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The 1D Fourier Transform

Definition. The Fourier Transform (FT) relates a function to its frequency domain equivalent.
The FT of afunction g(X) is defined by the Fourier integral:

¥ - | 2pxs
G(s) = F{g(¥)} = Q, 9(x)e " *“dx
for x,sT A. Thereareavariety of existence criteriaand the FT doesn’t exist for all functions.

For example, the function g(x) = cos(1/x) has an infinite number of oscillationsas x ® 0and the
FT integral can’t be evaluated. If the FT exists, then thereis an inverse FT relationship:

9(x) = F{G(9)} = §, G(s)e ¥ ds

Uniqueness. Given the existence of the inverse FT, it followsthat if the FT exists, it must be
unique. That is, for afunction formsaunique pair with its FT:

9(x) « G(s)

Caveat. An exception to the uniqueness property is a class of functions called “masdess’ or
“null” functions. An example is the continuous function f(x) = {]’ : This function and others

like it have the same Fourier transform as f(x) = 0: F(s) = 0. Thus, the uniqueness exists only for
afunction plus or minus arbitrary null functions. In practice, these functions are not realizable
and thus, for the purposes of this class we will assume that the FT is unique.

Symmetry Definitions. We first decompose some function g(x) in to even and odd components,
e(x) and o(x), respectively, as follows:
&(x)=3[9(x) +9(- X)]
o(x)=3[9(x) - (- )]
thus,
9(x) = &(x) +o(x)
and
e(x) = &(- x) and o(x) = - o(x)
A function, g(x), is Hermitian Symmetric (Conjugate Symmetric) if:
Re{g(x)} = e(x) and Im{g(x)} = o(x)
thus,
9(x) =e(x) +io(x) = g* (- X)

Symmetry Propertiesof the FT. There are several related properties:

If g(x) isredl, then G(s) is Hermitian symmetric (e.g. G(s) = G*(-9) ).

If g(X) isrea and even, G(s) isreal and even.

If g(x) isrea and odd, G(s) isimaginary and odd.

If g(x) isred, G(s) can be specified entirely by non-negative frequencies (s2 0). That is,
only ¥z of the Fourier information is necessary to specify area function.

If g(x) isimaginary, then G(s) is Anti-Hermitian symmetric (e.g. G(s) = -G*(-9) ).
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Proof of 1.
G(9) = p()e P dx

= ge(x) + o(x)[cos 2psx - isin2psx]dx (cosiseven,sinisodd)
= (R(X) cos Zpsxdx + (P(x) cos 2psxdx - i (p(X) sin 2psxdx - i (p(X) Sin 2psxdx

= O dx + cp&x)dx - i p&xX)dx - i Cp&X)dx

¥
=E(s)+0-i>0-i0(s) (cos isevenins,sinisoddiss, ¢pdd(x) =0)
¥

= E(s)- 10(s)
=E(-s5) +iO(-9)

=G*(-s)  QED.

Comment on negative frequencies. Consider areal-valued signa — imagine a voltage on awire
or the sound pressure against your eardrum — the Fourier transform of these is completely
specified by the positive frequencies (e.g. G(-s) = G*(s)). We can argue that we have the
concept of afrequency (oscillations/second), but it doesn’t really make physical sense to talk
about positive or negative frequencies. In this case, we could argue that the having positive and
negative frequencies is merely a mathematical convenience. Are there cases where negative
frequencies have meaning? Consider the bit in adrill — it can turn clockwise or counter
clockwise and different rotational rates. Here positive and negative frequencies have physical
meaning (the direction of rotation). Aswe shall see, the magnetic moment in MRI isacase
where the sign indicates the direction of precession.

Convolution Definition. The convolution operator is defined as:
¥

g(x)* h(x) = qgX)h(x- x)dx
-¥
The convolution operator commutes:

¥ ¥
g(x)* h(x) = g@x)h(x- x)dx = @(x- x)h(x)dx =h(x)* g(x)
¥ -¥
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The delta function, d(x). The Dirac delta or impluse function is a mathematical construct that
isinfinitely high in amplitude, infinitely short in duration and has unity area:
d(x) =0 everywhereexcept x=0 and ¢d(x)dx=1
Most properties of d(x) can exist only in alimiting case (e.g. as a sequence of functions
g, (xX) ® d(x)) or under an integral. Some important properties of d(x) :
oA (X)g(x)dx = g(0), with g(x) continuousat x =0

od (x- a)g(x)dx = g(a), with g(x) continuousat x = a

oA (ax)g(x)dx = g(O) with g(x) continuousat x =0

Ial
F{d(0} =1

Delta function properties. First two are technically only defined under the integral, but we'll
still talk about them.

