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Solutions to Take-Home Exam #1 
 
 
1. [40 pts.] In this problem, you will create a Matlab script to investigate methods to suppress 

particular spectral features in an image.  The image sensor has 64 pixels/cm and you’ve been 
told that a nearby RF source emitting radiation with a wavelength (1 period) of 0.05 cm (+/- 
2%) that generates additive periodic image corruption with the same wavelength.  In general, 
the relative position of the RF source and the image sensor is unknown, so we must assume 
that the signals can come in from any spatial direction.  An example image is available on the 
course web site in exam_image.mat 
a. What kind of filter is desirable be used to suppress this signal, while preserving most 

other image features?  Describe any desirable symmetries in this filter?  What are the 
critical frequencies (in ωx and ωy) for this filter? 

 
Solution:  To suppress a particular frequency, we would want to use a bandstop filter.  
For this problem, we desire circular symmetry (or in the absence of that, 8-fold 
symmetry).  The sampling spacing is T = 1/64 cm and the RF corruption is has a period 
of 0.05 cm or a frequency of 20 cm-1.  The peak unaliased frequency is 1/2T = 32 cm-1 
(corresponding to +/- π).  The stopband should be at ω = (20/32)π =1.96 (+/- 2%).  
Naturally, the transition bands surrounding this stopband will depend on the size of the 
filter.  
 

b. Design a 7x7 filter function to suppress this corruption (there is more than one correct 
answer here, but please justify your chosen method).  Use imagesc to show the 
frequency response.  Include a colorbar and please make sure your axes are labeled 
and correct.   

 
Solution:  The ideal filter will have response near zero in the region of the stopband and 
near one at other frequencies.  Since a 7x7 support region is rather small, we will have to 
choose a filter with very large transitions.  There are many possible solutions here, but I 
will give just one (however, many students designed better performing filters than this 
one).  In HW#4, problem 3 we designed a nice 7x7 bandpass filter and we know that 
bandstop filters can be derived from bandpass filters.  We have to do three things 
differently than we did for the homework: 1) we need to choose a different passband 
frequency, 2) we need to adjust the amplitude so that it peaks at 1 (rather than 0.5), and 3) 
we then subtract the filter from from 1 in the Fourier domain or from δ(n,m) to produce 
the bandstop filter.  Thus we have 
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Important: About using )(1)( ωω bpbs HH −=  or ),(),(),( mnhmnmnh bpbs −= δ .  This 

relationship works only if )(ωbpH  is nearly 1 in the passband.  If you design a filter with 

too narrow of a passband, then it may need to be scaled so that the frequency response is 
close to 1 prior to applying the above relationships.  E.g., you may need to do: 

)(1)( ωαω bpbs HH −= , where α is chosen to make the bandpass filter peak near 1.  This 

is also true for design of high-pass from low-pass filters, etc. 
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c. Apply this filter using conv2 and create an image showing the result.  Make sure you 

label the axes (in cm) and make sure that the filter had zero phase. 
 

See plots below. 
 

d. Create a separable 2D filter in which the 1D component has length 9.  Display the 
frequency response. 

 
Solution:  For the 1D filter, we used the same approach we did for the 2D filter, but 
implemented it in 1D: ( )xxbsH ωω
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made a separable 2D filter.  See plots below. 
 

e. Apply this filter by applying the 1D convolution in two directions and create an image 
showing the result. 

 
See plots below. 

 
f. Create a 2D frequency domain filter (no restrictions on size) and display this function. 

 
Solution:  For this part we designed an ideal stop band filter in the Fourier domain.  We 
needed to carefully scale our axes in order to make this work properly.  Finally, we 
expanded our stopband since there was some bleeding of the artifact signal outside the +/- 
2% tolerances. See plots below. 
 

g. Apply the filter (in frequency domain) and create an image showing the result. 
 

See plots below. 
 

h. Comment on which methods are best and why.  Comment on computational issues in 
addition to performance issues. 

