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ABSTRACT

Speech contains patterns that can be altered by the mood of an in-
dividual. There is an increasing focus on automated and distributed
methods to collect and monitor speech from large groups of patients
suffering from mental health disorders. However, as the scope of
these collections increases, the variability in the data also increases.
This variability is due in part to the range in the quality of the de-
vices, which in turn affects the quality of the recorded data, neg-
atively impacting the accuracy of automatic assessment. It is nec-
essary to mitigate variability effects in order to expand the impact
of these technologies. This paper explores speech collected from
phone recordings for analysis of mood in individuals with bipolar
disorder. Two different phones with varying amounts of clipping,
loudness, and noise are employed. We describe methodologies for
use during preprocessing, feature extraction, and data modeling to
correct these differences and make the devices more comparable.
The results demonstrate that these pipeline modifications result in
statistically significantly higher performance, which highlights the
potential of distributed mental health systems.

Index Terms— Bipolar Disorder, Mood Modeling, Mobile
Health, Speech Analysis

1. INTRODUCTION

Bipolar disorder (BP) is characterized by swings in mood between
mania, or heightened mood, and depression, or lowered mood. BP
is pervasive, affecting 4% of people in the United States [1]. Both
mania and depression profoundly impact the behavior of affected
individuals, resulting in potentially devastating economic, social,
and professional consequences. The current treatment paradigm
involves routine monitoring of individuals through regular clinical
visits. However, there are insufficient resources to ensure that all
individuals with BP have access to this type of care [2]. This scarcity
of available care points to the need for novel approaches to regular
mood monitoring and the potential of computational approaches to
serve as auxiliary methods. In this paper, we present an investigation
into automatic speech analysis using mobile phone conversations as
a way to predict mood, as well as the complications that arise from
the diversity of real world recordings.

Research has demonstrated that speech patterns are affected by
mood and contribute to accurate clinical assessments [3]. For ex-
ample, both the Hamilton Depression Scale (HAMD) [4] and Young
Mania Rating Scale (YMRS) [5] use clinical observations of speech
to determine the severity of depression or mania [4, 5]. There is
an opportunity to discover how speech cues can be automatically
processed to augment objective measures available in clinical as-
sessments. Mobile phones provide an effective platform for natu-
rally monitoring these speech cues and have shown promise for BP
[6, 7, 8]. However, changes in recording quality between different

types of phones can severely decrease the predictive capabilities of
a system. These include clipping, loudness, and background noise.

Much mood speech research has been centered around identify-
ing speech features for recognizing depression. Among these, are
pitch, energy, rhythm, and formants [9, 10, 11, 12, 13, 14]. Short
pauses and increased pitch have been correlated with mania [10, 12,
14, 15, 16]. However, much of the work in identifying speech associ-
ated with mania has focused on differentiating it from schizophrenia
and cannot be directly applied [17, 18]. Many mood related studies
collected their speech from controlled environments [10, 12, 13] or
used a single type of recording device [7, 8, 19] and do not necessar-
ily reflect the variations in background noise and microphone quality
present in real world recordings. As such, their models would be dif-
ficult to apply to a widely distributed mobile health system.

In this paper, we focus on one of the challenges associated with
real-world distributed mood recognition: variability in recording.
We examine the differences between the two phones used in this
study and analyze preprocessing and modeling methods that allow
us to build models of mood across the database as a whole. These
methods include declipping [20], noise-robust segmentation [21],
feature normalization [13], and multi-task learning [22]. We provide
evidence that mood-related changes in speech are captured in this
model using the structured assessment calls captured from different
phone types. Please see Figure 1 for a system overview.

The novelty of our approach is the investigation into acoustic
variations caused by recording with different types of phones and the
preprocessing and modeling changes necessary to detect mood under
these conditions. Our results suggest that this pipeline of methods
including preprocessing, feature extraction, and data modeling can
effectively increase the performance of these types of mixed device
systems. The results show a significant increase in performance from
AUCs of 0.57±0.25 and 0.64±0.14 for manic and depressed, respec-
tively, to 0.72±0.20 and 0.75±0.14, highlighting the importance of
proper processing of acoustic data from multiple sources.

2. PRIORI DATASET

The PRIORI Dataset is an ongoing collection of smartphone con-
versational data (reviewed and approved by the Institutional Review
Board of the University of Michigan, HUM00052163). The par-
ticipants are recruited from the HC Prechter Longitudinal Study of
Bipolar Disorder at the University of Michigan [23]. The inclusion
criteria are a diagnosis of rapid-cycling BP, type I or II. The exclu-
sion criteria are a history of substance abuse and neurological illness.

