TABLE OF CONTENTS

Th_PM_OS1: PDEs in Biomedical Image Analysis

A Template-Propagation Method for Segmentation of Filamentous Structures in Electron Tomograms ... 1
Sriram Subramaniam, Peijun Zhang, David Germain, Tracey Rouault, NIH; Weicheng Shen, SAIC;

A New Approach for 3D Segmentation of Cellular Tomograms Obtained Using Three-Dimensional Electron Microscopy .. 5
Alberto Bartesaghi, Guillermo Sapiro, University of Minnesota; Stanton Lee, Jon Lefman, Sharon Wahl, Sriram Subramaniam, National Institutes of Health; Jan Orenstein, George Washington University;

DT-MRI Estimation, Regularization and Fiber Tractography 9
Rachid Deriche, INRIA; David Tschumperle, INRIA; Christophe Lenglet, INRIA

A Hybrid 3D Segmentation Framework .. 13
Dimitris Metaxas, Rutgers University

Variational Methods and Partial Differential Equations in Cardiac Image Analysis .. 17
Nikos Paragios, Ecole Nationale des Ponts et Chaussées

Image Interpolation Based on Optimal Mass Preserving Mappings 21
Lei Zhu, Allen Tannenbaum, Georgia Institute of Technology

Th_PM_OS2: Advanced Methods in Ultrasound Imaging

Dual-Mode Ultrasound Phased Arrays for Imaging and Therapy 25
Emad Ebbini, University of Minnesota; Hui Yao, University of Minnesota

Microbubbles for Ultrasound Diagnosis and Therapy .. 29
J. Fowlke, Oliver Kripfgans, Paul Carson, University of Michigan

Velocity Vector Estimation in Synthetic Aperture Flow and B-Mode Imaging33
Jorgen Jensen, Technical University of Denmark

Coded Excitation Methods in Biomedical Ultrasound ... 37
Matthew O'Donnell, Yao Wang, University of Michigan

Imaging Tissue Mechanical Properties Using Impulsive Acoustic Radiation Force .. 41
Mary Scott Soo, Mark Palmeri, Kathryn Nightingale, Amy Congdon, Kristin Frinkley, Gregg Trahey, Duke University

Motion Tracking for Palpation Imaging .. 45
Timothy Hall, Jingfeng Jiang, University of Wisconsin

3D Intravascular Ultrasound Palpography for Vulnerable Plaque Detection............ 49
Ton van der Steen, Erasmus Medical Centre

Th_PM_OS3: Imaging of Gene Expression: From Microarrays to In Vivo Studies

Automated Interpretation of Subcellular Location Patterns 53
Robert Murphy, Carnegie Mellon University

M-FISH Image Registration and Classification .. 57
Yu-Ping Wang, UMKC
Super-Resolution Tracking of Weak Fluorescent Markers in 3D: Application in Dissecting Mechanics of Chromosome Segregation using Fluorescence Imaging and Molecular Genetics in Yeast

Gaudenz Danuser, The Scripps Research Institute

Pareto Depth Sampling Distributions for Gene Ranking

Alfred Hero, Sepidarseh Zareparsi, Anand Swaroop, University of Michigan; Gilles Fleury, ESE

Automated Confocal Microscopy: The Way of Achieving both Quality and Quantity in 3D Image Cytometry

Michal Kozubek, Petr Matula, Pavel Matula, Masaryk University

High Resolution Detection of Chromosome Abnormalities with Single Copy Fluorescence In Situ Hybridization

Peter Rogan, Joan Knoll, Children's Mercy Hospital and Clinics

Th_PM_OC4: Image Segmentation

Cortical Surface Flattening Using Least Square Conformal Mapping with Minimal Metric Distortion

Lili Ju, Josh Stern, Kelly Rehm, Kirt Schaper, David Rottenberg, University of Minnesota; Monica Hurdal, Florida State University

Anatomical Guided Segmentation with Non-Stationary Tissue Class Distributions in an Expectation-Maximization Framework

Kilian Pohl, W. Eric Grimson, MIT; Sylvain Bouix, Ron Kikinis, Harvard

Segmentation of 3D Deformable Objects with Level Set Based Prior Models

Jing Yang, Hemant Tagare, Lawrence Staib, James Duncan, Yale University

Skeletonzation by Blocks for Large 3D Datasets: Application To Brain Microcirculation

Celine Fouard, Gregoire Malandain, INRIA; Steffen Prohaska, Zuse Institute Berlin (ZIB); Malte Westerhoff, INDEED Visual Concept; Francis Cassot, INSERM U455; Christophe Mazel, Didier Asselot, TGS Europe; Jean-Pierre Marc-Vergnes, INSER

Segmentation of Connective Tissue in the Optic Nerve Head Using an Anisotropic Markov Random Field

Vicente Grau, LSU Eye Center; J. Crawford Downs, Claude Burgoyne, LSU Eye Center

Level Set Method for Skull-Stripping MR Brain Images

Haihong Zhuang, Daniel Valentino, University of California Los Angeles

Normalization of Joint Image-Intensity Statistics in MRI using the Kullback-Leibler Divergence

Neil Weisenfeld, Simon Warfield, Brigham and Women's Hospital/Harvard Medical School

Microarray Gene Expression Data Analysis

Yuhua Ding, Jacqueline Fairley, George Vachtsevanos, Andrew Gardner, Georgia Inst. Technology; Petia Simeonova, National Institute for Occupational Safety and Health

Robust Unsupervised Tissue Classification in MR Images

Dzung Pham, Jerry Prince, Johns Hopkins University
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Function Analysis for Segmentation of Mammographic Masses for Various Margin Groups</td>
<td>113</td>
</tr>
<tr>
<td>Lisa Kinnard, Georgetown University, Howard University; Shih-Chung Lo, Georgetown University; Erini Makariou, Georgetown University; Teresa Osicka, Georgetown University; Paul Wang, Howard University; Matthew Freedman, Georgetown University; Mohamed Chouikha, Howard University</td>
<td></td>
</tr>
<tr>
<td>Fr_AM_P1: Image Segmentation I</td>
<td>117</td>
</tr>
<tr>
<td>Quality Processing of Microarray Image Data through Image Inpainting and Texture Synthesis</td>
<td>117</td>
</tr>
<tr>
<td>Paul O'Neill, George Magoulas, Xiaohui Liu, Brunel University</td>
<td></td>
</tr>
<tr>
<td>Toward Leukocyte Recognition Using Morphometry, Texture And Color</td>
<td>121</td>
</tr>
<tr>
<td>Daniela Sabino, Luciano Costa, USP; Marco Zago, Edgar Rizzatti, FMRP-USP</td>
<td></td>
</tr>
<tr>
<td>4-D Lesion Detection Using Expectation-Maximization and Hidden Markov Model</td>
<td>125</td>
</tr>
<tr>
<td>Jeffrey Solomon, Sensor Systems, Inc.; Arun Sood, George Mason University</td>
<td></td>
</tr>
<tr>
<td>Segmentation of in-vitro Endothelial Cell Networks</td>
<td>129</td>
</tr>
<tr>
<td>Fabrizio Lamberti, Bartolomeo Montrucchio, Politecnico di Torino</td>
<td></td>
</tr>
<tr>
<td>Vascular Segmentation in Three-Dimensional Rotational Angiography</td>
<td>133</td>
</tr>
<tr>
<td>Based on Maximum Intensity Projections</td>
<td></td>
</tr>
<tr>
<td>Rui Gan, Albert C. S. Chung, Wilbur C. K. Wong, Department of Computer Science, the Hong Kong University of Science and Technology; Simon C.H. Yu, The Prince of Wales Hospital</td>
<td></td>
</tr>
<tr>
<td>A New Image Segmentation And Smoothing Model</td>
<td>137</td>
</tr>
<tr>
<td>Song Gao, Tien Bui, Department of Computer Science, Concordia University</td>
<td></td>
</tr>
<tr>
<td>An Adaptive Speed Term Based on Generalized Fuzzy Operator for Level Set Segmentation</td>
<td>141</td>
</tr>
<tr>
<td>Yazhong Lin, Wufan Chen, First Military Medical University</td>
<td></td>
</tr>
<tr>
<td>Tissue Color Images Segmentation Using Artificial Neural Networks</td>
<td>145</td>
</tr>
<tr>
<td>Mohamed Sammouda, Mohamed Benaichouche, Prince Sultan University; Rachid Sammouda, Sharjah University; Noboru Niki, Tokushima University</td>
<td></td>
</tr>
<tr>
<td>Image Segmentation with the Combination of the PCA- and ICA-Based Modes of Shape Variation</td>
<td>149</td>
</tr>
<tr>
<td>Juha Koikkalainen, Helsinki University of Technology; Jyrki Löfjönen, VTT Information Technology</td>
<td></td>
</tr>
<tr>
<td>Automatic 2D Segmentation of the Left Ventricle in Tagged Cardiac MRI</td>
<td>153</td>
</tr>
<tr>
<td>Using Motion Information</td>
<td>153</td>
</tr>
<tr>
<td>Julien Milles, Anneke van Susteren, Theo Arts, CARIM - Maastricht University; Patrick Clarysse, Pierre Croisille, Isabelle Magnin, CREATIS - INSA Lyon University</td>
<td></td>
</tr>
<tr>
<td>Hierarchical Segmentation of Multiple Sclerosis Lesions in Multi-Sequence MRI</td>
<td>157</td>
</tr>
<tr>
<td>Guillaume Dugas-Phocion, Miguel Angel Gonzalez Ballester, Grégoire Malandain, Nicholas Ayache, INRIA Sophia; Christine Lebrun, Stéphane Chanalet, Caroline Bensa, CHU Pasteur, Service de Neurologie</td>
<td></td>
</tr>
<tr>
<td>Combining Fuzzy Logic and Level Set Methods for 3D MRI Brain Segmentation</td>
<td>161</td>
</tr>
<tr>
<td>Cybèle Ciofolo, Christian Barillot, IRISA/CNRS; Pierre Hellier, IRISA/INRIA</td>
<td></td>
</tr>
</tbody>
</table>
Multiresolution Automatic Segmentation of T1-Weighted Brain MR Images
Mahmood Zeydabadi, Reza A. Zoroofi, Hamid Soltanian-zadeh, Engineering Faculty, Tehran University

Fr_AM_P2: Shape Analysis

Meta-Analysis of Functional Imaging Studies Using a Geometric Model of the Cortical Surface
Roberto Toro, Yves Burnod, Institut des Sciences Cognitives

Large Deformation Minimum Mean Squared Error Template Estimation for Computational Anatomy
Brad Davis, Peter Lorenzen, Sarang Joshi, University of North Carolina

3D Model-Based Vascular Tree Analysis Using Differential Geometry
Kun-Chang Yu, William Higgins, The Pennsylvania State University; Erik Ritman, Mayo Clinic

A New Method for Robust Contour Tracking In Cardiac Image Sequences
Shoujun Zhou, Wufan Chen, Dept.of BME, The First Military Medical University; Bin Liang, Guang Dong Branch of Network Security Bureau of China

Toward Real-Time, Physically-Correct Soft Tissue Behavior Simulation
Yuan-Fang Wang, Dan Koppel, Shivkumar Chandrasekaran, University of California

Local Weak Form Geometric Active Contours for Medical Image Segmentation
H.F. Liu, H.P. Ho, P.C. Shi, HKUST

Population Analysis of Knee Cartilage Thickness Maps using Model Based Correspondence
Tomos Williams, Christopher Taylor, University of Manchester; John Waterton, Andrew Holmes, AstraZeneca

Correspondence Recovery In 2-View Mammography
Yan Qiu, Dmitry Goldgof, Lihua Li, Sudeep Sarkar, Yong Zhang, Sorin Anton, University of South Florida

