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1. Introduction 
The data collected during an MRI experiment is the spatial frequency information of the proton 
density of the object being imaged.  The data space is referred to as k-space and is related to the 
image of the object through a Fourier transform relationship.  When a Cartesian trajectory is used 
to traverse k-space, data are acquired on equally spaced grid points in k-space and a fast 
algorithm, the Fast Fourier Transform algorithm (FFT), can be used to reconstruct images from 
the data.   
 
Non-Cartesian trajectories, such as spirals, radial lines (projection imaging), and rosettes may 
have benefits associated with flow artifact or efficiency of coverage of k-space, however, image 
reconstruction can no longer be accomplished with a simple FFT, which is applicable only to 
data on a Cartesian grid.  We will discuss various issues in reconstructing data from non-
Cartesian k-space trajectories, including a slow Fourier Transform, sample density 
considerations, methods that employ the FFT, and iterative reconstruction. 
 
2. Reconstruction from non-Cartesian k-space 
The signal equation in MRI that relates the proton density, m(r), to the received signal, s(k), is 
given by: ( ) ( )∫ ⋅−=
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proceeds by an inverse Fourier Transform as: 
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This continuous domain formula assumes that the area of integration dk is uniform.  Upon 
sampling at locations kj and discretizing the above expression, one needs to account for the 
possibility that samples have been acquired non-uniformly in k-space.  This leads to the 
following reconstruction expression: 
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This discretized reconstruction formula is a slow Discrete Fourier Transform and W(kj) is a 
weighting function that can account for non-uniform sampling.  This reconstruction has also 
been referred to as the conjugate phase reconstruction (1) and the weighted correlation method 
(2).  If data are acquired on the Cartesian grid, then this weighting function is a constant and 
Eqn. [3] can be evaluated using the FFT algorithm.  For non-uniform sampling patterns, the FFT 
cannot be directly applied.  Nevertheless, approximations exist that allow us to take advantage of 
the computational speed of the FFT and we will discuss these in a later section.  We will first 
discuss this density compensation function, W(kj), as there is still much interest in efficient and 
accurate ways to calculate it for arbitrary trajectories.   



  

2.1 Density Compensation 
In non-uniformly sampled imaging methods, W(kj) 
decreases the influence of data when redundant 
information is acquired.  In projection and spiral 
imaging, for example, there are an excess of 
samples taken near the origin in k-space as shown 
in Figure 1.  W(kj) should be selected to exactly 
compensate for this excess.  In this example, the 
samples are denoted by (.) and one possible 
expression for W(kj) is the area in the cell 
surrounding each sample.  Figure 2 contains an one-
dimensional example of non-uniformly sampled 
data along with a reconstruction according to 
Equation [3].  In this example, there is an excess of 
samples near the origin, which is compensated for 
by the function in Fig. 2(b) to produce an 
undistorted resultant image (Fig. 2(d)).  
 
Many methods have been presented to address the determination of the sample density 
compensation functions (DCF) for arbitrary k-space trajectories.  A straightforward and 
analytical method considers the formula of Eqn. [2] and uses a change of variables to go from the 
non-uniform variable k to a uniform variable u.  The variable u can represent a parameter of the 

k-space trajectory that is 
varied uniformly, for example 
sample time and/or initial 
starting angle in the cases of a 
multi-shot spiral or radial line 
trajectory.  This 
transformation leads to 
weighting function that is the 
Jacobian of this 
transformation 
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by Norton (3) and Hoge et al. 
(4).  This formula works well 
when the k-space trajectories 
can be described as simple 
functions of the uniformly 
sampled variables and when 
the trajectories do not cross.  
Many other methods have 
also been presented to quickly 
compute the DCF for 
arbitrary k-space trajectories.  

 
Figure 1.  4-shot spiral trajectory samples (.) and 
relative areas associated with each sample. 

Figure 2.  (a) Non-uniformly sampled data from a simple simulation 
object, (b) the density compensation function (DCF), (c) the product of 
the data with the DCF, and (d) the image reconstructed using Eqn. [3]. 
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Figure 3.  (a) Density compensate data, (b) demonstration of contribution to 
the convolution for several samples, and (c) the resultant convolution.  (d) 
contains the original Fourier data for the object – the convolution results is a 
smoothed version of the original data. 

First, there is the familiar |ρ| DCF for projection imaging.  Jackson, et al. defined an area density 
function which was the convolution of delta functions at the k-space trajectory locations with the 
convolution function (5).  Meyer, et al. developed an analytical expression for the DCF for 
Archimedean spiral trajectories (6).  Rasche, et al. use areas of Voronoi cells around k-space 
sampling locations to determine the DCF for arbitrary k-space trajectories (7) (Figure 1 shows 
Voronoi cells for a spiral trajectory).  Many other methods for computing the DCF exist (8-11).   
 