Participants are enrolled for six to twelve months and are pro-
vided with an Android smartphone with the secure recording appli-
cation (PRIORI app) installed. The app runs in the background and
turns on whenever a phone call is made, recording only the partici-
pant’s side of the dialog. The speech is encrypted in real-time, stored
on the phone, and then uploaded to a HIPAA-compliant server.
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Fig. 1: Audio pipeline divided into three stages of preprocessing (Section 3), feature extraction (Section 4), and data modeling (Section 5).

Mood Total # Per Subject % Per Subject
Euthymic 275 7.9±7.7 30%

Manic 107 3.1±4.0 12%
Depressed 247 7.1±7.5 28%

Mixed 95 2.7±3.6 13%
Excluded 175 5.0±4.7 17%

Table 1: Distribution of assessment classes of mood. The total num-
ber of observations of each mood class is given. The mean and stan-
dard deviation of observations for each class per subject is shown,
along with the average percentage of each.

2.1. Data Description

The recorded calls are designated into one of two groups: assessment
and personal. Participants take part in weekly calls with our study
clinicians in which the HAMD and YMRS interviews are conducted.
The assessment calls establish a ground truth for the participant’s
mood over the previous week. The remainder of the data are referred
to as personal calls. The personal calls represent all calls that take
place outside of the clinical context. These calls are not annotated to
ensure patient privacy and are not used in this study.

The PRIORI Bipolar Dataset currently contains 37 participants
who have made 34,830 calls over 2,436 hours. Each participant has
been on the study for an average of 29.2 weeks with a standard de-
viation of 16.4 weeks. Additionally, there have been 780 recorded
weekly clinical assessments. Only these structured calls are used in
this study. Twenty-three of these assessments were transcribed with
speech and silence locations to aid in the determination of segmen-
tation parameters.

2.2. Label Assignment

The HAMD and YMRS scales are continuous measures of mood,
ranging from a score of 0 (not symptomatic) to 34 (highly symp-
tomatic). In this paper, we treat the prediction problem as classi-
fication, binning the HAMD and YMRS into categories of symp-
tomatic (depressed or manic, respectively) and asymptomatic (eu-
thymic). Scores under a threshold of 6 on both scales are assigned
a label of euthymic. Scores above 10 on the HAMD and below 6
on YMRS are assigned a label of depressed. Scores above 10 on the
YMRS and below 6 on the HAMD are assigned a label of manic.
Data in six-ten range on either scale and data with labels above 10
on both scales are excluded. Table 1 shows the class distribution.

The large standard deviations seen in Table 1 demonstrate the
widely varying amounts of mood episodes between individuals with
BP. Additionally, some individuals have disparities among the pro-
portions of times spent in each mood. For example, one participant
experienced 27 weeks of euthymia and two weeks of mania. Tech-
niques to handle this imbalance are discussed in Section 5.

Phone #Subjects #Assess. %Clipped RMS SNRdB

S3 18 456 2.74% 0.397 21.2
S5 17 287 0.02% 0.066 25.1

Both 35 743 1.69% 0.269 23.1

Table 2: Differences in data amounts and acoustics between the
Galaxy S3 and S5. The percent clipped assessments (Assess.) and
the mean percent of samples per call clipped are shown. Root mean
square (RMS) values are calculated to show the loudness for each
device microphone. Signal to noise ratio (SNR) is calculated as the
relative power in the speech verses silence regions in decibels (dB).

2.3. Phone Model Differences

The Samsung Galaxy series of phones, including the S3, S4, and S5
are used by participants. Only two of the participants were given
S4s and their data are excluded from this study. The distribution of
subjects with S3s and S5s can be seen in Table 2. The two models
of phone include model-specific microphones and processing. One
of the effects of this recording and processing is clipping. Clipping
occurs most often in the S3, with an average of 2.74% of speech
samples at maximum range. This sensitivity is also demonstrated by
the average root mean square value of 0.397 for the S3. Additionally,
the noise is much more pronounced, as seen in the lower signal to
noise ratio of 21.2 dB for the S3.