NERVES -- Level Sets for Interactive 3D Segmentation of Nerve Channels
Nils Hanssen, Zbigniew Burgieliski, Thomas Jansen, Marc Lievin, Lutz Ritter, Bartosz v. Rymon-Lipinski, Erwin Keeve, Research Center Caesar

Fr_AM_P3: MRI Acquisition and Analysis

Longitudinal Measurements of Signal Intensity as a Potential Marker for Cartilage Degeneration in Osteoarthritis
Josephine Naish, University of Manchester; Graham Vincent, imorphics; Mike Bowes, imorphics; Manish Kothari, Synarc Inc.; David White, Synarc Inc.; John Waterton, AstraZeneca; Chris Taylor, University of Manchester

Iterative Image Reconstruction in MRI With Separate Magnitude and Phase Regularization
Jeffrey Fessler, Doug Noll, The University of Michigan

Matched Filter vs. Least-Squares for Multiple-Coil MRI
Molly Scheffe, G. P. Zientara, Brigham & Women's Hospital

Parallel Imaging with Prior Information for Dynamic MRI
Feng Huang, James Akao, Andrew Rubin, George Duensing, MRI Devices Corporation
Analysis of Serial MR Images of Joints ..221
Kelvin Leung, Derek Hill, King's College London; Rolf Heckemann, Daniel Rueckert, Joseph Hajnal, Imperial College; Nadeem Saeed, Keith Brooks, Jacky Buckton, Kumar Changani, David Reid, GlaxoSmithKline

Computed Simultaneous Imaging of Multiple Functional Biomarkers..............225
Yue Wang, Virginia Tech; Rujirutana Srikanchana, Peter Choyka, National Institutes of Health; Jianhua Xuan, The Catholic University of America; Zsolt Szabo, Johns Hopkins Medical Institutions

Risk for Alcoholism And Developmental Defects of Specific Brain Structures: A MR Morphometric Study..229
George Antony, Vivek Benegal, P.N. Jayakumar, National Institute Of Mental Health And Neurosciences

Multi-Resolution Hierarchical Blind Recovery of Biochemical Markers of Brain Cancer In MRSI ..233
Shuyan Du, Paul Sajda, Columbia University; Xiangling Mao, Dikoma Shungu, Mount Sinai School of Medicine

Optimal Variable-Density k-Space Sampling in MRI ...237
Jin Hyung Lee, Dwight Nishimura, Brad Osgood, Stanford University

On the Regularization of SENSE and Space-RIP in Parallel MR Imaging241
William Hoge, Bruno Madore, Walid Kyriakos, Brigham and Women's Hospital and Harvard Medical School; Dana Brooks, Northeastern University

Fr_AM_P4: Image Guided Diagnosis, Surgery and Therapy

Computer Aided Monitoring of Fibrous Dysplasia Disease in Craniofacial Bones ... 245
Jianhua Yao, Michael Collins, John Butman, National Institute of Health; Janice Lee, University of California at San Francisco

Automatic Quantification of Pupil Dilation Under Stress249
Julien Jomier, Erwann Rault, Stephen Aylward, University of North Carolina at Chapel Hill

Classification of Breast MRI Lesions Using A Backpropagation Neural Network (BNN) .. 253
Lina Arbach, Alan Stolpen, Joseph Reinhardt, University of Iowa

Improved Prediction of Prostate Cancer Recurrence Based on an Automated Tissue Image Analysis System ...257
Mikhail Teverovskiy, Vinay Kumar, Junshui Ma, Angeliki Kotsianti, David Verbel, Ho-Yuen Pang, Yevgen Vengrenyuk, Stephen Fogarasi, Olivier Saidi, Aureon Biosciences Corporation; Ali Tabesh, University of Arizona

Distance Contained Centerline for Virtual Endoscopy 261
Liu Jianfei, Zhang Xiaopeng, Institute of Automation, Chinese Academy of Sciences; Frederic Blaise, ISA INRIA Lorraine

Image-Guidance for Cardiac Surgery Using Dynamic Autostereoscopic Display System ... 265
Hongen Liao, Nobuhiko Hata, Takeyoshi Dohi, Graduate School of Information Science and Technology, The University of Tokyo

Image-Based Rendering And Modeling In Video-Endoscopy269
Yuan-Fang Wang, Dan Koppel, Hua Lee, University of California
Method for Assessing Augmented Reality Needle Guidance Using a Virtual Biopsy Task

Damion Shelton, Roberta Klatzky, Carnegie Mellon University; George Stetten, University of Pittsburgh

New Function for Accurate MR-Guided Microwave Ablation Using Vertically Opened 0.5-T MR System

Koichiro Sato, Yoshimasa Kurumi, Shigeyuki Naka, Koichi Demura, Hisanori Shiomi, Tohru Tani, Shiga University of Medical Science; Shigehiro Morikawa, Toshiro Inubushi, Shiga University of Medical Science; Hasnine A Haque, GE-Yokogawa Medical Systems

A Virtual Reality Based 3D Real-Time Interactive Brachytherapy Simulation of Needle Insertion and Seed Implantation

Xiaogang Wang, Aaron Fenster, Imaging Research Laboratories, Robarts Research Institute

Automatic Detection of Head Refixation Errors in Fractionated Stereotactic Radiotherapy (FSR)

Shidong Li, Daniele Rigamonti, Lawrence Kleinberg, Shanjin He, Theodore DeWeese, Johns Hopkins University School of Medicine; Jason Geng, Dezhi Liu, Genex Technologies Inc.

Haptic Guided Seeding of MRA Images for Semi-Automatic Segmentation

Erik Vidholm, Ingela Nyström, Ewert Bengtsson, Uppsala University, Centre for Image Analysis; Xavier Tizon, Swedish University of Agricultural Sciences, Centre for Image Analysis

Colon Straightening Based on an Elastic Mechanics Model

Zhan Zhang, Michael Ackerman, Office of High Performance Computing & Communications, National Library of Medicine; Jixing Li, Electronic Information College, Wuhan University

MRI-Guided Laser Thermal Ablation: Model and Parameter Estimates Relating MR Thermometry Images to Cell Death

Michael Breen, David Wilson, Gerald Säüdel, Case Western Reserve University; Kim Butts, Stanford University; Lili Chen, Fox Chase Cancer Center

Fr_AM_OC1: Cardiac Imaging and Motion

Vorticity Imaging of Diastolic Cardiac Inflow by Phase-Contrast MRI

William Kerwin, Edward Gill, Jason Cooke, University of Washington; Jean Hertzberg, Heather Chluda, Robin Shandas, University of Colorado, Boulder

The Choice of Tracking Feature In Ultrasound-Based Strain Imaging Analysis

Weichuan Yu, James Duncan, Yale University

Bimodal Myocardial Motion Analysis from B-mode and Tissue Doppler Ultrasound

Michael Sühling, Muthuvel Arigovindan, Michael Unser, Swiss Federal Institute of Technology Lausanne (EPFL); Christian Jansen, Patrick Hunziker, University Hospital Basel

Automated Tracking of Multiple Body Parts in Video Recordings of Neonatal Seizures

Abdul Sami, Nicolaos Karayiannis, University of Houston; James Frost, Jr., Merrill Wise, Eli Mizrahi, Baylor College of Medicine

A Posteriori Navigator Echo for Perfusion Imaging of The Liver With Contrast Ultrasound

Gilles Renault, Frédérique Frouin, Alain Herment, Inserm; François Tranquart, Aurore Bleuzen, CIT Ultrasons
Generalized Robust Point Matching Using An Extended Free-Form
Deformation Model: Application to Cardiac Images ..320
Ning Lin, James Duncan, Yale University

Fr_AM_OC2: Diffusion Tensor Imaging
Towards Diffusion Profile Image Registration ..324
Hui Zhang, Paul Yushkevich, James Gee, University of Pennsylvania

DT-MRI Data Visualisation using the Dual Tree Complex Wavelet
Transform..328
Nick Kingsbury, Argyris Zymnis, Cambridge University Engineering Department, Signal Processing Group; Alonso Pena, Department of Radiology and Academic Neurosurgery Unit, University of Cambridge

Modelling Noise-Induced Fibre-Orientation Error in Diffusion-Tensor MRI332
Philip Cook, Daniel Alexander, University College London; Geoffrey Parker, University of Manchester

DT-MRI Regularization Using Anisotropic Tensor Field Filtering...............336
Miguel Angel Rodriguez-Florido, Juan Ruiz-Alzola, Centro de Tecnologia Medica y Dto. Ing. Telemática de la Universidad de Las Palmas de Gran Canaria; Carl-Fredrik Westin, Laboratory of Mathematics in Imaging, Harvard Medical School

Constrained Free Form Deformation Based Algorithm for Geometric
Distortion Correction of Echo Planar Diffusion Tensor Images340
Siamak Ardekani, Usha Sinha, University of California Los Angeles

Towards a Shape Model of White Matter Fiber Bundles Using Diffusion Tensor
MRI ..344
Isabelle Corouge, Guido Gerig, University of North Carolina; Sylvain Gouttard, ESCPE Lyon

Fr_AM_OC3: Image Reconstruction I: Model Based
Maximum-Lesion-Detectability Reconstruction Using Penalized
Maximum Likelihood ..348
Jinyi Qi, Ronald H Huesman, Lawrence Berkeley National Laboratory

Quasi-Maximum Likelihood Blind Deconvolution of Images Acquired
Through Scattering Media ..352
Michael Bronstein, Alexander Bronstein, Yehoshua Zeevi, Michael Zibulevsky, Technion - Israel Institute of Technology

Reconstruction of 2D Pet Data with Monte Carlo Generated Natural Pixels.......356
Charles Byrne, University of Massachusetts, Lowell; Stefaan Vandenbergh, University of Massachusetts, University Ghent; Ed Soares, College of the Holy Cross; Ignace Lemahieu, University Ghent; Stephen Glick, University Of Massachusetts Medical School

Analytical Approach to Channelized Hotelling Observer Performance For
Regularized Tomographic Image Reconstruction ..360
Anastasia Yendiki, Jeffrey Fessler, The University of Michigan

Fourier-Based Forward and Back-Projectors in Iterative Fan-Beam
Tomographic Image Reconstruction ..364
Yingying Zhang, Jeffrey Fessler, University of Michigan