 
Solution:  For this particular problem and my solutions, there appears to be little benefit 
to using the 2D filter over the 1D filter – this stems from the rather wide transition 
regions of the filter that I chose – for other filters, the 2D filter might be better.  The 
computational advantages of the 1D separable filters would make these most desirable.  
The Fourier filter had the best suppression of the corruption, but was computationally the 
most expensive.  It also had edge effects due to circular convolution.  This is especially 
so given that the image size (480x720) did not lend itself to very fast FFT’s. 

 
 Matlab code: 

% Exam 1, Problem 1 
load exam_image 
[s1 s2] = size(exam_image); 
y = [0:s1-1]./64; 
x = [0:s2-1]./64; 
 
[nn,mm] = ndgrid([-32:31]); 
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rr = abs(nn + i.*mm);  
wwx = [-32:31]/32*pi; 
wwy = wwx; 
wwr = rr/32*pi; 
 
figure(1) 
subplot(221); imagesc(wwx,wwy,log(abs(fftshift(fft2(exam_image))))); 
colormap gray; colorbar 
title('Orig Image: log(Fourier data)');xlabel('\omega_x'); ylabel('\omega_y');  
 
subplot(222); imagesc(x,y,exam_image); colorbar; colormap gray 
title('Orig Image');xlabel('x (cm)'); ylabel('y (cm)');  
 
 
% 2D filter 
H2D = 0.5 + 0.5*cos(2*20/32*wwr); 
% since H is real and symmetric, h should be real 
h = real(fftshift(ifft2(fftshift(H2D)))); 
 
%truncate to 7x7 
mask = (abs(nn) < 3.5).*(abs(mm) < 3.5); 
ht = h.*mask; 
HT = real(fftshift(fft2(fftshift(ht)))); 
subplot(223); imagesc(wwx,wwy,HT); colormap gray; colorbar 
title('7x7 kernel');xlabel('\omega_x'); ylabel('\omega_y');  
 
hkern = reshape(h(find(mask)),7,7); 
 
outim = conv2(exam_image,hkern); 
% select the right part to make it zero phase 
outim = outim(4:3+s1, 4:3+s2); 
subplot(224); imagesc(x,y,outim); colorbar; colormap gray 
title('7x7 kernel');xlabel('x (cm)'); ylabel('y (cm)');  
 
% 1D filter 
H1D = 0.5 + 0.5*cos(2*20/32*wwx); 
h1 = real(fftshift(ifft(fftshift(H1D)))); 
h1d = h1(33-4:33+4); 
h1d2 = zeros([64 64]); 
h1d2(33-4:33+4,33-4:33+4) = h1d'*h1d; 
HT2 = real(fftshift(fft2(fftshift(h1d2)))); 
figure(2) 
subplot(221); imagesc(wwx,wwy,HT2); colormap gray; colorbar 
title('separable 9x9 kernel');xlabel('\omega_x'); ylabel('\omega_y');  
 
% use conv2 to perform 2 1D convolutions 
outim2 = conv2(h1d,h1d.',exam_image); 
% select the right part to make it zero phase 
outim2 = outim2(5:4+s1, 5:4+s2); 
 
subplot(222); imagesc(x,y,outim2); colorbar; colormap gray 
title('separable 9x9 kernel');xlabel('x (cm)'); ylabel('y (cm)');  
 
% Fourier filter 
[nn mm] = ndgrid(-s1/2:s1/2-1,-s2/2:s2/2-1); 
wwr = 2*pi*abs(nn/s1 + i.*mm/s2);  
 
tol = 0.05; 
ffilt = (wwr < 20/32*pi*(1-tol)) + (wwr > 20/32*pi*(1+tol)); 
subplot(223); imagesc(wwx,wwy,ffilt); colormap gray; colorbar 
title('Fourier filter');xlabel('\omega_x'); ylabel('\omega_y');  
 
ftim = fftshift(fft2(exam_image)); 
outim3 = real(ifft2(fftshift(ftim.*ffilt))); 
subplot(224); imagesc(x,y,outim3); colorbar; colormap gray 
title('Fourier filter');xlabel('x (cm)'); ylabel('y (cm)');  
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2. [20 pts.] You’ve been hired by NASA to work on data from a defective space telescope.  The 

digital image sensor on this telescope suffered an unfortunate accident with an asteroid, 
which knocked out the decoding circuitry for ½ of all detector elements.  You’ve discovered 
that a design engineer anticipated this possibility and created the sensor array in a particular 
way.  The original sampling pattern was rectilinear with spacing T in both x and y directions.  
The sample locations that remain are those for which (n,m) are both even or for which (n,m) 
are both odd.  The new sampling function can be written as: 
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a. Describe the spectrum of object sampled by the original array, given some object 
spectrum ),( vuX  (or ),( yxX ωω , if you prefer).  What are the conditions for prevention 

of aliasing? 
 