3. PREPROCESSING

The two phones used in this study have different acoustic properties.
The S3, compared to the S5, has more clipping, higher volume, and
a sensitivity to background noise. Because of this, it is necessary to
carefully preprocess the data before feature extraction using declip-
ping, audio normalization, and noise-robust segmentation in order to
make calls from different devices more comparable.

Declipping: The declipping algorithm Regularlized Blind Am-
plitude Reconstruction (RBAR) [20] was used to approximate the
original signal. This is a closed form solution approximation of
an algorithm called Constrained Blind Amplitude Reconstruction
(CBAR) [24]. Each algorithm extrapolates the clipped sections of
audio beyond their original values, while minimizing the second
derivative of the signal, and have been shown to improve the perfor-
mance of automatic speech recognition [20, 24]. Both algorithms
ignore unclipped regions, beneficial for audio recordings that have
variable amounts of clipping, as seen in Table 2.

Audio Normalization: The audio signal is scaled by dividing
by the maximum absolute value. This ensures that the signal ranges
from -1 to 1, which is necessary after running declipping, as it ex-
trapolates the signal beyond these bounds. It also ensures that the
loudness between the two phone types, as seen in Table 2, is more
comparable.
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Fig. 2: Segments of speech are found. Segments of 2 seconds or
longer are divided into subsegments of 2 seconds in 1 second steps.

Segmentation: Each call is segmented using an extension of
Sadjadi and Hansen’s algorithm [21], which is robust to variation
in noise. This is necessary, given the differences in SNR between
the phones (Table 2). The algorithm extracts five signals representa-
tive of speech likelihood, including: harmonicity, clarity, prediction
gain, periodicity, and perceptual spectral flux. These are then com-
bined using principal component analysis (PCA). The final signal
is the largest eigenvalue. It is smoothed by a Hanning window of
25ms and normalized by subtracting by the 5th percentile over the
call and dividing by the standard deviation. This ensures that signals
from different calls all share a similar silence baseline. Segments of
25ms are created wherever the combo signal exceeds a 1.8 threshold.
Overlapping segments are merged and any silences less than 700ms
are removed. These parameters were found by validating over the
transcribed assessments for segment alignment. Segments are fur-
ther divided into subsegments of 2s with 1s overlap. Segments less
than 2s are discarded. Constant window sizes are used to ensure that
variations in the features are not caused by changes in segment size
[25]. The full segmentation process is shown in Figure 2.

4. FEATURE EXTRACTION

Rhythm Features: Individuals in manic or depressed episodes
exhibit changes in the rhythm of their speech [26]. Rhythm features
are calculated for each subsegment by first extracting the voicing
envelope. The envelope is used to calculate the spectral power ra-
tio and spectral centroid. The envelope is decomposed into two in-
trinsic mode functions (IMF) using empirical mode decomposition
[27]. Tilsen and Arvaniti [25] empirically demonstrated that the ex-
tracted IMFs are reflective of syllable- and word-level fluctuations.
The IMFs are used to extract five segment-level features: the power
ratio between the two IMFs and the mean and standard deviation of
the instantaneous frequencies associated with each IMF.

Call-Level Statistics: The seven rhythm features are trans-
formed into call-level features by taking the mean, standard devia-
tion, skewness, kurtosis, minimum, maximum, range, and 1st, 10th,
25th, 50th, 75th, 90th, and 99th percentiles of the subsegment mea-
sures. Additionally, the differences between the 50th and 25th, 75th

and 50th, 75th and 25th, 90th and 10th, and 99th and 1st percentiles
are included. This set is augmented with the percentage of the call
that is above 10%, 25%, 50%, 75%, and 90% of the range. Finally,
the call-level feature trend is captured by fitting a linear regression
model to the features extracted over each segment (R2, mean error,
and mean squared error). This results in a total of 217 features.

Feature Normalization: Call-level features are Z-normalized
either (1) globally, using the mean and standard deviation of all train-
ing data, or (2) by subject, using the mean and standard deviation of
each subject’s own data. Previous research has shown that normal-
ization by subject can reduce the disparity between subject feature
distributions caused by speaker differences and aid in the detection
of mood [13]. This method may also help reduce some of the differ-
ences in subject feature distributions due to differences in phones.

5. DATA MODELING

The classification goal is to identify if a given call is (1) from a manic
or euthymic episode or (2) from a depressed or euthymic episode.
Subjects are only included in analysis if they have at least six total as-
sessments in order to ensure enough data to process features by sub-
ject. Additionally, subjects must contain at least two euthymic calls
and two manic/depressed calls. This ensures that there is enough
data to measure test performance. With these restrictions, 15 sub-
jects are used when considering mania (12 S3s and 3 S5s) and 18
subjects are used when considering depression (11 S3s and 7 S5s).