Covariance of Kinetic Parameter Estimators Based on Time Activity
Curve Reconstructions: Preliminary Study on 1D Dynamic Imaging368
Sangtae Ahn, Jeffrey Fessler, Thomas Nichols, Robert Koeppe, University of Michigan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fr_AM_OC4: Functional Brain Mapping</td>
<td></td>
</tr>
<tr>
<td>Nonlinear Dimension Reduction of fMRI Data: The Laplacian Embedding</td>
<td>372</td>
</tr>
<tr>
<td>Olivier Faugeras, Bertrand Thirion, INRIA Sophia Antipolis</td>
<td></td>
</tr>
<tr>
<td>Incremental Activation Detection in fMRI Series Using Kalman Filtering</td>
<td>376</td>
</tr>
<tr>
<td>Alexis Roche, Jean-Baptiste Poline, Pierre-Jean Layahe, CEA/SHFJ</td>
<td></td>
</tr>
<tr>
<td>Imaging Cortical Oscillations During Sustained Visuomotor Coordination</td>
<td>380</td>
</tr>
<tr>
<td>in MEG</td>
<td></td>
</tr>
<tr>
<td>Karim Jerbi, Sylvain Baillet, Line Garnero, Cognitive Neuroscience and Brain Imaging Laboratory; Jean-Philippe Lachaux, Mental Processes and Brain Activation Laboratory INSERM U280</td>
<td></td>
</tr>
<tr>
<td>The Influence of Heart Beat and Respiration on Functional Connectivity</td>
<td>384</td>
</tr>
<tr>
<td>Networks</td>
<td></td>
</tr>
<tr>
<td>Silke Dodel, SHFJ; Jean-Baptiste Poline, SHFJ; Jean-Luc Anton, IFR 45 "Sciences du cerveau"; Matthew Brett, Cognition and Brain Sciences Unit, Médical Research Council</td>
<td></td>
</tr>
<tr>
<td>Controlling The False Positive Detection Rate In Fuzzy Clustering of</td>
<td>388</td>
</tr>
<tr>
<td>fMRI Data</td>
<td></td>
</tr>
<tr>
<td>Hesamoddin Jahanian, Institute for Studies In Theoretical Physics and Mathematics (IPM); Hamid Soltanian Zadeh, Gholam Ali Hossein Zadeh, University of Tehran</td>
<td></td>
</tr>
<tr>
<td>Outlier Detection for Robust Region-Based Estimation of the Hemodynamic</td>
<td>392</td>
</tr>
<tr>
<td>Response Function in Event-Related fMRI</td>
<td></td>
</tr>
<tr>
<td>Philippe Ciuciu, Alexis Roche, SHFJ/CEA; Jérôme Idier, IRCCyN/CNRS; Christophe Pallier, INSERM U562/SHFJ</td>
<td></td>
</tr>
<tr>
<td>Fr_PM_P1: Atlases and Computational Anatomy</td>
<td></td>
</tr>
<tr>
<td>Matching of Diffusion Tensor Images using Gabor Features</td>
<td>396</td>
</tr>
<tr>
<td>Ragini Verma, Christos Davatzikos, University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>A Deformable Brodmann Area Atlas</td>
<td>400</td>
</tr>
<tr>
<td>Paul Rasser, Philip Ward, Neuroscience Institute of Schizophrenia and Allied Disorders, Sydney, Australia; Patrick Johnston, Centre for Mental Health Studies, Newcastle, Australia; Paul Thompson, Laboratory of Neuro Imaging, University of California Los Angeles School of Medicine, Los Angeles, USA</td>
<td></td>
</tr>
<tr>
<td>Performance-Based Multi-Classifier Decision Fusion for Atlas-Based</td>
<td>404</td>
</tr>
<tr>
<td>Segmentation of Biomedical Images</td>
<td></td>
</tr>
<tr>
<td>Torsten Rohlfing, Daniel Russakoff, Calvin Maurer, Stanford University; Robert Brandt, Indeed - Visual Concepts GmbH; Randolf Menzel, Freie Universitaet Berlin</td>
<td></td>
</tr>
<tr>
<td>Non-Rigid Registration Algorithm With Spatially Varying Stiffness</td>
<td>408</td>
</tr>
<tr>
<td>Properties</td>
<td></td>
</tr>
<tr>
<td>Valerie Duay, Swiss Federal Institute of Technology, Lausanne ; Pierre-Francois D'Haese, Rui Li, Benoit Dawant, Vanderbilt University</td>
<td></td>
</tr>
<tr>
<td>Building a 4D Atlas of the Cardiac Anatomy and Motion Using MR Imaging</td>
<td>412</td>
</tr>
<tr>
<td>Dimitrios Perperidis, Raghavendra Chandrashekara, Maria Lorenzo-Valdes, Gerardo-Ivar Sanchez-Ortiz, Anil Rao, Daniel Rueckert, Imperial College London, Department of Computing; Raad Mohiaddin, Royal Brompton and Harefield NHS Trust</td>
<td></td>
</tr>
</tbody>
</table>
Grid-Enabled Automatic Construction of A Two-Chamber Cardiac PDM from a Large Database of Dynamic 3D Shapes ... 416
Sebastian Ordas, Loïc Boisrobert, Matias Bossa, Salvador Olmos, Alejandro Frangi, Aragon Institute of Engineering Research; Huguet Marina, CETIR Sant Jordi; Marcos Laucelli, GridSystems

Finite Element Mesh Generation and Remeshing from Segmented Medical Images ... 420
Ashraf Mohamed, Johns Hopkins University; Christos Davatzikos, University of Pennsylvania

Automated Identification of Microstructures on Histology Slides 424
Constandine Katsinis, Sokol Petushi, Chip Coward, Aydin Tozeren, Drexel University; Fernando Garcia, Graduate Hospital

Cortical Surface Parameterization by P-Harmonic Energy Minimization 428
Anand Joshi, Richard Leahy, University of Southern California; Paul Thompson, David Shattuck, University of California Los Angeles

Diffusion Smoothing on Brain Surface via Finite Element Method 432
Moo Chung, University of Wisconsin-Madison; Jonathan Taylor, Stanford University

Clustering On Image Boundary Regions for Deformable Model Segmentation ... 436
Joshua Stough, Stephen Pizer, Edward Chaney, Manjari Rao, University of North Carolina at Chapel Hill

A Probabilistic Framework for the Detection and Tracking in Time of Multiple Sclerosis Lesions ... 440
Allon Shahar, Hayit Greenspan, Tel-Aviv University

Modeling of Tumor Conspicuity In Hepatic CT Images: Combined Compartment and Vascular Models ... 444
Marek Kretowski, Technical University of Bialystok; Pierrick Coupe, Johanne Bezy-Wendling, Rennes University

Fr_PM_P2: Image Motion and Sequence Analysis

Analysis of Time-Varying Psoriasis Lesion Image Patterns ... 448
Bjarne Ersbøll, DTU; Allan Nielsen, IMM-DTU; Gabriela Maletti, KVL; David Delgado Gómez, IMM-DTU

Relationship Between the Morphology and Functionality of Articular Surfaces. Applications to 3D Navigation ... 452
Gwenaël Guillard, Chafiaa Hamitouche, Julio Daniel Gil Cano, Christian Roux, ENST Bretagne; Eric Stindel, CHU de Brest, Hôpital de la Cavale Blanche

Measuring Blood Cells Velocity in Microvessels from a Single Image: Application to In Vivo and In Situ Confocal Microscopy .. 456
Nicolas Savoire, Georges Le Goualher, Aymeric Perchant, François Lacombe, Mauna Kea Technologies; Grégoire Malandain, Nicholas Ayache, INRIA - Epidaure

Parametric Analysis of Main Motion : Application To The Assessment of Left Ventricular Wall Motion by MR Imaging .. 460
Nadja Kachenouri, Cinta Ruiz Doninguez, Annie Delouche, Odile Jolivet, Frederique Frouin, U494 INSERM; Alban Redheuil, Benoit Diebold, Service D'Echocardiographie HEGP ;Elie Mousseaux, Service de Radiologie Cardiovasculaire
Meshfree Cardiac Motion Analysis Using Composite Material Model and Total Lagrangian Formulation
Pengcheng Shi, Huafeng Liu, Alexandra Wong, Ken Wong, Hong Kong University of Science and Technology; Albert Sinusas, Yale University

Cardiac Motion Tracking in Tagged MR Images Using a 4D B-spline
Motion Model and Nonrigid Image Registration
Raghavendra Chandrashekara, Daniel Rueckert, Imperial College; Raad Mohiaddin, Royal Brompton and Harefield NHS Trust

Effects of Breathing Motion On The Spatial Resolution In Microscopic Imaging Techniques of Rodents
Wilfried Mai, Cristian Badea, Charles Wheeler, Laurence Hedlund, G. Johnson, Center for In Vivo Microscopy

Tracking Fluorescent Cells With Coupled Geometric Active Contours
Christophe Zimmer, Jean-Christophe Olivo-Marin, Institut Pasteur; Bo Zhang, ENST

Respiratory Motion Estimation From Slowly Rotating X-Ray Projections
Rongping Zeng, Jeffrey Fessler, James Balter, The University of Michigan

Non-Rigid Image Transformation for Assessing Changes in Fluorescence Imaging Data of Molecular Activity in Time-Dependent Geometries
Kostas Marias, Stelios Orphanoudakis, Institute of Computer Science-FORTH; Jorge Ripoll, Inst. of Electronic Structure & Laser - FORTH; Vasilis Ntziachristos, MGH / Harvard Medical School

Fr_PM_P3: Ultrasound Imaging
Image Analysis of Doppler Echocardiography for Patients with Atrial Fibrillation
Oron Shechner, Hayit Greenspan, Mickey Sheinovitz, Micha Feinberg, Tel Aviv University

Three-Dimensional Reconstruction of Tracked Freehand Ultrasound Using Non-Rigid Registration
Graeme Penney, Krista Joosten, Marloes Letteboer, Max Viergever, Wiro Niessen, Image Sciences Institute

Automatic Segmentation of Prostate Boundaries From Abdominal Ultrasound Images Using Priori Knowledge
Nacim Betrouni, Jean Rousseau, Maximilien Vermandel, ITM; Maouche Salah, USTL

Advantages in Using Multi-Frequency Driving to Enhance Ultrasound Contrast Microbubble Non-Linearities for Optimizing Echo Particle Image Velocimetry Techniques
Hairong Zheng, Osama Mukdadi, Hyoun Bum Kim, Jean Hertzberg, University of Colorado at Boulder; Robin Shandas, The Children’s Hospital, Denver

Numerical Modeling of Ultrasound Imaging Using Contrast Agents for Particle Image Velocimetry In Vivo
Osama Mukdadi, H.B. Kim, J.R. Hertzberg, University of Colorado; Robin Shandas, University of Colorado and The Children’s Hospital, Denver

Quantitation of Regional Myocardial Function During Short-Lived Events With Ultrasound Imaging
Eileen McMahon, Jianwen Wang, Josef Korinek, Marek Belohlavek, Stig Urheim, Mayo Clinic
Atomic Layer Deposition for Fabricating Capacitive Micromachined Ultrasonic Transducers: Initial Characterization ...512
Lingli Liu, Osama Mukdadi, Hyoun Kim, Jean Hertzberg, Robin Shandas, Victor Bright, University of Colorado at Boulder

A Study of Pressure-Dependent Attenuation In Ultrasound Contrast Imaging ..516
Meng-Xing Tang, J. Noble, Oxford University; Robert Eckersley, Imperial College London

Monitoring Angiogenesis in Human Melanoma Xenografts using Contrast-Enhanced Ultrasound ...520
Raymond Ro, Drexel University/Thomas Jefferson University; Flemming Forsberg, Ji-Bin Liu, Kathryn James, Magdalena Potoczak, Levon Nazarian, Thomas Jefferson University; Peter Lewin, Drexel University

Interactive Rendering of Real-Time Volumetric Ultrasound Images.....................523
Gregory Bredthauer, Olaf von Ramm, Duke University

A Novel Closed Form Solution for Ultrasound Calibration527
Emad Boctor, Anand Viswanathan, Michael Choti, Russell Taylor, Gabor Fichtinger, Gregory Hager, The Johns Hopkins University

Quantitative Analysis of Circumferential Plaque Distribution in Human Coronary Arteries in Relation to Local Vessel Curvature..531
Andreas Wahle, Mark Olzevski, Sarah Vigmostad, Kathleen Braddy, Theresa Brennan, James Rossen, Krishnan Chandran, Milan Sonka, The University of Iowa; Ruben Medina, Universidad de Los Andes; A Coskun, Northeastern University; Charles Feldman, Peter Stone, Brigham & Women's Hospital

The Accuracy of Blood Velocity Measurement Using Ultrasound........................535
Siobhan Meagher, Tamie Poepping, John Cosgroave, Clive Greated, Peter Hoskins, Univeristy of Edinburgh

A Software Package for Portable Three-Dimensional Ultrasound Imaging.........539
Tiantian Zhang, X. Xu, Rensselaer Polytechnic Institute; Xinlin Chen, Hubei Women & Children's Hospital

Simultaneous Elastic Image Registration and Elastic Modulus Reconstruction ..543
Paul Barbone, Nachiket Gokhale, Michael Richards, Assad Oberai, Boston University; Marvin Doyley, Dartmouth College