Similarity (stretching)

d(@ax) = —-d(x)
]

Product/Sampling

g(x)d(x- a) = g(a)d(x- a)

Sifting

Pd(x- a)dx = g(a)

Convolution

9(x)*d(x) =d(x)* g(x) = g(x)

g(x)*d(x- &) =d(x- a)* g(x) = g(x- a)

Fourier Transform Theorems. There are many Fourier transform properties and theorems.
Thisisapartia list. Assumethat F{g(x)} =G(s),

Linearity F{ag(x) + bh(x)} = aG(s) + bH(s)
Similarity (stretchi
milarity (stretching) F{g(ax)} = ;1 68939
Shift F{g(x- @)} =G(s)e'®
Convolution F{a(¥)* h(x)} = G(s)H (s)
Product F{g(X)h(x)} =G(s)* H(s)

Complex Modulation

F{g(x)e®**} =G(s- )

Modulation F{g(x) cos(2psyx)} :%[G(s- S) +G(s+ so)]
F{g(x)sin(2ps,%)} = 2[G(s- 5) - G(s+ )]

Rayleigh’s Power (‘|g(x)|2dx :(‘|G(s)|2ds

Cross Power

C9()h* (X)dx =¢G(s)H * (s)ds

3

F{h(x)} = H(s)and that a and b are constants:
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Axis Reversa F{g(- )} =G(-9)
Complex Conjugation F{g*(X)} =G*(-9)
Autocorrelation F{g(X)* g* (- X)} = G(s)G* (s) = |G(S)|2
Reverse Relationships F{G(X)} =g(-9)
F{G*(¥)}=9g*(s)
Differentiation FLd g(x)f =i2p5G(9)
Moments i d
F{xg(x)} = . dsG(S)

Some common FT pairs:

9(x) G(s)
1 d(s)

d(x) 1
cos(2ps,X) 1[d(s- sp) +d(s+sp)]
sin(2psoX) Ld(s- s)- d(s+ )]

_, 1 M<3 sing(x) = SNeX)

rect(x)—{o |><|3§ (X) ox
sinc(x) rect(s)
1- 1 sinc’(s)
trianglg(x) ={ O|X| Ijjl

o P e ps’

1 x30 1

sgn(x) ={_ 1 x<0 ips

e X 2

1+(2ps)®
e *,for x > 0; 0, otherwise 1-i2ps
1+(2ps)®

X o

Jo(20%) rect(s/2)
p(- 5°)*
comb(x) comb(s)

The comb function, comb(x). The sampling or “comb” function isatrain of deltafunctions:

¥
comb(x) = & d(x- n)
n=-¥
The Fourier transform of comb(X) is:
F{comb(x)} = comb(s)
Proof.
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F{comb(x)} = F| a d(x- n)Eg = & e'2lons =F(s)
Tn=-¥ -
The RHS of the above expression can be viewed as the exponentlal Fourier series representation

of aperiodic function F(s) with period 1 and a, = 1 for al n. The Fourier series expressions are:

S ” i2
F(s)= aa.e®" wherea, = gF(s)e ' ds.

n=-¥ A

¥
Now, let G(s) = rect(s)F(s) (one period of F(s)) andthus F(s) = § G(s- m). Now observe that

m=- ¥

A ) ¥ )
= OF () ' Pds= G(s)e”' P ds=F{G(9)},_ =
,}/2 - ¥
One function that satisfies this relationship is G(s) = d(s). Thus, one possible Fourier transform
of comb(X) is:
¥
F(s)= & d(s- m)=comb(s)

m=- ¥

By uniqueness of the Fourier transform, thisis the unique Fourier transform of comb(x).

Sampling and replication by comb(x). The comb function can be used to sample or extract
values of acontinuousfunction g(x). Sampling with period X can be done as.

g(x)comb(5) = a g(x)d (5 - n) =X a g(X)d(X nx) =X a g(nX)d(X nXx).
n=- n=-
By the stretching and S|ft| ng properties of the del tafunctl on. A function g(x) can be replicated
with period X by convolving with a comb function:

¥ ¥ ¥
900" comb(3) = & [909 a5~ =X & [a007d0x- 9] =X & glx- nx)

By the stretching and convolution properties of the delta function.

