
ORJ�0HO�
ILOWHUEDQN�
IUDPHV

0XOWL�7DVN�/HDUQLQJ

P
HDQ 3UHGLFWLRQV

N�PHDQV��
N�PHDQV��
N�PHDQV��
N�PHDQV���

'
�%
/670

Figure 2: Multi-task deep BLSTM-RNN architecture.

10 clusters. As can be seen, this approach has a clipping effect
on extreme continuous values. Table 1 lists the CCC and RMSE
between the original and reconstructed time series (concatena-
tion of all training and development utterances). High CCC and
low RMSE can be achieved with as few as 4 clusters, demon-
strating the potential of this discretization approach.

4.2. Multi-Task Deep BLSTM-RNN Classifier

After discretization, each continuous arousal/valence value is
converted to four discrete class labels corresponding to the four
k-means clustering configurations. We employ a multi-task
BLSTM-RNN architecture (Figure 2) to model these four la-
bels jointly, motivated by prior work demonstrating that MTL
can improve performance if the component tasks are closely re-
lated [23–26]. Each task produces a sequence of class labels,
which can be mapped to fixed arousal/valence values based on
the cluster means. The final output of the network is the avera-
ged arousal/valence values across all tasks. This helps increase
the resolution and smoothness of the reconstructed labels, but
will tend to push them toward more moderate values.

We train the network to minimize the total cost-sensitive CE
(CCE) loss across all tasks. The target probability distributions
are encoded as one-hot vectors (1 at the correct class index, 0
everywhere else), which help simplify the loss function:

LCCE = −
T∑

t=1

F∑

f=1

C(ytf , ltf ) log ytf
(ltf ) (6)

where T is the number of tasks, F is the total number of fe-
ature frames, C is the cost function, ytf is the model’s output
probability distribution for frame f and task t, ltf is the correct
class index for frame f and task t, and ytf

(ltf ) is the output
probability of the correct class for frame f and task t. In re-
gular CE loss, the cost function C is simply the constant 1. In
our work, we leverage the fact that classes are spatially related
as they correspond to different levels of arousal/valence. We
use a cost function that places more weight on frames whose
prediction is farther from the correct class label:

C(ytf , ltf ) = 1 +
| argmaxi ytf

(i) − ltf |
Nt

(7)

where Nt is the number of classes in task t. We found that CCE
led to more stable training compared to regular CE.

Training deep BLSTM-RNN on small datasets is challen-
ging. We found that the following choices were crucial for this
task. One, we train the network using the Adam optimizer [27]
with a minibatch size of one utterance and full Backpropagation
Through Time (BPTT). Two, we employ a 2-stage early stop-
ping approach. In the first stage, the network is trained for an
initial 20 epochs with a 0.002 learning rate, and the best model
parameters (measured in CCC on the development set) are sa-
ved. In the second stage, the learning rate is halved after every

epoch if the development CCC does not improve. This con-
tinues until the learning rate drops below 0.00001 or the total
epochs exceed 40. This approach is especially important for va-
lence, which takes longer to converge than arousal. Three, we
scale the model output by the inverse of the class priors compu-
ted from training labels, followed by renormalization. This is a
common technique for handling unbalanced class distributions.

We fix the BLSTM-RNN layer size at 160 (80 for forward,
80 for backward). The number of BLSTM-RNN layers (3, 4,
or 5) and L2 regularization weight (0.0 or 0.00002) are cross-
validated based on the development CCC. To help reduce trai-
ning variation, each hyperparameter combination is run three
times with different random seeds. The averaged prediction
across these three runs is used for final testing and validation.

4.3. Emotion Decoding

The output of each task in our BLSTM-RNN is a sequence of
probability distributions over classes. The end goal is to find a
sequence of classes, which we can use to reconstruct the time
series through the cluster means. The simplest way to achieve
this is to select the class index with the highest probability for
each frame. However, this approach does not take advantage
of the fact that the label sequence is slow-moving; as a re-
sult, it may lead to erratic label transitions. Meng and Bianchi-
Berthouze made a similar observation and tackled the decoding
problem as finding the best path through a 2-state HMM [11].

We adopt this idea and model each class as a HMM state.
The transition probabilities between states govern the short-
term temporal property of the output sequence; they can be es-
timated from the training labels. We further extend this idea by
incorporating an emotion “language model” to control the long-
term temporal patterns of the label sequence. Each frame can
be thought of as belonging to a larger emotion region. Hence,
the frame labels define a sequence of regions, with each region
spanning multiple frames. In this work, we define a region sim-
ply as a segment of frames belonging to the same class (i.e.,
HMM state). Let B(l) be a function that takes as input a se-
quence of frame labels l and collapses identical adjacent labels
to produce a sequence of region labels. The emotion decoding
problem1 can then be formulated as:

l∗ = argmax
l

AM(l) + αLM(B(l)) (8)

where l is iterated over the set of all possible frame label se-
quences, AM and LM are the acoustic and language model
scores, respectively, and α is the LM weight. For a frame label
sequence l = (l1, . . . , lF ), the AM score can be computed as:

AM(l) =
F∑

f=1

log yf
(lf ) +

F−1∑

f=1

logP (lf+1|lf ) (9)

where yf
(lf ) is the deep BLSTM-RNN’s output at frame f for

label lf , and P (lf+1|lf ) is the probability of transitioning into
lf+1 given the previous label lf . For LM , we employ an n-
gram model computed from training and development data.

After BLSTM-RNN training, we sweep over different n-
gram language model types (bigram or trigram) and α values
(0, 2, . . . , 14). The best configuration in terms of development
CCC is used for final testing and validation.

1In practice, this intractable problem is solved using beam search.

1110