Speckle Reduction on Ultrasound Image by Variational Methods and Adaptive Lagrangian Multipliers ..547
Arnaud Ogier, Pierre Hellier, Christian Barillot, IRISA

Fr_PM_P4: Image Reconstruction & Restoration I
A Method for Reconstructing Label Images From a Few Projections, as Motivated by Electron Microscopy ...551
Hstau Liao, Gabor Herman, The Graduate Center, CUNY

A Fast Fully 4D Incremental Gradient Reconstruction Algorithm for List Mode PET Data ...555
Quanzheng Li, Evren Asma, Richard Leahy, University of Southern California

Three-Dimensional Multi-Resolution Statistical Reconstruction for Tomosynthesis ..559
Pei Chen, Kenneth E. Barner, University of Delaware
A "Brick" Caching Scheme for 3D Medical Imaging ..563
Jianchun Li, Christos Papachristou, Case Western Reserve University; Raj Shekhar, Cleveland Clinic Foundation

3D Region of Interest X-Ray CT for Geometric Magnification from Multiresolution Acquisitions ..567
Greg Tisson, Paul Scheunders, Dirk Van Dyck, University of Antwerp

Ultra-Fast 3D Filtered Backprojection On Commodity Graphics Hardware571
Klaus Mueller, Fang Xu, Stony Brook University

Image Reconstruction from Truncated Cone-Beam Projections575
Hermann Schomberg, Philips Research Hamburg

Alternating Minimization Algorithm for Dual Energy X-ray CT579
Joseph O'Sullivan, Jasenka Benac, Washington University; Jeffrey Williamson, Virginia Commonwealth University

Fr_PM_OS1: Atlases and Nonrigid Registration

Genetic Influences on Human Brain Morphology...583
Theo van Erp, Tyrone Cannon, Helen Tran, Amber Wobbekind, University of California Los Angeles Department of Psychology; Matti Huttunen, Jouko Länsivu, Department of Mental Health, National Public Health Institute of Finland; Olli Salonen, Leena Valanne, Veli-Pekka Poutanen, Carl-Gustav Standertskjöld-Nordenstam, Department of Radiology, University of Helsinki, Helsinki, Finland; Arthur Toga, Paul Thompson, Laboratory of Neuroimaging, University of California Los Angeles School of Medicine, Los Angeles

Morphological Classification of Medical Images using Nonlinear Support Vector Machines ...587
Christos Davatzikos, Dinggang Shen, Zhiqiang Lao, Zhong Xue, Bilge Karacali, University of Pennsylvania

Inverse Consistent Registration with Object Boundary Constraints591
Gary Christensen, University of Iowa

Shape Averaging with Diffeomorphic Flows for Atlas Creation595
Brian Avants, James Gee, University of Pennsylvania

Challenges and Progress Toward Quantitative Deformation Morphometry of Gyral Anatomy ...599
Colin Studholme, Corina Drapaca, Valerie Cardenas, Michael Weiner, U.C.S.F.

Brain Warping with Implicit Representations ...603
Alexia Leow, Paul Thomas, Hillary Protas, Sung Cheng Huang, University of California Los Angeles

Fr_PM_OS2: Dynamic Image Formation and Analysis

Dynamic SPECT Imaging: Exploring A New Frontier in Medical Imaging607
Grant Gullberg, E. O. Lawrence Berkeley National Laboratory

Tracer Kinetic Parametric Imaging in PET ...612
Richard Carson, National Institutes of Health

Phase-Correlated Dynamic CT ...616
Marc Kachelriess, Institute of Medical Physics (IMP)

Level Set Methods for Dynamic Tomography ..620
Yonggang Shi, William Karl, Boston University
Imaging the Evolution of Three-Dimensional Myocardial Strains using a Fast MR Imaging Technique ...624
Smita Sampath, Nael Osman, Jerry Prince, Johns Hopkins University

Spatio-Temporal Modeling and Adaptive Acquisition for Cardiac MRI628
Nitin Aggarwal, Saptarshi Bandopadhyay, Yoram Bresler, University of Illinois, Urbana-Champaign

Fr_PM_OS3: Public Domain Software Packages for Biomedical Imaging

3D Slicer ...632
Steve Pieper, Isomics, Inc.; Michael Halle, Ron Kikinis, Surgical Planning Laboratory, Brigham and Women's Hospital

Simulation of Advanced Ultrasound Systems using Field II636
Jørgen Jensen, Techn. University of Denmark

SCIRun/BioPSE: Integrated Problem Solving Environment for Bioelectric Field Problems and Visualization ...640
Rob MacLeod, David Weinstein, Davison de St. Germain, Christopher Johnson, Steven Parker, University of Utah; Dana Brooks, Northeastern University

DUFF: Software Tools for Visualization and Processing of Neuroimaging Data ..644
David Shattuck, Allan MacKenzie-Graham, Arthur Toga, University of California Los Angeles Laboratory of Neuro Imaging

Software Process: The Key to Developing Robust, Reusable and Maintainable Open-Source Software ..648
William Schroeder, Luis Ibanez, Kenneth Martin, Kitware, Inc.

Electromagnetic Brain Mapping using BrainStorm ..652
Sylvain Baillet, Cognitive Neuroscience & Brain Imaging Lab; John Mosher, Los Alamos National Laboratory; Richard Leahy, Signal and Image Processing Group, University of Southern California

Fr_PM_OC4: Optical Imaging & Microscopy

Automatic Quantification of Microtubule Dynamics ...656
Stathis Hadjidemetriou, James Duncan, Yale University; Derek Toomre, David Tuck, Yale University School of Medicine

Extended Depth-of-Focus for Multi-Channel Microscopy Images:
A Complex Wavelet Approach ...660
Brigitte Forster, Dimitri Van De Ville, Jesse Berent, Daniel Sage, Michael Unser, Swiss Federal Institute of Technology Lausanne

A Multiple Target Approach for Single Quantum Dot Tracking664
Stephane Bonneau, Laurent Cohen, Ceremade; Maxime Dahan, Laboratoire Kastler-Brossel

Deep Tissue Imaging Approaches By Direct Capture of Two-Photon Absorption ...668
Tong Ye, Warren Warren, Martin Fischer, Department of Radiology, University of Pennsylvania; Wolfgang Wagner, Peifang Tian, Department of Chemistry, Princeton University; Gunay Yurtsever, Department of Bioengineering, University of Pennsylvania
Reduction of Physiological Interference in Optical Functional Neuroimaging Using Eigenvector-Based Spatial Filtering ..672
Yiheng Zhang, Dana Brooks, Northeastern University; Maria Franceschini, David Boas, Mass General Hospital

A Method for Dynamically Suppressing Sidelobes in Optical Coherence Tomography ..676
Daniel Marks, Paul Carney, Stephen Boppart, University of Illinois at Urbana-Champaign

3-D Multispectral Monitoring of Living Cell Signaling Using Confocal-Imaging And FPGA Processing ..680
Marianne Sowa Resat, James Solinsky, H. Wiley, Kenneth Perrine, Thomas Seim, PNNL; Scott Budge, Utah State University

Development of A Percutaneous Optical Imaging System for Tracking Vascular Gene Expression: An Ultrasound-Guided Ex Vivo Feasibility Study ..684
Sourav Kar, Ananda Kumar, Xiaoming Yang, Johns Hopkins University

In Vivo Multi Lifetime Discrimination Using Time Domain Fluorescence Imaging ..688
Frederic Lesage, Alexander Belenkov, ART Recherches et Technologies Avancees Inc.

An Integrated Fibered Confocal Microscopy System for In Vivo And In Situ Fluorescence Imaging -- Applications to Endoscopy in Small Animal Imaging ..692
Aymeric Perchant, Georges Le Goualher, Magalie Genet, Bertrand Viellerobe, Frederic Berier, Mauna Kea Technologies

Sa_AM_P1: Image Registration
Evaluation of a Similarity-Based Elastography Technique using Four Similarity Metrics ..696
Michael Miga, Megan Rothney, Vanderbilt University; Chad Washington, University of Mississippi School of Medicine

Subpixel Registration in Renal Perfusion MR Image Sequence .. 700
Ying Sun, Jose' Moura, Department of Electrical and Computer Engineering, Carnegie Mellon University; Chien Ho, Department of Biological Sciences, Carnegie Mellon University

Local Feature Matching Using Entropic Graphs ..704
Huzefa Neemuchwala, Alfred Hero, Paul Carson, Charles Meyer, University of Michigan, Ann Arbor

2D-3D Vascular Registration Between Digital Subtraction Angiographic (DSA) And Magnetic Resonance Angiographic (MRA) Images708
Albert Chung, H.M. Chan, The Hong Kong University of Science and Technology; Simon Yu, The Prince of Wales Hospital; William Wells, Brigham and Women's Hospital, Harvard Medical School

Multi-Channel Registration of Diffusion Tensor Images Using Directional Information ..712
Gustavo Rohde, Sinisa Pajevic, Carlo Pierpaoli, National Institutes of Health

Ground Truth Data for Validation of Nonrigid Image Registration Algorithms ..716
Yi-Yu Chou, Oskar Skrinjar, Department of Biomedical Engineering, Georgia Institute of Technology
Model Based Symmetric Information Theoretic Large Deformation Multi-Modal Image Registration
Peter Lorenzen, Brad Davis, Sarang Joshi, University of North Carolina at Chapel Hill

A Unified Feature-Based Registration Method for Multimodality Images
Jie Zhang, Anand Rangarajan, University of Florida

Quadrature-Based Image Registration Method using Mutual Information
Clinton Fookes, Anthony Maeder, Queensland University of Technology

Differential Evolution with Powell's Direction Set Method in Medical Image Registration
Robert Dony, Xiaoyan Xu, University of Guelph

An Extendable Registration Similarity Metric for Anatomical Image Sequence Alignment
Rongkai Zhao, Michael Gabriel, Geneva Belford, University of Illinois at Urbana-Champaign

Surface Matching Algorithms for Computer Aided Reconstructive Plastic Surgery
Suchendra Bhandarkar, Ananda Chowdhury, Yarong Tang, Ernest Tonnier, University of Georgia; Jack Yu, Medical College of Georgia

Sa_AM_P2: Image Reconstruction & Restoration II

Symmetry-Based 3D Brain Reconstruction
Smadar Gefen, Yingli Fan, Louise Bertrand, Jonathan Nissanov, Drexel University

Penalized Likelihood Transmission Image Reconstruction: Unconstrained Monotonic Algorithms
Somesh Srivastava, University of Michigan, Ann Arbor; Jeffrey Fessler, EECS Dept., University of Michigan

A Geometric Approach to Parameter Estimation from Tomographic Data
Alexey Chernyavskiy, Ross Whitaker, University of Utah

Compact Representation of PET 3D System Response Matrices

Volterra-Type Nonlinear Image Restoration of Medical Imagery Using Principal Dynamic Modes
Synho Do, Vasilis Mamarelis, University of Southern California; Dae Shin, Jeong-Won Jeong, Tae-Seong Kim, Alfred E. Mann Institute for Biomedical Engineering

A Bayesian Approach to Image Restoration
Andreas Wrangsjö, Magnus Borga, Hans Knutsson, Medical Informatics

Robust Filtering Strategies for Soft Tissue Young's Modulus Characterization
Pengcheng Shi, Huafeng Liu, Hong Kong University of Science and Technology; Albert Sinusas, Yale University

Analysis of Spatial-Temporal Regularization Methods for Linear Inverse Problems from a Common Statistical Framework
Yiheng Zhang, Alireza Ghodrati, Dana Brooks, Northeastern University
New Method of Image Reconstruction from Projections..776
Artyom Grigoryan, The University of Texas at San Antonio; Shih-Chia Liu, EE Dept., University of Texas at San Antonio

