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Preface
This book describes the theory and practice of iterative methods for tomographic image reconstruction and related
inverse problems such as image restoration. I emphasize methods that are rooted in statistical models for the measure-
ment noise; previous texts have emphasized primarily analytical image reconstruction methods or iterative methods
that are based on algebraic principles rather than statistical models.

Some of the earliest tomographic images created by Hounsfield [1, 2] for X-ray computed tomography were
formed using iterative methods. And even earlier than that, Muehllehner and Wetzel described an iterative method for
(4 view) SPECT reconstruction [3]. Around the same time, Kuhl et al. also developed iterative methods for SPECT
[4, p. 183] [5]. However, by the mid 1970’s the analytical filter-backproject (FBP) method quickly became the method
used exclusively in routine clinical practice for tomographic reconstruction for many years [6, p. 695]. In the late
1990’s, statistical image reconstruction (SIR) methods (of the type described in Chapter 18) were first introduced
commercially for reconstructing SPECT and PET images, following many years of academic research demonstrating
their benefits. SIR methods soon supplanted the venerable FBP algorithm clinically for PET and SPECT. Full SIR
methods for X-ray CT (of the type described in this book) became commercially available in about 2011, motivated
primarily by concerns about patient X-ray dose. The enormous computation time of SIR methods for X-ray CT has
slowed its adoption and spurred considerable research into acceleration methods.

Image reconstruction methods for magnetic resonance imaging (MRI) are poised to undergo a revolution similar
to that of PET, SPECT and X-ray CT in the near future. Historically, the exclusive reconstruction method used for
clinical MRI has been the inverse fast Fourier transform (FFT). Many factors have increased interest in iterative recon-
struction methods for MRI, including the introduction of parallel imaging with multiple coils, problems such as field
inhomogeneity and non-Cartesian k-space trajectories, and incomplete sampling, often called compressed sensing [7,
8], particularly in dynamic imaging problems. Therefore, this book also describes MR image reconstruction problems
even though the primary considerations in MRI are sampling, not noise statistics.

The increasing use of and interest in statistical image reconstruction methods motivated this text. The concepts
needed for research and implementation of statistically based iterative reconstruction methods are spread far and wide
over the literature, in journals with homes in engineering, mathematics, physics, radiology, and statistics. This book is
an attempt to bring together in one place many of the key ingredients.

Although focused on PET, SPECT, X-ray CT, and MRI, tomographic reconstruction problems arise in numerous
applications, some surprising, such as ecological inference from aggregate data [9, Section 6.2.4], and ionospheric
measurements [10].

I had in mind two distinct audiences when writing this book. One audience is the researchers and students involved
in developing new methods for image reconstruction. The other audience is the practitioners of medical (and nonmed-
ical) imaging (medical physicists, etc.) who need to use image reconstruction for their work, and would benefit from
making informed choices among the many reconstruction methods available. For the first audience, I have included
the many mathematical details that one must master before one reaches a point where one can contribute useful new
algorithms. The theorems and proofs throughout the text are aimed primarily at this audience. For the benefit of
the more applied readers, I try to explain the practical implications of the theory, rather than adopting the traditional
mathematical style where the theorems and proofs stand on their own with relatively little explanatory text. In other
words, practical readers will find the text too theoretical, and mathematical readers will find the text too verbose. C’est
la vie...

For the benefit of all readers, I have tried to include explicit algorithms in forms that are very close to their actual
implementations. In addition, I provide free software (suitable for use with JULIA or MATLAB) that illustrates many of
the algorithms described in this book an accompanying web site http://web.eecs.umich.edu/~fessler.
Many sections of the book refer to this software.

The web site also lists any errata found for this book.
The book is designed to be reasonably self contained for readers who have familiarity with the basic principles of
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tomographic imaging systems. Some background in basic probability is essential for working with statistical methods.
The appendices summarize some “well known” useful mathematical and statistical tools that are used in the text.

This book is organized into several parts.