Support Vector Machines (SVM) [28] are used to classify the
speech. SVMs learn a decision boundary between two classes of
data with an explicit goal of identifying a boundary that maximally
separates the two classes. The classifiers are implemented using both
linear and radial basis function (RBF) kernels. Euthymic samples are
given a weight equal to the number of manic/depressed samples di-
vided by the number of euthymic samples. Manic/depressed samples
are given a weight of one. This ensures that there is no bias towards
the mood with more samples by increasing the penalty for misclas-
sification of minority labels. Multi-task SVMs [22] are also used for
certain experiments. This algorithm weights the kernel function us-
ing a parameter rho in order to decrease the importance of data from
a different task. In this case, the task is considered to be the phone
type. On one extreme, rho can be selected to behave as a single-task
SVM and consider the tasks to be equal. On the other extreme, the
selected rho can consider the tasks to be completely independent.

The models are trained using leave-one-subject-out cross-
validation, ensuring that there is no overlap between the speakers
used to train and test the system. The model parameters include:
kernel type (RBF vs. linear), gamma (RBF only), number of features
with respect to a ranked list, cost parameter (C), and rho (multi-task
only). The parameter combination is chosen to optimize leave-one-
training-subject-out cross-validation, where the contribution of each
training subject is proportional to his/her amount of data.

Features are ranked using a heuristic of Weighted Information
Gain (WIG). The heuristic was chosen due to the observed subject-
specific label imbalance, which may result in the identification of
features that are tied to subject identity, rather than mood. This can
result in a classifier learning to associate all instances with a single
mood state from a biased subject. WIG allows for each sample to be
ascribed an importance that ensures both classes contribute equally
from each subject. This is implemented using the weighted entropy
functions described in [29]. Each sample is given a weight equal to
the total number of samples in its subject divided by the number of
occurrences of its label in its subject. This ensures that minority and
majority samples are given equal weight over each subject, while
subjects are given weight proportional to their number of samples.

The system performance was measured using Area Under the
Receiver Operating Characteristic Curve (AUC). AUC assesses the
ability of a system to correctly rank pairs of instances from opposing
classes. It has a chance rating of 0.5 and ideal rating of 1.

6. RESULTS AND DISCUSSION

In this section we demonstrate the ability to differentiate between
euthymic and symptomatic moods, despite using two types of mobile
phones with different acoustics. The results are presented in Table 3.
In addition to reporting the combined test performance of both phone
types, results are broken down into individual types. However, all
phones from both types are always used to train models. A paired t-
test with a significance of 0.05 is used to compare results to baseline



Model Manic AUC Depressed AUC
S3 0.52±0.22 0.66±0.17
S5 0.78±0.31 0.62±0.09

Both 0.57±0.25 0.64±0.14

(a) No Declipping and Global
Normalization (Baseline)

Model Manic AUC Depressed AUC
S3 0.68±0.16 0.62±0.14
S5 0.79±0.21 0.69±0.18

Both 0.70±0.17* 0.65±0.15

(b) RBAR Declipping and
Global Normalization

Model Manic AUC Depressed AUC
S3 0.73±0.22 0.74±0.10
S5 0.79±0.37 0.80±0.21

Both 0.74±0.24* 0.77±0.15*

(c) No Speech Segmentation
(Silence Included)

Model Manic AUC Depressed AUC
S3 0.66±0.15 0.73±0.15
S5 0.71±0.35 0.78±0.10

Both 0.67±0.19* 0.75±0.14*

(d) No Declipping and
Subject Normalization

Model Manic AUC Depressed AUC
S3 0.67±0.20 0.67±0.21
S5 0.72±0.41 0.65±0.11

Both 0.68±0.23* 0.66±0.18

(e) Multi-Task SVM Using
Baseline Preprocessing

Model Manic AUC Depressed AUC
S3 0.71±0.19 0.66±0.14
S5 0.78±0.23 0.79±0.13

Both 0.72±0.20* 0.71±0.15

(f) Multi-Task SVM Using
Best Preprocessing

Table 3: Classification results using various methods. Bolded* AUCs denote results significantly better than baseline (paired t-test, p=0.05).

performance and a significant difference is marked with an asterisk
and bolded.