An Imaging Method In Diffraction Tomography Based On The Topological Derivative...780
Gonzalo Feijoo, Sandia National Laboratories

Fast Spiral Fourier Transform for Iterative MR Image Reconstruction.............784
Michael Lustig, Jacob Tsaig, Jin Hyung Lee, David Donoho, Stanford University

An Adaptive Window Approach for Poisson Noise Reduction and Structure Preserving in Confocal Microscopy ...788
Alain Trubuil, INRA-MIA; Charles Kervrann, IRISA-INRIA Rennes / INRA-MIA

Sa_AM_P3: Image Analysis and Quality Assessment

Regional Lung Ventilation from Volumetric CT Scans Using Image Warping Functions ..792
Smita Krishnan, Kenneth Beck, Joseph Reinhardt, Katherine Carlson, Eric Hoffman, University of Iowa; Brett Simon, Johns Hopkins Med. Inst; Richard Albert, Denver Health Medical Center and University of Colorado

Search Space Partitioning Using Convex Hull and Concavity Features for Fast Medical Image Retrieval...796
Phillip Misna, Nikolay Sirakov, Northern Arizona University

Using Grey-Level And Shape Information for Decomposing Proteins In 3D Images ..800
Ida-Maria Sintorn, Swedish University of Agricultural Sciences, Centre for Image Analysis; Susana Mata, Rey Juan Carlos University, Department of Computer Science, Statistics and Telematics

Quantitative Analysis of Volumetric TPLSM Data...804
Agustin Ifarraguerri, Beverly Thompson, Science Applications International Corporation; Philbert Tsai, Beth Friedman, Chris Schaffer, Varda Lev-Ram, Roger Tsien, David Kleinfeld, University of California at San Diego; Jeff Squier, Colorado School of Mines

A Minimum Reliable Scale Selection In 3D Images ...808
Christopher Wyatt, Virginia Tech; Yaorong Ge, PointDx, Inc.

Enhanced Snake-Based Segmentation of Vocal Folds..812
Sonya Allin, John Galeotti, George Stetten, Carnegie Mellon University; Seth Dailey, Brigham and Women's Hospital

Image Enhancement by The Tensor Transform..816
Artyom Grigoryan, The University of Texas at San Antonio; Fatma Arslan, EE Dept., University of Texas at San Antonio

Trilateral Filtering for Biomedical Images..820
Wilbur C. K. Wong, Albert C. S. Chung, Department of Computer Science, The Hong Kong University of Science and Technology, HK; Simon C. H. Yu, Department of Diagnostic Radiology and Organ Imaging, The Prince of Wales Hospital, HK

Evaluation of Reproducibility for Perfusion Assessment of Tumors in MRI824
Edward Ashton, Seung Kim, VirtualScopics, LLC
Cardiac MR Image Segmentation: Quality Assessment of STACS828
Charnchai Pluempiwitwiryawej, Jose Moura, Electrical and Computer Engineering, Carnegie Mellon University; Yi-Jen Lin Wu, Chien Ho, Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University;

Model-Observer Based Quality Measures for Decompressed Medical Images ..832
Dunling LI, Murray Loew, George Washington University

Medical Software Control Quality Using the 3D Mojette Projector......................836
Jean-Pierre Guedon, Myriam Servieres, Nicolas Normand, IRCCyN - IVC Polytech’Nantes; Stephane Beaumont, Radiotherapy Dept, Hospital Center

Focal Cartilage Defect Progression Detection: Measurement of Precision and Variation in Natural Characteristics of Cartilage Thickness Maps Derived from 3D MRI Data ..840
Monica Barbu-McInnis, Jose Tamez-Pena, Saara Totterman, VirtualScopics

Sa_AM_P4: Functional Neuroimaging I

An Exploratory Approach to Modelling Effective Connectivity.......................844
Jagath Rajapakse, Kanyan Yang, Nanyang Technological University

Identification of A Large-Scale Functional Network In Functional Magnetic Resonance Imaging ..848
Pierre Bellec, Guillaume Marrelec, Vincent Perlberg, Saâd Jbabdi, Odile Jolivet, Mélanie Pélegrini-Issac, Habib Benali, INSERM, IFR 49; Julien Doyon, Université of Montreal

Selection of Spatially Independent Components to Explain Functional Connectivity In fMRI ..852
Vincent Perlberg, Pierre Bellec, Habib Benali, Guillaume Marrelec, Saâd Jbabdi, Inserm

Combining Voxel Intensity And Cluster Extent With A Permutation Test Framework..856
Satoru Hayasaka, VA SF Medical Center; Thomas Nichols, University of Michigan

Semi-Blind Deconvolution of Neural Impulse Response in Event-Related fMRI Using a Gibbs Sampler ..860
Salima Makni, Philippe Ciuciu, Jean Baptiste Poline, SHFJ/CEA; Jérôme Idier, IRCCyN/CNRS

Fusion of Simultaneous fMRI/EEG Data Based on the Electro-Metabolic Coupling..864
Pierre-Jean Lahaye, Jean-Baptiste Poline, CEA, IFR 49; Sylvain Bailliet, Line Garnero, LENA / CNRS, IFR 49

Reversible Jump Markov Chain Monte Carlo Signal Detection In Functional Neuroimaging Analysis..868
Ana Lukic, Miles Wernick, Yongyi Yang, Illinois Institute of Technology; Nikolas Galatsanos, University of Ioannina; Stephen Strother, University Minnesota and VA Medical Center

Analysis of Correlated Activity in fMRI Data by Artificial Neural Networks872
Marotesa Voultsidou, University of Crete; Silke Dodel, Service Hospitalier Frederic Joliot; Michael Herrmann, Goettingen University

An fMRI Activation Method Using Complex Data ...876
Daniel Rowe, Department of Biophysics, Medical College of Wisconsin; Brent Logan, Division of Biostatistics, Medical College of Wisconsin
Sa_AM_OC1: MRI - New Approaches and Methods

Reconstruction of 3D Dense Cardiac Motion From Tagged MR Sequences880
Hsun-Hsien Chang, José Moura, Yijen Wu, Kazuya Sato, Chien Ho, Carnegie Mellon University

Dynamic Range of Harmonic Phase Magnetic Resonance Imaging
(HARP-MRI) ..884
Vijay Parthasarathy, Jerry Prince, Johns Hopkins University; Moriel NessAiver, University of Maryland School of Medicine

Combined Tag Tracking and Myocardium Motion Reconstruction from Planar Tagged MR Image Data Without User-Defined Myocardial Contours..........888
Thomas Denney, Xiang Deng, Auburn University

Accelerated Parallel Magnetic Resonance Imaging by Adaptive K-Space Sampling ...892
Nitin Aggarwal, Yoram Bresler, University of Illinois, Urbana-Champaign

Motion Artifact Reduction in MRI through Generalized DFT896
Hans Knutsson, Mats Andersson, Magnus Borga, Medical Informatics, Dept. of Biomedical Engineering, Linköping University; Lars Wigström, Andreas Sigfridsson, Center for Medical Image Science and Visualization, Linköping University

Unique Planar Color Coding of Fiber Bundles And Its Application To Fiber Integrity Quantification..900
Mathias Schlueter, Jan Rexilius, Horst Hahn, Heinz Peitgen, MeVis; Bram Stieltjes, German Cancer Research Center

Sa_AM_OC2: Image Registration

4D Image Warping for Measurement of Longitudinal Brain Changes904
Dinggang Shen, University of Pennsylvania

Consistent Groupwise Non-Rigid Registration for Atlas Construction........908
K.K. Bhatia, J.V. Hajnal, B.K. Puri, A.D. Edwards, D. Rueckert, Imperial College London

A Simulated Charged Fluid for Deformable Models..912
Herng-Hua Chang, Daniel Valenti, University of California Los Angeles

Isolation and Minimization of Effects of Motion on fMRI Using Multiple Reference Images ..916
Rui Liao, Jeffrey Krolik, Duke University; Martin McKeown, University of British Columbia

Symmetric, Transitive, Geometric Deformation And Intensity Variation Invariant Nonrigid Image Registration ...920
Oskar Skrinjar, Georgia Institute of Technology; Hemant Tagare, Yale University

Non-Rigid Registration of Shapes Via Diffeomorphic Point Matching..........924
Hongyu Guo, Anand Rangarajan, University of Florida; S. Joshi, University of North Carolina; L. Younes, Johns Hopkins University
Sa_AM_OC3: Image Reconstruction II: Analytic
Directional Interpolation of Sparsely Sampled Cone-Beam CT Sinogram Data ..928
Matthias Bertram, Georg Rose, Dirk Schäfer, Philips Research Laboratories; Jens Wiegert, Til Aach, University of Lübeck

Exact 3D Cone-Beam Reconstruction From Projections Obtained Over a Wobble Trajectory on a C-ARM ..932
Krishnakumar Ramamurthi, Jerry Prince, Johns Hopkins University; Norbert Strobel, Siemens Medical Solutions

Gridding-Based Three-Dimensional Image Reconstruction From Projections With Arbitrary Directions ..936
Pawel Penczek, Robert Renka, The University of North Texas; Hermann Schomberg, Philips Research Laboratories

An Observer Model Evaluation of Simultaneous Reconstruction And Motion Estimation for Emission Tomography ..940
Zixiong Cao, David Gilland, University of Florida; Bernard Mair, North Carolina State University; Benjamin Tsui, Johns Hopkins University

Cerebral Aneurysm Hemodynamics Modeling from 3D Rotational Angiography ..944
Juan Cebral, Marcelo Castro, George Mason University; James Burgess, Christopher Putman, Inova Fairfax Hospital

Multiple-Image Computed Tomography ..948
Miles Wernick, Jovan Brankov, Dean Chapman, Mark Anastasio, Illinois Institute of Technology; Zhong Zhong, Brookhaven National Laboratory; Carol Muehleman, Jun Li, Rush Medical College

Sa_AM_OC4: Ultrasound Imaging
A Regularized Approach to Freehand Ultrasound Elastography of Breast Lesions ..952
Claire Pellot-Barakat, Michael Insana, Jerome Mai, Jean Tsou, Karen Lindfors, UC Davis; Frederique Frouin, Alain Herment, INSERM U494; Patrick Von Behren, Siemens Medical Solutions

Comparison of Doppler Ultrasound Flow Resistance Indices in Beta-Thalassemic, Sickle Cell Anemic and Control Mice ..956
Ekatherina Stoyanova, Guy Cloutier, University of Montreal Hospital Research Center; Marie Trudel, Institut de Recherches Cliniques de Montréal; F. Foster, Sunnybrook and Women’s College Health Sciences Centre

Oblique Needle Segmentation for 3D Trus-Guided Robot-Aided Transperineal Prostate Brachytherapy ..960
Zhouping Wei, Lori Gardi, Donal Downey, Aaron Fenster, Robarts Research Institute

Coded Pulse Excitation for Ultrasonic Strain Imaging ..964
Jie Liu, Michael Insana, University of California, Davis

3-D High Resolution Images of Ultrasonic Transmission Tomography Compared To Magnetic Resonance And Optical Images ..968
Jeong-Won Jeong, Dae Shin, Tae-Seong Kim, Chengcheng Huang, Alfred E. Mann Institute for Biomedical Engineering; Synho Do, Manbir Singh, Vasilis Marmarelis, University of Southern California
Spatial Angular Compounding For Ultrasound Elastography ..972
Udomchai Techavipoo, Quan Chen, Tomy Varghese, James Zagzebski, Ernest Madsen, University of Wisconsin-Madison

Sa_PM_P1: Functional Neuroimaging II

Detecting Cortical Activations from fMRI Data Using a Recursive
STAP Algorithm ...976
Elizabeth Thompson, Purdue University Fort Wayne; Scott Holland, Vincent Schmithorst, Cincinnati Children's Hospital Medical Center

