

References

[1] J. J. Dongarra and E. Grosse, “Distibution of mathematical software via electronic mail,”Comm. ACM,
vol. 30, pp. 403–407, Oct. 1987.

[2] J. Fessler, “Nonparametric fixed-interval smoothing with vector splines,”IEEE Transactions on Signal
Processing. Apr. 1991.

[3] J. Fessler, “Nonlinear smoothing with vector splines,”IEEE Transactions on Signal Processing. Apr.
1991.

[4] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes in C. Cambridge
Univ. Press, 1988.

[5] M. Hutchinson and F. deHoog, “Smoothing noisy data with spline functions,”Numerische Mathematik,
vol. 47, pp. 99–106, 1985.

4