Sampling Theory. When manipulating real objectsin a computer, we must first sample the
continuous domain object into a discretized version that the computer can handle. As described
above, we can sample a function g(x) at frequency fs = 1/X using the comb function:

9s(X) = g(x)comb(5;) = X ag(nX)d(X nXx).

n=

The Fourier transformis;
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G5 (s) = G(s)* Xcomb(Xs)

=G(9)* ng(Xs- m)

m=- ¥

-G(9* Ad(s- )

m=- ¥

¥
= a G(s- mfy)
m=-¥
Thus, sampling in one domain leads to replication of the spectrum in the other domain. The
spectrum is periodic with period fs. Typicaly, only frequencies less than f4/2 can be represented
in the discrete domain signal. Any components that lie outside of this spectral region
(- fo/2£s£ f /2) resultsin “adiasing” — the mis-assignment of spectral information.

A

; - ) Replicated
G(s) Origina G(9) ep
Spectrum Spectra

ny
0wy

£42 / 42

Aliasing
The Whittaker-Shannon sampling theorem states that a band limited function with maximum
frequency smax can be fully represented by a discrete time equivalent provided the sampling
frequency satisfies the Nyquist sampling criterion:
fo= i 3 2s,
S x aX
If thisis the case, then the original spectrum can be extracted (by filtering) and by uniqueness of
the FT, the original signal can be reconstructed. To reconstruct the origina signa, we apply a
reconstruction filter H(s) = rect(s/ f,) = rect(Xs):

G(s) = Gg(S)H () = G¢(S)rect(Xs)

=G(s),if thereisnodiasng
In the x domain, thisresultsin “sinc” interpolation:
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9(x) = g, (%) * % sinc(x)

g(nX)d (x- nX)g* sinc(z)
u

Qm) D~
Dox

-¥

¥

= g sinc(=)g(nX)

n=-¥

If the Nyquist criterion is met, then §(x) = g(x).

A Info from dl
49(x), gs(n) 19k samples contribute

. /to this point

Units. If x has units of Q, then swill have units of “cycles’Q” or Q. Please note that under our
definition of the FT, thisis not an angular frequency with units of radians/Q, but just plain Q™.
Please aso keep in mind that x isthe index of variation — for example, we can have g(x)
represent a velocity that varies as a function of spatial location x. The function g(x) has units
cmV/'s, but x has units cm and G(s) has units of cm/s, but s has units of cmi™.

Examples:
X s
Time Temporal Frequency
s (seconds) s', Hz, cycles/s
Distance Spatia Frequency
cm cm’, cycles’cm
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The 2D Fourier Transform

Definition. The 2D Fourier Transform (FT) relates a function to its frequency domain
equivalent. The FT of afunction g(x,y) is defined by the 2D Fourier integral:

¥ ¥
G(u,v) = F{a(x. )} = ¢ dp(x y)e ' WMaxay
S¥ ¥
Thereisaso an inverse FT relationship:
¥ ¥
g(x,y) = F {G(u,v)} = ¢ ¢Buv)e®“ Mdudy
S¥ ¥

Uniqueness. Given the existence of the inverse FT, it followsthat if the FT exists, it must be
unique. That is, for afunction formsaunique pair with its FT:

g(x,y) « G(u,v)

2D FT in Polar Coordinates. We consider a special case where the functiona form of g(x,y) is
separable in polar coordinates, that is, g(r,q) = gr(r)go(d). Since go(q) isperiodicin g, it hasa
Fourier series representation:

¥ .
0,@)=a ae™.
n=-¥

It can be shown that
{ s\ N Ain N
Fao{0a(r)E™} = (-1)"€" 5} 2pge (1), (2prr relr
where the part under the integral in known as the Hankel transform of order n, and J, (3, isthe
n" order Bessel function of the first kind:
— i L _iasnj -nj )
J,(a)= 2 Q e d .