Detection of Functional Networks In The Resting Brain ..980
Yong He, Yufeng Zang, Tianzi Jiang, Yingli Lu, National Laboratory of Pattern Recognition, Institute of Automation; Xuchu Weng, Laboratory for Higher Brain Function, Institute of Psychology

Independent Component Analysis of Complex-Valued Functional Magnetic
Resonance Imaging Data by Complex Nonlinearities ...984
Vince Calhoun, Institute of Living/Yale University; Tulay Adali, You Li, University of Maryland Baltimore County

Dimensionality and Degrees of Freedom in fMRI Data Analysis - A
Comparative Study ...988
Joakim Rydell, Magnus Borga, Hans Knutsson, Peter Lundberg, Linköping University

Selection of Temporal Models for Event-Related fMRI992
Sophie Donnet, Marc Lavielle, Université Paris-Sud; Philippe Cluciu, Jean-Baptiste Poline, SHFJ/CEA

Simultaneous Estimation of Kinetic Parameters and the Input Function
from DCE-MRI Data: Theory and Simulation ...996
Zhu Han, Z. Jane Wang, K. J. Ray Liu, University of Maryland, College Park; Yue Wang, Virginia Polytechnic Institute and State University

Solving for Motion and Activation Simultaneously in an fMRI Experiment
with Multiple Stimulus Conditions ...1000
Jeff Orchard, University of Waterloo; M. Atkins, Simon Fraser University

Relevance Vector Machine Analysis of Functional Neuroimages1004
Dimitris Tzikas, Aristeidis Likas, Nikolaos Galatsanos, University of Ioannina; Ana Lukic, Miles Wernick, Illinois Institute of Technology

Clustering-Based Framework for Comparing fMRI Analysis Methods1008

Comparison of Supervised And Unsupervised Linear Methods for
Recovering Task-Relevant Activity In EEG ..1012
An Luo, Paul Sajda, Adam Gerson, Columbia University

Sa_PM_P2: MRI Cardiac and Diffusion Imaging

Constrained Projection Reconstruction for Reduced Encoding MR Diffusion
Tensor Imaging ..1016
Yi Jiang, Edward Hsu, Duke University

Distortion Correction using Mutual Information in 3D Diffusion Tensor
Microscopy ...1020
Nilesh Mistry, Edward Hsu, Dept. of Biomedical Engineering, Duke University
A Level Set Method for Building Anatomical Connectivity Paths Between Brain Areas Using DTI ...1024
Saâd Jbabdi, Pierre Bellec, Guillaume Marrelec, Habib Benali, INSERM

Recovery of Intra-voxel Structure from HARD DWI ...1028
Yunmei Chen, Weihong Guo, Qingguo Zeng, Guojun He, Baba Vemuri, Yijun Liu, University of Florida

Statistical Analysis of a Nonlinear Estimator for ADC and Its Application to Optimizing Diffusion Weighting Factors ...1032
Zhizhou Wang, Baba Vemuri, Evren Ozarslan, Yunmei Chen, Thomas Mareci, University Of Florida

Fiber Orientation Mapping Using Generalized Diffusion Tensor Imaging1036
Evren Ozarslan, Baba Vemuri, Thomas Mareci, University of Florida

PDE Denoising of MR Diffusion Tensor Imaging Data ..1039
Bin Chen, Edward Hsu, Duke University

A New Method to Measure Cross Sectional Area of Vessels in MRI Image and Its Application in Stenosis Detection ...1043
Jing Jiang, Ming Dong, Wayne State University; E. Mark Haacke, MRI Institute

Improved Reconstruction of Dynamic Cardiac Perfusion MRI with Use of a Reference Frame ..1047
Dmitri Riabkov, Ed Di Bella, University of Utah

A Technique for Improving Tag Contrast Persistence in SSFP MRI Imaging Using Adaptive Flip Angle ...1051
El-Sayed Ibrahim, Nael Osman, Johns Hopkins University

Detecting the Onset of Myocardial Contraction for Establishing Inverse Electro-Mechanical Coupling in XMR Guided RF Ablation1055
Gerardo Sanchez-Ortiz, Raghavendra Chandrashekara, Imperial College London; Maxime Sermesant, Kawal Rhode, Reza Razavi, Derek Hill, Daniel Rueckert, Imperial College London

Spatial-Spectral Fat Suppression In Phase-Contrast Coronary Flow Imaging ...1059
Ersin Bayram, Robert Kraft, W. Hundley, Craig Hamilton, Wake Forest University Health Sciences

Reconstruction of the Heart Boundary from Undersampled Cardiac MRI using Fourier Shape Descriptors and Local Basis Functions1063
Simon Arridge, Iason Kastanis, UCL; Avi Silver, Derek Hill, Reza Ravazi, KCL

Simplified Gamma-Variate Fitting of Perfusion Curves1067
Antoinette Chan, Sarah Nelson, University of California, San Francisco

Sa_PM_P3: Optical Imaging and Microscopy

Contaminant Detection: Improving Template Matching Based Particle Selection for Cryo-Electron Microscopy ..1071
Yuaxin Zhu, Bridget Carragher, Clinton Potter, The Scripps Research Institute

Estimating Alignment Errors in Sets of Images ..1075
Philip Baldwin, Pawel Penczek, The University of Texas Houston Medical School

Dynamic Light Transport Through Scattering and Absorbing Media: A Study Based on the Radiative Transfer Equation ..1079
Rachid Elaloufi, University College London; Rémi Carminati, Jean-Jacques Greffet, Ecole Centrale Paris
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Time and Photon Efficient Method of 3D Microscopic Imaging</td>
<td>1083</td>
</tr>
<tr>
<td>Shuhong Li, Cha-Mei Tang, Creatv MicroTech, Inc.; Cha-Min Tang, University of Maryland</td>
<td></td>
</tr>
<tr>
<td>How Accurately Can a Single Molecule be Localized When Imaged</td>
<td>1087</td>
</tr>
<tr>
<td>Through an Optical Microscope?</td>
<td></td>
</tr>
<tr>
<td>Raimund Ober, Sripad Ram, Sally Ward, University of Texas Southwestern Medical Center</td>
<td></td>
</tr>
<tr>
<td>Confocal Microendoscope for Use in OB/GYN Applications</td>
<td>1091</td>
</tr>
<tr>
<td>Josh Udovich, Andrew Rouse, Angelique Kano, Shona Kroto, Arthur Gmitro, University of Arizona</td>
<td></td>
</tr>
<tr>
<td>Penalty/Modified Barrier Function Method for Diagnostic Imaging Using</td>
<td>1095</td>
</tr>
<tr>
<td>Area and Point Illumination Geometries in Fluorescence-Enhanced Optical Tomography</td>
<td></td>
</tr>
<tr>
<td>Ranadhir Roy, Anuradha Godavarty, Alan Thompson, Eva Sevick-Muraca, Texas A&M University</td>
<td></td>
</tr>
<tr>
<td>Contrast Enhancement and Artifact Reduction for Projected Index</td>
<td>1099</td>
</tr>
<tr>
<td>Computed Tomography</td>
<td></td>
</tr>
<tr>
<td>Adam Zysk, Daniel Marks, P Carney, Stephen Boppart, University of Illinois at Urbana-Champaign</td>
<td></td>
</tr>
<tr>
<td>Adaptive Finite Element Methods for Fluorescence Enhanced Frequency</td>
<td>1103</td>
</tr>
<tr>
<td>Domain Optical Tomography: Forward Imaging Problem</td>
<td></td>
</tr>
<tr>
<td>Amit Joshi, Eva Sevick-Muraca, Alan Thompson, Texas A & M University; Wolfgang Bangerth, University of Texas</td>
<td></td>
</tr>
<tr>
<td>Direct Reconstruction of Kinetic Parameter Images in Fluorescence Optical Diffusion Tomography</td>
<td>1107</td>
</tr>
<tr>
<td>Adam Milstein, Seungseok Oh, Kevin Webb, Charles Bouman, Purdue University</td>
<td></td>
</tr>
<tr>
<td>Amplified Bimorph Scanning Mirror for Optical Coherence Tomography</td>
<td>1111</td>
</tr>
<tr>
<td>Paul Patterson, Patrick Mills, Jason Zara, George Washington University</td>
<td></td>
</tr>
<tr>
<td>A Spatial Truncation Approach to the Analysis of Optical Imaging of the Retina in Humans and Cats</td>
<td>1115</td>
</tr>
<tr>
<td>Michael Abramoff, Young Kwon, Randy Kardon, University of Iowa Hospitals and Clinics; Daniel Ts'o, SUNY Health Sciences; Pete Soliz, Kestrel co; Simone Berriga, Kestrel co; Hingbin Li, SUNY</td>
<td></td>
</tr>
<tr>
<td>Precision, Repeatability And Validation of Indirect 3D Anthropometric Measurements With Light-Based Imaging Techniques</td>
<td>1119</td>
</tr>
<tr>
<td>Reyes Enciso, Emmanuel Alexandroni, Krystal Benyamein, Robert Keim, James Mah, University of Southern California</td>
<td></td>
</tr>
<tr>
<td>Enhancement of Microtubules In EM Tomography</td>
<td>1123</td>
</tr>
<tr>
<td>Ming Jiang, Qiang Ji, Rensselaer Polytechnic Institute; Bruce McEwen, Wadsworth Center</td>
<td></td>
</tr>
<tr>
<td>Sa_PM_P4: Detection, Classification and Image Retrieval</td>
<td></td>
</tr>
<tr>
<td>Feature Based Statistical Analysis of Structural MR Data for Automatic Detection of Focal Cortical Dysplastic (FCD) Lesions</td>
<td>1127</td>
</tr>
<tr>
<td>Siddharth Srivastava, Dirk Vandermeulen, Frederik Maes, Paul Suetsens, MIC/PSI/ESAT Katholieke University Leuven; Wim Van Paesschen, Dept. Of Neurology, University Hospital, Gasthuisberg; Patrick Dupont, Dept. Of Nuclear Medicine, University Hospital, Gasthuisberg</td>
<td></td>
</tr>
<tr>
<td>Full-Field Mammogram Analysis Based On The Identification of Normal Regions</td>
<td>1131</td>
</tr>
<tr>
<td>Yajie Sun, Charles Babbs, Edward Delp, Purdue University</td>
<td></td>
</tr>
</tbody>
</table>
Detection of Bronchovascular pairs on HRCT Lung Images Through Relational Learning
Mithun Prasad, Arcot Sowmya, School of Computer Science and Engineering

Automated Classification of Subcellular Patterns In Multicell Images Without Segmentation Into Single Cells
Kai Huang, Robert Murphy, Department of Biological Science & Center for Automated Learning and Discovery, Carnegie Mellon University

MR Signal Inhomogeneity Correction for Visual And Computerized Atherosclerosis Lesion Assessment
Olivier Salvado, David Wilson, Jasjit Suri, Case Western Reserve University; Claudia Hillenbrand, Shaoxiong Zhang, University Hospitals of Cleveland

Feature Selection for The Characterization of Ultrasonic Images of The Placenta Using Texture Classification
Pedro Linares, P. J. McCullagh, N. D. Black, University of Ulster; J. Dornan, Royal Jubilee Maternity Service

Multi-set Multi-temporal Canonical Analysis of Psoriasis Images
David Delgado Gomez, Allan Nielsen, Bjarne Ershboll, Informatics and Mathematical Modelling; Gabriela Maletti, The Royal Veterinary and Agricultural University, Department of Agricultural Sciences

Qualitative Asymmetry Measure for Melanoma Detection
Michele d’Amico, Massimo Ferri, University di Bologna; Ignazio Stanganelli, Istituto Oncologico Romagnolo