3. The Gridding Reconstruction 
The reconstruction of Eqn. [3] is generally desirable given appropriate DCF weights, however, 
this reconstruction is not computationally efficient.  Nevertheless, we can benefit from 
computational advantage of the FFT when using non-Cartesian k-space trajectories if we first 
interpolate or “grid” the data onto a uniform grid and then apply the FFT.  Despite low accuracy, 
simply using bilinear interpolation of the density-compensated data and then applying the FFT 
gives a reconstruction of the image.  Other improved interpolation schemes have been used (12-
14).  A more commonly used and highly accurate method, called convolution gridding (5, 8, 15), 
is described by the following equation: 
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where MC is the data gridded onto a Cartesian grid, M⋅S  is the sampled data on the k-space 
trajectory, W is the density compensation function, C  is the convolution function, and R  denotes 
the Cartesian grid sampling function.  A gridding reconstruction involves 5 steps: 
1. Multiply the sampled data with a density compensation function to account for the unequal 

sampling of k-space.  
This is usually the 
same DCF as that used 
in Eqn. [3]. 

2. Convolve the weighted 
data with a chosen 
convolution function. 

3. Resample on a 
Cartesian (uniform) 
grid. 

4. Apply the FFT. 
5. Deapodization, to 

remove the effect of 
the convolution 
function by dividing 
the result by the 
Fourier Transform of 
the convolution 
function. 

We first continue with our 
one-dimensional example.  
Figure 3 demonstrates, for 
the same 1D object, the first 
two steps of the gridding 
procedure.  The result of 
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the convolution is similar to the original Fourier data, it is smoothed by the convolution with a 
kernel shown in Fig. 3(b). 
 
Figure 4 demonstrates the 
final three steps in the 
gridding procedure.  The 
convolution result is re-
sampled, but at uniform 
locations in k-space and the 
FFT is used to determine the 
image.  The effect of 
convolution in the Fourier 
domain is the multiplication 
in the image domain.  This 
leads to the fall-off in image 
intensity towards the edges of 
the image (apodization).  In 
order to remove this effect, 
we divide by the Fourier 
Transform of the convolution 
function; this is known as 
deapodization.  As one can 
see that this image (Fig. 4(d)) 
is very similar to the desired 
image of Fig. 2(d).  With 
appropriate selection of the 
convolution function along 
with oversampling (discussed 
below), this final image can be made arbitrarily close to the desired image. 
 
3.2 Practical Issues:  Convolution Functions, Sampling and Oversampling 
Here we discuss some of the practical issues related to implementation of gridding.  First, while 
we describe the convolution and Cartesian resampling processes two as separate steps, these are 
usually implemented as one.  Specifically, one only determines the value of the convolution at 
the Cartesian grid locations.  Typically, this is implemented as an input data driven process – for 
each sampled data point, the nearby Cartesian grid locations are determined and the sample value 
times the convolution kernel value are added to each point.  
 
When choosing a convolution function, one must consider the behavior of its Fourier transform 
both within the FOV and outside the FOV.  The first issue is that the Fourier transform should 
have no zeros within the FOV, since division by the zero will result in large artifact.  The second 
major issue relates to aliased energy.  According to Fourier theory, sampling in k-space results in 
replication of the object in the image domain.  By convolving the k-space samples with a 
convolution function, the resulting image replicates are multiplied by the Fourier transform (FT) 
of the convolution function.  If the FT of the convolution function has significant energy that 
exists outside the FOV, then this energy will be aliased back into the image from the replicates.  

Figure 4.  (a) Uniform resampling of convolution result and (b) its 
Fourier transform.  This image is similar to the desired result in Figure 
2(d), but the signal intensity is falls-off towards the edges.  This can be 
corrected by the deapodization function of (c) resulting in the final 
image of (d). 
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During the deapodization 
process, the image is divided by 
the FT of the convolution 
function.  Thus, optimization of 
the convolution kernel must 
consider the amount of energy 
outside the FOV and how much 
it is amplified by deapodization.  
Again, this aliased energy leads 
to image artifact and should be 
minimized.  There are two 
approaches to address this 
problem: 1) using an 
oversampled Cartesian grid and 
2) optimal selection of the 
convolution kernel parameters.  
The former, as presented by 
Jackson, et al. (5), is to grid the 
data onto a smaller grid.  For 
example, if the grid size is 
reduced by a factor of 2, then 
the resulting FOV of the image 
is doubled.  Energy that lies in 
the extension of the FOV is 
discarded and will not alias onto 
the image.  This not only 
reduces aliasing energy outright, but also allows a wider frequency response of the convolution 
function.  Thus, the FT of the convolution function is more uniform over the desired FOV, with 
less amplification of aliased energy.  Figure 5 demonstrates the effect of oversampling and the 
accuracy the gridding reconstruction.  Fig. 5(b) shows energy that would be aliased into the 
image and amplified by the deapodization process without the oversampling.  Jackson, et al. also 
examine various convolution functions with respect to minimizing aliased energy.  They found 
that the Kaiser-Bessel kernel was simple to compute and worked very well.  The optimal 
parameters for various sizes of the interpolation kernel are given in (5).  In general, a higher 
accuracy is achieved using a larger kernel and larger oversampling factor, but it is at the expense 
of a higher computational burden – more samples involved in the interpolation and a larger FFT, 
respectively.  
 