• Part I contains chapters that describe some of the image reconstruction problems. The first chapter describes
statistical methods for image restoration and the analysis of the properties of those methods. This chapter en-
capsulates many of the principal ideas of the book in a relatively simple setting. The next chapter considers
regularization methods; these correspond to prior information about the object and are used throughout the
applications. The next few chapters describe tomography problems: idealized analytical tomography, recon-
struction from Fourier samples (e.g., MRI), transmission tomography (X-ray CT), and emission tomography
(PET, SPECT).

• Part II describes optimization algorithms. The first chapter in this part reviews the types of general purpose op-
timization methods that are often applied for image reconstruction. The next chapter emphasizes optimization
transfer methods which are special-purpose algorithms that can be tailored to the specific problems in image
reconstruction. The next chapter discusses convergence of such algorithms. Then there are chapters describing
algorithms for specific problems: least squares problems, emission tomography, and transmission tomography.
Regularized methods are treated in detail.

• Part III addresses the analysis of the properties of statistical image reconstruction methods, including spatial
resolution and noise characteristics. The analysis of these properties aids in the design of regularization methods
and in prediction of algorithm performance for specific imaging tasks such as signal detection.

• Part IV addresses more advanced topics such as dynamic image reconstruction and motion-compensated image
reconstruction.

• The appendices provide mathematical background (probability, matrix analysis, etc.) needed for the main text.

Synopsis of image reconstruction
This book treats image reconstruction as an inverse problem of the following form. We are given a finite-dimensional
measurement vector y, from which we want to recover a function f that describes some property of an object. For
example, in emission tomography, f represents the 3D spatial distribution of a radiotracer. A very general block
diagram for image reconstruction problems is the following.

unknown object
f

→ Imaging
system → data

y
→ Reconstruction

algorithm → object estimate
f̂

To design image reconstruction algorithms, usually we begin by modeling the deterministic aspects of the imaging
system, i.e., modeling the measurements ȳc(f) that would be recorded ideally in the absence of noise. The func-
tion ȳc(·) is a “continuous-to-discrete” (C-D) mapping from the set of continuous-space functions f to the space
of nd-dimensional vectors ȳ. In practice the measurements are always contaminated by noise; in some cases the
measurement noise is well modeled as being additive, as illustrated by the following diagram.

unknown object
f

→ Ideal C-D
System → noiseless data

ȳc(f)
→
⊕
↑

noise

→ noisy data
y

(0.0.1)
e,synopsis,model,2

We can never determine f exactly for noisy data, but we can try to find an estimate f̂ that hopefully is a useful
approximation of f . In choosing f̂ , often we have two conflicting goals. We would like f̂ to “fit the data,” i.e., we
would like some measure of data mismatch d(ȳc

(
f̂
)
,y) to be small. But we do not want to fit the noise in the data,

i.e., we want f̂ to be compatible with any prior expectations about the characteristics of f . For example, often we
assume that f is smooth or piecewise smooth.

Because f is a continuous-space function whereas y is a finite-length vector, often we choose a finite-dimensional
parametric model for f , where the finite-length vector x denotes the model parameters (e.g., pixel values for a pixelized
model). Usually the model involves a linear combination of basis functions, i.e.,

f = B2x, (0.0.2)
e,synposis,f=Bx
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for some linear operator B2 that maps the np-dimensional vector x into a continuous-space function f . In other words,
each “column” of B2 is a basis function. With this parameterization, the block diagram for the measurement model
becomes the following.

unknown
parameters

x
→

Basis
functions

B2

→
unknown

object
f = B2x

→ Ideal C-D
System →

noiseless
data
ȳc(f)

→
⊕
↑

noise

→
noisy
data
y

By using a parametric model for the object f , we can express the noiseless measurements in terms of the parameter
vector x using a “discrete-discrete” (D-D) mapping

ȳ(x) , ȳc(B2x) (0.0.3)
e,synopsis,yb,x

that maps an np-dimensional image parameter vector x into a nd-dimensional ideal measurement vector ȳ. With this
definition we can simplify the block diagram by combining the first two blocks as follows.

unknown
parameters

x
→ Ideal D-D

System →
noiseless

data
ȳ(x)

→
⊕
↑

noise

→
noisy
data
y

(0.0.4)
e,synopsis,x-y

With this D-D formulation, we first compute an estimate x̂ of the parameter vector x and then use that to synthesize f̂
if needed using (0.0.2), as illustrated below.

noisy
data
y

→ Reconstruction
algorithm →

parameter
estimate

x̂
→ Synthesis

(D/A) →
object

estimate
f̂ = B2 x̂

The last synthesis step is a kind of “digital to analog” (D/A) conversion that is usually done implicitly by using a
digital display, rather than done computationally (except in some cases involving motion compensation).