Baseline Performance: The baseline system uses global nor-
malization and does not include declipping. The results in Table 3a
show an AUC of 0.64±0.14 for depressed and a near chance perfor-
mance of 0.57±0.25 AUC for manic. However, the three S5s per-
formed better than the S3s in the manic test with 0.78±0.31 AUC.
This could indicate that even though the S5 only makes up 20% of
the phones, its higher quality recordings allow for it to perform well
in testing. Alternately, the speaker population that makes up those
subjects using the S5s could be more homogeneous. The S5 contin-
ues to outperform the S3 in the rest of the manic experiments.

Evaluation of Declipping: Table 3b shows the results of de-
clipping when using global normalization. While the performance
of the depressed tests remain mostly unaffected, the manic test in-
creases significantly to an AUC of 0.70±0.17. This is due to the
improvement in the S3, where larger amounts of clipping occurred,
as seen in Table 2. We hypothesize that the stronger improvement
in manic tests, compared with depressed tests, is due to the fact that
manic S3 calls have significantly more clipping than euthymic and
depressed S3 calls (unpaired t-test, p=0.05). The percent of clip-
ping in euthymic, manic, and depressed S3 calls are 2.73±1.25%,
3.21±1.13%, and 2.41±1.07%, respectively.

Evaluation of Segmentation: The effect of segmentation was
studied by eliminating the algorithm described in Section 3. Instead,
the 2 second subsegments were taken over the entire call - silences
included. It performed the best of all tests with significant increases
from the baselines for both moods (Table 3c). However, we hy-
pothesize that this is actually due to the rhythm features indirectly
capturing information about the assessment structure. For example,
an individual who is euthymic would have more silence due to their
brief interview answers. This highlights one of the potential pitfalls
to avoid when working with structured calls to train a model to rec-
ognize acoustic aspects of mood. For this reason, it is necessary to
use accurate segmentation to avoid these misleading results.

Evaluation of Feature Normalization: Normalization by sub-
ject significantly increased the performance of both manic and de-
pressed tests from baseline, as shown in Table 3d. This method has
the ability to correct for different feature distributions among speak-
ers, as explained in [13]. These results demonstrate that this cor-
rection can also benefit systems with variable recording devices of
different quality.

Multi-task SVM Analysis: The use of a multi-task SVM can
also control for the variability in device types by giving lower weight

to data from different phone types and higher weight to data from
the same phone types. Table 3e shows a significant improvement in
manic from baseline by selecting a low value for rho and treating
data from across different phone types as less informative. Depres-
sion does not see much improvement, as a high rho value is selected,
indicating that the data is already comparable without preprocessing.
This gives further evidence to the reason preprocessing works well
for manic speech but has little effect on depressed speech. Another
multi-task experiment was run using the preprocessing methods that
worked best for each mood - RBAR declipping and subject normal-
ization for manic and subject normalization for depressed. These
results can be seen in Table 3f, with the highest manic AUC of
0.72±0.20, which is significantly better than baseline.

7. CONCLUSION

This paper presents methods to improve the comparability of data
collected from across devices of different acoustics. This is essential
for any mobile health system using speech that aims to be widely
distributed, as the prospect of varying audio quality is unavoidable.
Our results demonstrate that through certain preprocessing, feature
extraction, and data modeling techniques it is possible to mitigate the
effects of differing amounts of clipping, loudness, and noise. This is
best shown by the increase in performance from the baseline AUCs
of 0.57±0.25 for manic and 0.64±0.14 for depressed to the signifi-
cantly higher AUCs of 0.72±0.20 and 0.75±0.14, respectively. This
excludes the results without segmentation, as those features capture
the structure of the mood interview instead of the characteristics of
the speech. There was not a comprehensive solution for both mood
types, which indicates the need for careful consideration of all steps
along any pipeline.

The ultimate goal will be for the system to be totally passive,
requiring no active input from the BP patient or the clinic. Cur-
rent methods using structured assessments are not enough, as they
require weekly interview calls. However, the transition to personal
calls will require solutions to many problems, including how to con-
trol for the confounding factors of variations in subject symptomatol-
ogy, episode patterns, and conversational styles. The refinement of
techniques developed in this study to increase device comparability
may be adaptable to these issues. In particular, it will be necessary
to determine how to adapt the system to particular individuals and
determine which features are indicative of mood and not some other
misleading factor. Although, if effective, it will greatly assist in the
way that mental health care is managed.
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