Solution:  The original sampling function was: 
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This is a replication of ),( vuX  in the u and v directions with spacing 1/T.   

1/T

1/T  
The conditions to prevent aliasing are that the original spectrum, ),( vuX , must be 
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figure. 
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b. Describe the spectrum of object sampled by the defective array.  What are the conditions 

for prevention of aliasing?   
 

Solution:  We can write the new sampling function as: 















 −−

+





=

T
Ty

T
Tx

comb
T
y

T
x

comb
T

yxp
2

,
22

,
24

1
),(

2
.  The sampled spectrum is then: 

{ } ( )( )( )

( )

( )mn

n m

mn

n m

T
n

v
T
n

uX
T

T
n

v
T
n

u
T

vuX

vTuTiTvTucombTvTucombvuXyxpyxxF

+
∞

−∞=

∞

−∞=

+
∞

−∞=

∞

−∞=

−+





 −−=

−+





 −−=

+−+=

∑ ∑

∑ ∑

)1(1
4

,
44

1

)1(1
2

,
24

1
**),(

2exp)2,2()2,2(**),(),(),(

2

2
δ

π

 

This last statement says that an spectral island exists at spacing 1/2T, but only when n+m 
is even. 

1/T
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The conditions to prevent aliasing are that the original spectrum, ),( vuX , must be 

bandlimited to the region 
T

vu
22

1
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square in the above figure.  For a circular spectral pattern (which would is typical in 
optical telescopy), the maximum spectral pattern is reduced by 2/1 . 
 

c. Given the alternatives of losing, say, the odd elements in x or the odd elements in y, did 
the design engineer make a good decision? 

 
Solution:  Losing every other element with the lost elements along diagonal lines rather 
than horizontal or vertical lines appears to be a better solution.  The peak frequency that 
aliases is reduced by 2/1  rather than 1/2 in a particular direction for the alternatives 
with no degradation in the other direction.  The latter case would only be advantageous if 
we knew the object to be detected had a preferred direction of high frequency content.  
[Many people didn’t understand my question, so unless you said something obviously 
wrong, you got full credit for this part.] 
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3. [20 pts.] Consider the following 2D discrete domain filters.  For each, determine if the filter 

is linear and/or shift invariant.  If the filter is linear, give its impulse response. 

a. ∑ ∑
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Solution:  This function is linear, but the response is reflected about the origin and is thus 
space variant.  The impulse response is: 
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Solution:  This function chooses a local maximum.  It is not linear (consider the case 
where we scale the input by a where a < 0).  This system is, however, space invariant – 
clearly shifting the input by )','( mn  will lead to a similarly shifted output. 

c. )2,2()2,(),2(),(),( mnxmnxmnxmnxmny +++=  
Solution:  This system is linear, but space variant.  The impulse response is: 
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Observe again, that this is not a function of )','( mmnn −−  and is thus not space 
invariant. 

d. )2,2()2,(),2(),(),( −−+−+−+= mnxmnxmnxmnxmny  
Solution:  This function is both linear and space invariant.  The impulse response is: 
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e. ),(),( nmxmny =  
Solution:  This function is linear, but the response is transposed and is thus space 
variant.  The impulse response is: 

[ ] )','()','()',';,( nmmnmmnnSmnmnh −−=−−= δδ .   