This book (and the image reconstruction literature) focuses primarily on the D-D model (0.0.4) and algorithms
for computing x̂, but it is important to be aware that the model (0.0.1) is closer to reality. Too many papers generate
simulated data using the same model (0.0.4) that is used for the reconstruction algorithm, a process called the inverse
crime [11]. This “crime” can be avoided by using simulators based on (0.0.1), e.g., [12, 13].

In statistical methods for inverse problems, typically we determine an estimate x̂ of the parameter vector x by
minimizing a cost function of the following form:

x̂ = arg min
x∈X

d(ȳ(x),y) + R(x), (0.0.5)
e,synopsis,xh

where R(x) is a regularizer (e.g., a roughness penalty) that controls the trade-off between spatial resolution and noise.
The principal topics of this book are all present in the expression (0.0.5). To perform image reconstruction, one

must consider the following components.
• System model ȳc(f). For any given f , what would noiseless measurements be? This depends on the sensor physics.
• Log-likelihood / data-fit / discrepancy term d(ȳ,y). This term depends on the statistical model for the measure-

ments.
• Regularization method / prior R(x). How do we control noise without degrading desired signal features?
• Object model parameterization f = B2 x. One must compromise between accuracy and computation time.
• Constraint set X . For example, in tomography usually f is nonnegative. In MRI, although f is often complex,

sometimes its phase is (assumed) known.
• Minimization algorithm (argmin). How do we ensure convergence to the minimizer, and how to provide rapid

convergence?
Ideally the choice of the cost function and the iterative algorithm should be kept distinct, i.e., the cost function
should be chosen based on models and statistical principles, and then the algorithm should be chosen based on how
fast it minimizes the chosen cost function.
• Properties of x̂ or f̂ = B2 x̂, such as spatial resolution and noise. Here the analysis is complicated because x̂ is

often a nonlinear function of y.
• Consideration of departures from modeling assumptions. For example, what is the effect of object motion during

imaging, and how should the reconstruction method be designed to compensate for such effects?
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As an example, Fig. 0.0.1 shows a simulation of a true object xtrue, and noisy and blurry data y for an image
restoration problem with shift-invariant blur, as discussed in Chapter 1. Also shown are two restorations x̂; one
computed by a non-iterative, non-statistical method, and the other by an iterative, statistical method described in
Chapter 1.

True image x

Noisy/blurry data y

Inverse filter estimated x Regularized, statistical estimated x

Figure 0.0.1: Illustration of image restoration by non-statistical (left) and statistical (right) methods.
fig,front,ex
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Related references
There are several existing books on tomography, most of which were published many years ago and emphasize analyt-
ical image reconstruction methods. An exception is the book by Natterer [14] that includes a chapter about maximum-
likelihood methods.

Many books describe mathematical aspects of Radon transform [14–19]. Books that describe general issues in
tomographic reconstruction and treat algebraic reconstruction methods include [20–23]. Regularization and inverse
problem treatments include [24–35]. Webb gives a fascinating history of medical tomography [4]. Mathematical
image processing texts include [29, 30, 36–39]. Many books cover the general principles and physics of tomographic
imaging systems, including [40–46]. For MRI, I have found [44] to be particularly helpful.
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There are numerous books on optimization that are useful for image reconstruction, e.g., [47–50].
There have been numerous review papers and book chapters that summarize statistical image reconstruction meth-

ods, including [51–63].

Notation
A road hazard or “dangerous bend” symbol in the margin warns of tricky material. �
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