3.3 Computational Efficiency 
Once the data has been resampled onto a Cartesian grid, we can take advantage of the 
computational efficiency of the FFT.  Table 1 contains the operation counts for several 
reconstruction methods.  This table shows that for a hypothetical example with 16,384 k-space 
samples and a 128x128 image, the gridding reconstruction reduces computation by nearly 3 
orders of magnitude.  In this example, we also compare the computational burden for gridding 
reconstruction to that of Cartesian sampled data.  We see that for the gridding parameters 
selected the computational burden is roughly 6 times that of Cartesian sampled data.  More 

Figure 5.  (a) Fourier transform of the 2x oversampled data show the 
expected enlargement in the field of view and (b) and zoomed version 
showing sidelobe energy that can alias into the field of view leading to 
increased error.  (c) Comparison of the ideal reconstruction (Eqn. [3]) and 
gridding with and without oversampling and a zoomed in view of in (d).  
This figure shows that gridding error is reduced with oversampling. 



  

aggressive gridding parameters, for example an oversampling factor of V = 1.5, can reduce the 
additional computational burden to roughly a factor of 4.  With modern computational 
equipment, it is not particularly difficult to achieve real-time imaging with non-Cartesian k-space 
trajectories.  Another practical issue associated with gridding and reconstruction by Eqn [3] is 
that there are many unique coefficients to be calculated (complex exponentials in Eqn. [3] and 
convolution grid locations and coefficients in gridding).  This represents an additional 
computational burden, but as described in (16), this can be reduced by precalculation of 
necessary parameters and using look-up tables as these parameters are always fixed for a given 
trajectory. 
 

Table 1.  Operation counts for different reconstruction methods. 
Method Operations* Operations- Example 

(M=16,384; N=128; W=3; V=2) 
Equation [3] MN 2 2.7 x 108 
Gridding with oversampling MW 2+(VN)2log2(VN) 7.6 x 105 
Cartesian sampling  N 2log2N 1.1 x 105 
*M = total number of samples, NxN = image matrix size, W = convolution kernel width, V = oversampling factor 
 
4. Other approaches 
Other approaches to reconstructing data from arbitrary trajectories exist.  We briefly describe 
two of these here, Uniform ReSampling (URS) (17) and iterative reconstruction (18, 19). 
 
4.1 URS/ BURS 
URS proceeds by formulating the gridding interpolation problem as Ax=b, where x is the value 
of the k-space data on a regular grid, b is the data on the arbitrary trajectory (spiral, etc.), and A 
is a matrix of interpolation coefficients, ie. sinc interpolation coefficients.  Given the 
interpolation matrix and data at the arbitrary k-space locations, the inverse problem is solved by 
computing the pseudoinverse of A.  Once the regularly spaced data, x, is determined, the image 
is formed by taking the FFT.  No density compensation of the data or deapodization of the 
resulting image is necessary in this case.  A variant of this algorithm called Block URS, or 
BURS, makes the solution more computationally feasible by limiting the size of A by a local 
application of URS around each sample point. 
 
4.2 Iterative Reconstruction 
Iterative image reconstruction uses the signal equation for MRI found in Eqn. [1] to find the 
image that best fits the data in the least-squares sense.  An iterative method such as the conjugate 
gradient method (CGM) is used to minimize the following cost function: 

 ( ) ( )fAfyf Rβ+−=Ψ
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where A is the system matrix with entries given in the simplest form by Al,m=exp(-i 2π k(tl) ⋅ rm), 
f is the current estimate of the image, and R is a regularization function which penalizes 
roughness in the estimated image.  No sample density function or deapodization is necessary 
with iterative reconstruction methods.  Image reconstruction may take several to tens of 
iterations, but methods have been presented to speed computation of each iteration taking 
advantage of the FFT (20).  
 



  

5. Conclusions 
When nonuniform k-space trajectories such as spirals or radial lines are used in an MRI 
experiment, efficient image reconstruction is possible by gridding or interpolating the data onto a 
uniform grid and using the FFT.  The gridding algorithm as optimized in (5) exhibits excellent 
accuracy, but also depends on the choice of a sample density compensation function (DCF).  
Fortunately, many methods exist for quickly computing the sample density function for arbitrary 
trajectories.  Two other methods discussed, uniform resampling (URS) and iterative image 
reconstruction, do not use a sample density compensation function.  The common method to 
reconstruct data from a non-Cartesian trajectory is to use the gridding method described in (5) 
with an oversampling factor of 1.5 or 2 and a Kaiser-Bessel convolution function. 
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