f. ),(),( 2 mnxmny =  
Solution:  This function is non-linear, but space invariant. 
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4. [20 pts.] Sitting in Starbuck’s, you overhead a conversation in which someone claimed that 

you could determine the 2D Fourier transform by using just a single 1D Fourier transform.  
Flabbergasted, you set out prove or disprove this assertion.  You set up the a length NM 1D 
function y(p) from a NxM 2D function x(n,m): 
       ),()()( mnxmNnypy =+=    (column-wise stacking, if thinking in Matlab coordinates) 
Letting Y(q) be the 1D DFT of y(p) and X(k,l) be the 2D DFT of x(n,m), you define: 
       )()(),(' qYlkMYlkX =+=    (row-wise unstacking). 
a. Determine the relationship between ),(' lkX  and ),( lkX .  Assume the standard 

definitions of the 1D and 2D DFT’s.   
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Substituting for X’ and x we get: 
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Observe that the mk term is always an integer and thus exp(-i2πmk) = 1, so this term can 
be discarded.  Also observe that nl term represents a linear phase term in n (and has no 
effect on the FT in m).  This results in a shift of the of the output image by an amount  
-l/M in the k direction.  So: 
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This appears as a shearing (l dependent shift in k) of the true Fourier data. 
 

b. For a 32x32 image size and image data defined by )2/(sinc)4/(sinc),( mnmnx = , write a 
Matlab script to compare ),(' lkX  and ),( lkX .  For both of these let the origin of the 
input and output system at the (17,17) location.  Display the images and include real and 
imaginary parts if appropriate.  Please attach the Matlab script and all images. 

 
Solution:  We create a Matlab function: 
function xp=new2dft(x) 
% function to perform 2D fft by a 1D fft 
[sx,sy]=size(x); 
y = x(:); 
Y=fft(y); 
xp = reshape(Y,sy,sx).'; 
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and then test it with: 
% testing new 2DFT 
[nn,mm] = ndgrid([-16:15]); 
x = sinc(nn./4).*sinc(mm./2); 
% shift center 
xsh = fftshift(x); 
% look at 2d ft's without fftshift 
X = fft2(xsh); 
XP = new2dft(xsh); 
 
figure(1) 
subplot(321); imagesc(real(X)); colormap gray; colorbar; title 'Real X' 
subplot(322); imagesc(real(XP)); colormap gray; colorbar; title 'Real XP' 
subplot(323); imagesc(imag(X)); colormap gray; colorbar; title 'Imag X' 
subplot(324); imagesc(imag(XP)); colormap gray; colorbar; title 'Imag XP' 
subplot(325); imagesc(abs(X)); colormap gray; colorbar; title 'Abs X' 
subplot(326); imagesc(abs(XP)); colormap gray; colorbar; title 'Abs XP' 
 
% now add the post-ft fftshift 
XSH = fftshift(X); 
XPSH = fftshift(XP); 
 
figure(2) 
subplot(321); imagesc(real(XSH)); colormap gray; colorbar; title 'Real XSH' 
subplot(322); imagesc(real(XPSH)); colormap gray; colorbar; title 'Real XPSH' 
subplot(323); imagesc(imag(XSH)); colormap gray; colorbar; title 'Imag XSH' 
subplot(324); imagesc(imag(XPSH)); colormap gray; colorbar; title 'Imag XPSH' 
subplot(325); imagesc(abs(XSH)); colormap gray; colorbar; title 'Abs XSH' 
subplot(326); imagesc(abs(XPSH)); colormap gray; colorbar; title 'Abs XPSH' 

 
Resultant figures are (without fftshift): 

 
Here we can see that as we move in the l direction (horizontal), we become shifted in k 
(vertically).  (Matlab indices are transposed form what you expect.) 
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And with fftshift: 

 
In this case the fftshift moves the shift discontinuity to the center of the image.  The 
most common mistake made in this part was implementation of the fftshift on the 
1D data vs. the 2D data (the correct approach). 
 

c. How close to being correct was the coffee shop assertion? 
 

Solution:  The 1D equivalent is quite similar to the 2D FFT.  All shifts are less than 1 
pixel in size.  When using with fftshift, however, the discontinuity in the shift from 
N-1 to 0 is move to center of the image creating a discontinuity in the image.  We could 
create an alternate fftshift that would produced the expected image with no 
discontinuity at the origin and then the only effects would be the skewing and the non-
realness of the new method. 