An Approximately Complete String Representation of Local Object Boundary Features for Concept-Based Biomedical Image Retrieval
Sennay Ghebreab, Erasmus MC, University Medical Center Rotterdam; Arnold Smeulders, University of Amsterdam

Mammogram Retrieval Based On Incremental Learning
Issam El Naqa, Washington University; Yongyi Yang, Nikolas Galatsanos, Miles Wernick, Illinois Institute of Technology

Sa_PM_OS1: Wavelets in Biomedical Imaging

Wavelet-Based fMRI Statistical Analysis and Spatial Interpretation: A Unifying Approach
Dimitri Van De Ville, Thierry Blu, Michael Unser, Swiss Federal Institute of Technology Lausanne

Penalized Partially Linear Models using Orthonormal Wavelet Bases with an Application to fMRI Time Series
Jalal Fadili, GREYC CNRS UMR 6072; Ed Bullmore, Brain Mapping Unit University of Cambridge

Multiscale Analysis of fMRI Data with Mixture of Gaussian Densities
Francois Meyer, Xilin Shen, University of Colorado at Boulder

Artifact Free Image Denoising with Morlet Integrated Wavelets
Peter Heinlein, Image Diagnost GmbH

Wavelet Analysis of Gene Expression (WAGE)
Federico Turkheimer, Dawn Duke, Linda Moran, Manuel Graeber, Imperial College London

Fusion of Brushlet and Wavelet Denoising Methods for Nuclear Images
Andrew Laine, Elsa Angelini, Y. Jin, P. Esser, R. Van Heertum, Columbia University
Fast Multiresolution Photon-Limited Image Reconstruction

Rebecca Willett, Rice University; Robert Nowak, University of Wisconsin

Sa_PM_OS2: Recent Advances in MRI: Methodologies and Applications

Fast-Scan Imaging

Craig Meyer, University of Virginia

Parallel Imaging: System Design and Limitations

Steven Wright, Mary McDougall, Krishna Kurpad, David Brown, Dept. of Electrical Engineering, Texas A&M University

Parallel Imaging: Some Signal Processing Issues and Solutions

Zhi-Pei Liang, Dan Xu, Lei Yuan, University of Illinois at Urbana-Champaign; Lei Ying, University of Wisconsin-Milwaukee

Technical Challenges in Functional Neuroimaging

Douglas Noll, University of Michigan

Cardiac MRI

Leon Axel, NYU School of Medicine

Triple Quantum Filtered Sodium MRI of Primary Brain Tumors

Fernando Boada, Denise Davis, Kevin Walter, Alejandro Torres-Trejo, Douglas Kondziolka, Walter Bartynski, Frank Lieberman, University of Pittsburgh

Sa_PM_OS3: Image Formation and Analysis in Microscopy

Neurite Tracing in Fluorescence Microscopy Images using Ridge Filtering and Graph Searching: Principles and Validation

Erik Meijering, Erasmus MC - University Medical Center Rotterdam; Mathews Jacob, J.-C. Floyd Sarria, Pascal Steiner, Harald Hirling, Michael Unser, Swiss Federal Institute of Technology Lausanne

A Deconvolution Method for Confocal Microscopy with Total Variation Regularization

Nicolas Dey, Laure Blanc-Feraud, Josianne Zerubia, INRIA/IS; Christophe Zimmer, Jean-Christophe Olivo-Marin, Institut Pasteur; Zvi Kam, Weizmann Institute of Science

Quantitative Imaging: How to Measure Size Features in Digitized Images

Lucas van Vliet, Piet Verbeek, Ian Young, Delft University of Technology

On the Feasibility of Axial Tracking of Fluorescent Nano-Particles Using a Defocusing Model

Nadja Subotic, Dimitri Van De Ville, Michael Unser, Swiss Federal Institute of Technology Lausanne

Detection and Tracking of Rolling Leukocytes from Intravital Microscopy

Scott Acton, Nilanjan Ray, University of Virginia

Interacting Multiple Model Based Method to Track Moving Fluorescent Biological Spots

Jean-Christophe Olivo-Marin, Auguste Genovesio, Bo Zhang, Institut Pasteur

Cell-Based Screening for Function

Zvi Kam, Tal Shay, Suha Naffar-Abu-Amara, Yael Paran, Eli Zamir, Yuvalal Liron, Benjamin Geiger, Weizmann
Sa_PM_OC4: Shape Analysis

Differentiable Minimin Shape Distance For Incorporating Topological Priors in Biomedical Imaging
Yonggang Shi, William Karl, Boston University

Representing Multi-Figure Anatomical Objects
Qiong Han, Conglin Lu, Shawn Liu, Stephen Pizer, Sarang Joshi, Andrew Thall, University of North Carolina, Chapel Hill

Bone Model Morphing for Enhanced Surgical Visualization
Kumar Rajamani, Martin Styner, M. E. Müller Institute for Surgical Technology and Biomechanics; Sarang Joshi, Medical Image Analysis Group, University of North Carolina, Chapel Hill

Compact Support Radial Basis Functions for Soft Tissue Deformation
Mark Wachowiak, Xiaogang Wang, Aaron Fenster, Terry Peters, Robarts Research Institute

Simultaneous Recovery of Left Ventricular Shape and Motion Using Meshfree Particle Framework
Pengcheng Shi, Huafeng Liu, Alexandra Wong, Hong Kong University of Science and Technology; Albert Sinusas, Yale University

Population Classification Based on Structural Morphometry of Cortical Sulci
Edouard Duchesnay, Jean-François Mangin, Alexis Roche, Denis Rivière, Dimitri Papadopoulos-Orfano, Yann Cointepas, SHFJ/CEA

An Automated Method for Finding Curves of Sulcal Fundi On Human Cortical Surfaces
Xiaodong Tao, Jerry Prince, The Johns Hopkins University; Christos Davatzikos, University of Pennsylvania

Volumetric Harmonic Brain Mapping
Xianfeng Gu, University of Florida; Tony Chan, University of California Los Angeles; Paul Thompson, LONI, University of California Los Angeles Medical School; Shing-Tung Yau, Harvard University; Yalin Wang, Mathematics Department

Predictive Modeling of Anatomic Structures Using Canonical Correlation Analysis
Tianming Liu, Dinggang Shen, Christos Davatzikos, University of Pennsylvania

Statistical Surface-Based Morphometry Using a Non-Parametric Approach
Dimitrios Pantazis, Richard Leahy, Signal and Image Processing Institute, Electrical Engineering, University of Southern California; Thomas Nichols, Department of Biostatistics, University of Michigan; Martin Styner, Institute for Surgical Technology and Biomechanics, University of Bern

Su_AM_P1: Image Segmentation II

Automatic Delimitation of Lung Fields on Chest Radiographs
Ana Mendonça, Jorge Silva, Aurélio Campilho, INEB - Instituto de Engenharia Biomédica

Segmentation and Separation of Point Like Fluorescent Markers in Digital Images
Patrick Karlsson, Joakim Lindblad, Centre for Image Analysis
A Supervised Method for Calculation of Perfusion/Diffusion Mismatch
Volume In Acute Stroke ...1295
Olaniiyi Osuntokun, Karmen Yoder, Askiel Bruno, Indiana University School Of Medicine; Judy James,
Indiana University- Purdue University, Indianapolis; Evan Morris, Indiana University- Purdue University,
Indianapolis; Indiana University School Of Medicine

Domain Partitioning Level Set Surface for Topology Constrained
Multi-Object Segmentation ..1299
Gary Ho, Pengcheng Shi, Hong Kong University of Science and Technology

Breast Mass Segmentation on Digital Mammograms by a Combined
Deterministic Annealing Method ...1303
AiZe Cao, Qing Song, XuLei Yang, Sheng Liu, Nanyang Technological University

A Fuzzy C-Means (FCM) Based Algorithm for Intensity Inhomogeneity
Correction and Segmentation of MR Images ..1307
Weijie Chen, Maryellen Giger, The University of Chicago

An Adaptive Fuzzy Segmentation of Intravascular Ultrasound Images1311
Esmeraldo Santos Filho, Akira Tanaka, Takahiro Iwamoto, Tohoku University; Makoto Yoshizawa,
Information Sinergy Center; Yoshifumi Saijo, Tomoyuki Yambe, Shin-ichi Nitta, Institute of Development,
Aging and Cancer

Segmentation of Ultrasonic Images Using Learning Vector Quantization
Network ...1315
Michael Rychagov, Yuri Masloboev, Stanislav Ilin, Moscow Institute of Electronic Technology (Technical
University)

Segmentation of Arterial Geometry From Ultrasound Images Using Balloon
Models ..1319
Chaoquan Chen, Tamie Poepping, Jason Beech-Brandt, Steven Hammer, Paul Allan, William Easson,
Peter Hoskins, University of Edinburgh; Richard Baldock, Bill Hill, MRC Human Genetics Unit

Comparison of Ventricular Geometry for Two Real Time 3D Ultrasound
Machines With Three Dimensional Level Set ...1323
Andrew Laine, Elsa Angelini, Ryo Otsuka, Sunishi Homma, Columbia University

Sequential vs Simultaneous Stochastic Segmentation1327
Eilat Vardi-Gonen, Gabor Herman, The Graduate Center, CUNY

Su_AM_P2: EEG, MEG and Novel Imaging Modalities

Single-Cell Level Continuous Observation of Microorganism Galvanotaxis
Using High-Speed Vision ..1331
Naoko Ogawa, Koichi Hashimoto, Masatoshi Ishikawa, University of Tokyo; Hiromasa Oku, PRESTO, JST

EEG Cortical Imaging: A Vector Field Approach for Laplacian Denoising
and Missing Data Estimation ...1335
Teodor Alecu, Sviatoslav Voloshynovskiy, Thierry Pun, University of Geneva

Line-source Modeling and Estimation with Magnetoencephalography1339
Imam Yetik, Arye Nehorai, University of Illinois at Chicago; Carlos Muravchik, Universidad Nacional de
La Plata, Argentina; Jens Haukelsen, Neurological University Hospital, Philosophenweg 3D, Germany
Data-Driven Cortex Parcelling : A Regularization Tool for the EEG/MEG Inverse Problem
Jean Daunizeau, Habib Benali, Imagerie Médicale Quantitative (U494), INSERM, Paris, France; Jeremie Mattout, Institute of Cognitive Neurosciences, London, UK; Jean-Marc Lina, Bernard Goulard, CRM, Montreal, Canada

Frequency Dispersion of Wave Velocity in Arterial Vessels
Xiaoming Zhang, Mostafa Fatemi, James Greenleaf, Mayo Clinic College of Medicine

Development of Microwave Tomography for Functional Cardiac Imaging
Serguei Semenov, Vitaly Posukh, Alexander Bulyshev, Thomas Williams, Paula Clark, Carolinas Medical Center; Yuri Sizov, Troitsk Institute of Innovative and Thermonuclear Research; Boris Voinov, Scientific Research Institute of Experimental Physics

Nanoparticle-Enhanced Proton Computed Tomography: A Monte Carlo Simulation Study
Reinhard Schulte, Vladimir Bashkirov, Loma Linda University Medical Center; David Williams, Hartmut Sadrozinski, University of California at Santa Cruz; Tianfang Li, Zhengrong Liang, State University New York Stony Brook; Steven Peggs, Todd Satogata, Brookhaven National Laboratory

Better Conditioning the MEG/EEG Inverse Problem: The Multivariate Source Prelocalization Approach
Jeremie Mattout, University College London; Jean Daunizeau, Centre de Recherches Mathematiques; Melanie Pelegrini-Issac, U483 INSERM; Line Garnero, UPR640 CNRS; Habib Benali, U494 INSERM

microRT: A Conformal Small Animal Irradiator
Daniel Low, Sasa Mutic, Perry Grigsby, Milos Vicic, Joseph Deasy, Andrew Hope, Washington University

Microwave Breast Imaging with an Under-Determined Reconstruction Parameter Mesh
Paul Meaney, Qianqian Fang, Margaret Fanning, Sarah Pendergrass, Timothy Raynolds, Colleen Fox, Keith Paulsen, Dartmouth College

Su_AM_P3: PET, SPECT and X-ray Imaging
Prompt Gamma-Ray Imaging for Small Animals
Robin Gardner, Libai Xu, North Carolina State University

Volumetric Micro-CT System for In Vivo Microscopy
Cristian Badea, Laurence Hedlund, Charles Wheeler, Wilfried Mai, G. Johnson, Duke University Medical Center

A Likelihood-Based Framework for Quantification of Brain Receptor PET Studies in The Pixel Domain
Z. Jane Wang, Zhu Han, K. J. Ray Liu, UMD, CP; Zsolt Szabo, Johns Hopkins University Medical Institution; József Varga, University of Debrecen, Hungary

Effect of Detector Scatter Restoration on Image Spatial Resolution and Partial Volume
Otman Sarrhini, Simon-Alexandre Lhussier, M'hamed Bentourkia, Université de Sherbrooke
Can the Specificity of MRI Breast Imaging be Improved by Fusing 3D MRI Volume Data Sets with FDG PET?
Marilyn E. Noz, Linda Moy, Fabio Ponzo, Elissa Kramer, NYU; Gerald Maguire Jr, Royal Institute of Technology;

Lesion Quantification In Dual-Modality Mammography Using Expectation Maximization With Attenuation Correction
Heng Li, Yibin Zheng, Mitali J. More, Patricia J. Goodale, Mark B. Williams, University of Virginia

Application of a PET Device with 1.5 mm FWHM Intrinsic Spatial Resolution to Breast Cancer Imaging
Irving Weinberg, David Beylin, Steve Yarnall, Edward Anashkin, Pavel Stepanov, Sergei Dolinsky, Naviscan PET System

Assessing The Similarity of Spatial Configurations Using Distance Differences and Bending Energy: Application To Chromosomal Interphase Arrangements In HeLa Cell Clones
Juntao Gao, Roland Eils, German Cancer Research Center; Daniela Köhler, Irina Solovei, Thomas Cremer, Ludwig Maximilians University; Julian Mattes, German Cancer Research Center and Ludwig Maximilians University

Algorithm to Extend Reconstruction Field-of-View
Jiang Hsieh, Ed Chao, Jean-Baptiste Thibault, Brian Grekowicz, Amy Horst, Scott McOlash, Tom Myers, GE Medical Systems

A New, Fast, Relaxation-Free, Convergent, Hessian-based, Ordered-Subsets Algorithm for Emission Tomography
Ing-Tsung Hsiao, Chang-Gung University, Taiwan; Anand Rangarajan, Department of Computer and Information Science and Engineering, University of Florida; Parmeshwar Khurd, Gene Gindi, Department of Electrical and Computer Engineering, SUNY at Stony Brook

Optimized Radiographic Spectra for Digital Subtraction Angiography in the Mouse
Ming De Lin, Cristian Badea, G. Johnson, Duke University

Tomographic Reconstruction From an Uncontrolled Sensor Trajectory
Chris Baker, Christian Debrunner, William Hoff, Jamon Bowen, Colorado School of Mines; Mohamed Mahfouz, University of TN, Oak Ridge National Laboratories

A Hierarchical Algorithm for Fast Backprojection in Helical Cone-Beam Tomography
Jeffrey Brokish, Yoram Bresler, University of Illinois at Urbana-Champaign

Fast Reconstruction for Unconstrained Cone Beam Tomosynthesis
Beilei Wang, Kenneth Barner, University of Delaware; Denny Lee, Direct Radiography Corporation

Noise Analysis for Diffraction Enhanced Imaging
Miles Wernick, Jovan Brankov, Alejandro Saiz-Herranz, Illinois Institute of Technology

Effect of Scan Duration on Lesion Detectability in PET Oncology Imaging
Phillip Cheng, Paul Kinahan, Jae-Seung Kim, Thomas Lewellen, University of Washington; Claude Comtat, Service Hospitalier Frédéric Joliot; Carole Lartizien, ANIMAGE-CERMEP
Su_AM_P4: Non-Rigid Registration

2-D Electrophoresis Gel Registration Using Feature Matching1436
Mike Rogers, Jim Graham, University of Manchester; Robert Tonge, Astra Zeneca

Intermodality Nonrigid Breast-Image Registration ..1439
Ioana Coman, Department of Mathematics and Computer Science, Ithaca College; Andrzej Krol, David Feiglin, Wei Li, Department of Radiology, SUNY Upstate Medical University; Edward Lipson, Department of Physics, Syracuse University; James Mandel, Department of Civil and Environmental Engineering, Syracuse University; Karl Baum, Mehmet Unlu, Department of Electrical Engineering and Computer Science, Syracuse University;

Nonrigid Registration of Medical Image by Maxwell Model of Viscoelasticity ..1443
Songyuan Tang, Tianzi Jiang, Institute of Automation, Chinese Academy of Sciences

Evaluation of Cardiac PET-MRI Registration Methods Using a Numerical Breathing Phantom ..1447
Mika Pollari, Timo Mäkelä, Helsinki University of Technology; Jyrki Löfjönen, VTT Information Technology; Nicoleta Pauna, Patrick Clarysse, CREATIS INSA; Anthonin Reilhac, McGill University;

Elastic Registration of Gel Electrophoresis Images Based on Landmarks and Intensities ...1451
Pascal Cathier, Siemens Medical Solutions; Stefan Woerz, Karl Rohr, International University in Germany

Fully Elastic Multi-Modality Image Registration Using Mutual Information....1455
Bilge Karacali, University of Pennsylvania

Multi-Modal Non-Rigid Registration Using a Stochastic Gradient Approximation ..1459
Mathieu De Craene, Aloys du Bois d'Aische, Benoît Macq, Université Catholique de Louvain; Florian Kipfmueller, Neil Weisenfeld, Steven Haker, Simon Warfield, Brigham and Women's Hospital

Deformable Registration of Male Pelvises in CT Images......................................1463
Yiqiang Zhan, Dinggang Shen, University of Pennsylvania; Russell Taylor, Johns Hopkins University

Su_AM_OS1: Optical Tomographic Imaging

Optical Tomographic Imaging of Small Tissue Volumes: From Rat Brains to Human Finger Joints ..1467
Andreas Hielscher, A.D. Klose, A. Bluestone, J.M. Lasker, B. Moa-Anderson, J.M. Masciotti, G. Abdoulaev, Columbia University; A. Scheel, Georg-August-University; M. Stewart, SUNY Downstate Medical Center; U. Netz, J. Beuthan, Charité-University Medicine

Image-Quality Assessment in Optical Tomography ..1471
Matthew Kapinski, Eric Clarkson, The University of Arizona

Fluorescence Molecular Tomography: New Detection Schemes for Acquiring High Information Content Measurements ...1475
Vasilis Ntziachristos, Edward Graves, Ralf Schultz, Jorge Ripoll, Harvard University

High-Resolution Functional Photoacoustic Tomography1478
Lihong Wang, Xueding Wang, Geng Ku, George Stoica, Texas A&M University

Fluorescence-Enhanced Optical Imaging and Tomography for Cancer Diagnostics ..1482
Eva Sevick-Muraca, Texas A&M University
Su_AM_OS2: Methods for Functional Brain Mapping

Probabilistic ICA for fMRI ...1490
Christian Beckmann, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain

Subspace Models for Functional MRI Data Analysis1494
Ola Friman, Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School

New Procedures for False Discovery Control1498
Christopher Genovese, Carnegie Mellon University; Elisha Merriam, University of Pittsburgh

Effective Connectivity Analysis: Testing Commonalities and Differences
Across Multi-Subjects' Network by State-Space Model1502
Moon-ho Ho, McGill University

A Closed-Form Method for Improving Inter-Subject Coherence in Diffusion
Tensor Magnetic Resonance Imaging ..1506
Nicholas Lange, Harvard University; Derek Jones, Carlo Pierpaoli, National Institutes of Health

SUMA: An Interface for Surface-Based Intra- and Inter-Subject Analysis
with AFNI ...1510
Ziad Saad, Richard Reynolds, Robert Cox, Scientific and Statistical Computing Core, National Institute of Mental Health; Brenna Argall, Shruti Japee, Laboratory of Brain and Cognition, National Institute of Mental Health

Su_AM_OC3: Novel Imaging Modalities

Magneto-Optical Detection of Weak Magnetic Fields1512
J Talmadge, J Eden, J Gao, University of Illinois at Urbana-Champaign

Micro-CT System for Small Animal Imaging with Ultrafast Laser-Based
X-Ray Source ..1516
Andrzej Krol, Charles Chamberlain, SUNY Upstate Medical University; Jean-Claude Kieffer, Liming Chen, INRS-Énergie et Matériaux, Université du Québec; Remy Toth, INRS-Énergie et Matériaux, Université du Québec; Ioana Coman, Department of Computer Science and Mathematics, Ithaca College; Edward Lipson, R.E. Kincaid, Department of Physics, Syracuse University

Bionano-Imaging Analysis in Cell Behavior Study1521
Pushkar Mukewar, Georgia Institute of Technology; May Wang, School of Biomedical Engineering, Georgia Institute of Technology and Emory University

Evaluation of Arterial Endothelial Function Using Transit Times of Artificially Induced Pulses ...1525
Jonathan Maltz, Thomas Budinger, Lawrence Berkeley National Lab

Hyperspectral Imaging of Biological Targets: The Difference A High Resolution Spectral Dimension And Multivariate Analysis Can Make ..1529
Jerilyn Timlin, David Haaland, Michael Sinclair, Monica Manginell, Susan Brozik, Sandia National Labs; M. Juanita Martinez, Margaret Werner-Werner-Washburne, John Guzowski, University of New Mexico

Developing Metrology for Tissue Engineering: Collinear Optical Coherence and Confocal Fluorescence Microscopies ...1533
Joy Dunkers, Forrest Landis, Marcus Cicerone, James Cooper, Newell Washburn, NIST
Su_AM_OC4: Image Guided Surgery & Therapy

Radiofrequency Thermal Ablation: 3D MR-histology Correlation for Localization of Cell Death in MR Lesion Images ..1537
Michael Breen, Roe Lazebnik, Jonathan Lewin, Case Western Reserve University; Sherif Nour, University Hospitals of Cleveland; David Wilson, Case Western Reserve University

A Segmentation-Based Automatic Navigation Technique for Virtual Endoscopy ..1541
Bruno Carvalho, University of Pennsylvania; Gabor Herman, The Graduate Center - CUNY

Refining the Sonic Flashlight for Interventional Procedures1545
Wilson Chang, George Stetten, University of Pittsburgh; Nikhil Amesur, Michael Horowitz, University of Pittsburgh Medical Center

Assessment of Radiation Mediated Gene Therapy Via Multi-Modality Imaging ..1549
Chad Haney, Adrian Parasca, Kazuhiro Ichikawa, Martyna Elas, Marta Zamora, Xiaobing Fan, Gregory Karczmar, Howard Halpern, Charles Pelizzari, University of Chicago

Application of Support Vector Clustering to the Visualization of Medical Images ..1553
Cristina Garcia, Jose Moreno, Universidad Central de Venezuela

Detection of The Functional Knee Center Using The Mean Helical Axis: Application In Computer Assisted High Tibial Osteotomy1557
J. Daniel Gil, Chafiaâ Hamitouche, Christian Roux, LaTIM - INSERM and ENST Bretagne; Gwenaël Guillard, LaTIM - INSERM; Eric Stindel, LaTIM - INSERM and Hôpital de la Cavale Blanche