(Derivation of the Hankel transform relationship relieson e ' 04" = g 1#mesa-f) y Thyg the
2D FT in polar formis:

G(r ) = F{gn(Ngo @)} = & a(-1)"€" ) 204(r)3,(2prr rar
For the specia case of circular symmetry of g, that is, g(r,q) = gr(r), then:
G(r ) =G(1) =2 ) Ga(r) 3, (2prr )rcr

which isalso acircularly symmetric function. The inverse relationship is the same:

gr(r)=2p (S G(r)J,(2prr )rdr

Some Symmetry Propertiesof the FT.
1. If g(xy) isred, then G(u,v) is Hermitian Symmetric, that is, G(u,v) = G*(-u,-v).
2. 1f G(u,v) isred, then g(x,y) is Hermitian Symmetric, that is, g(x,y)= g* (-X,-y).
3. If g(xy) isred and even, then G(u,v) isalso real and even.
4. If g(r,q) = gr(r) (circularly symmetric), then G(r ,f ) = G(r) (circularly symmetric).
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The delta function, d(x, y). The deltafunction intwo is equal the to product of two 1D delta
functions d(x,y) =d(x)d(y) . Inamanner similar to the 1D delta function, the 2D delta
function has the following definition:

d(x,y) =0 everywhereexcept (x,y) =(0,0) and ¢ cd(x, y)dxdy =1
Most properties of d(X,y) can be derived from the 1D delta function. Thereisalso a polar
coordinate version of the 2D delta function: d(x,y) =d(r)/pr.

Fourier Transform Theorems. Let a and b are non-zero constants and F{g(x,y)} = G(u,v) and
F{h(x,y)} = H(u,v).

Linearity F{ag(x, y) +bh(x y)} = aG(u,v) +bH (u,v)
Magnification F{g(axby)} = o b| (u v)

Shift F{g(X -ay- b)} — G(U,V)e- i2p (ua+vb)
Complex Modulation Fig(x y)ei2p(xa+yb)}: G(u- a,v- b)
Convolution/Multiplication g(x ¥)* *h(x, y) = g (x,h)h(x- x, y - h)dxdh

F{g(x, y)**h(x, y)} = G(u,v)H (u,v)
F{g(x, y)h(x, y)} = G(u,v) * *H (u,v)

Correlation g(x,y) - - h(x, y) = X, h)h* (x+x, y+h)dxdh
F{g(x y) - -h(x, y)} = G(u,v)H * (u,v)
Floxy)- - g(x y)} =|Gu,v)°

Separability 9(x,y) = 9x (¥ gy (y)

F{a(x, y)} = Fip x{9x (X} Fip,y{ 9y (V)}

=Gx (U)Gy (v)

Power (% y)|2dxdy = C‘Q‘jG(u,v)|2dudv

@ (% y)h* (x, y)dxdy = qf>(u, V)H * (u, v)dudv
Axis Reversal F{a(- x- ¥)} =G(-u,-v)
Conjugation F{g*(x,y)} =G*(-u,-Vv)
Reverse Relationships F{G(x, y)} = g(- u,- V)

{G* (% )} = g(u,v)
Derivative
- 9(X y)% i2puG(u,v)

DC Vaue G(0,0) = @ 9(x, y)dxdy
Eigenfunction of Linear Space F{ein(aX+by) *xh(x, y)}: H(a,b)d(x- a,y- b)

Invariant Systems ol 20 (ax+by) « *h(x,y) = H(a, b)ein(ax,by)
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Some common 2D FT pairs:

1/9/03

1 d(u,v)
d(xy) 1
d(x- a,y-b) o 12 (Ua+vb)
ol 2p (ax+by) d(u- a,v- b)

2 2 2
e' pr - e' pX e' py

e' pr 2 = e' puze' pV2

cos(2px) = cos(2px) >1

1d(u- n+d(u+nld(v)

rect(y) =1rect(y) d(u)snc(v)
rect(ax)rect(by) |al s'nc(z—“;)sjnc(%)
_ _Lr£l Ji(2pr) _ .
circ(r) _{O,r o1 - jinc(r))

n e

comb(x,y) = comb(x)comb(y) comb(u,v) = comb(u)comb(v)

The comb function in 2D, comb(x,y). The 2D sampling or comb function is defined as
comb(x,y)=comb(x)comb(y) and has the 2D FT F{ comb(x,y)} = comb(u,v). Formally, the 2D
comb function is defined as:

¥
comb(x,y) = g d(x- n,y- m)
n,m=-¥
In amanner similar to the 1D case, we can prove that Fourier transform of the 2D comb function
isaso a2D comb function as given in the above table.

Sampling Theory in 2D. Inamanner smilar to sampling in 1D, sampling in 2D can be
modeled as multiplying a function times the 2D comb function. With sample spacing of X and Y,
in the x and y directions, the sampled function is:

g.(% ) = g(x y)comb(£,¥) =g(x,y) & d(z- n¥- m

n,m=-¥

¥
= XY §d(x- nX,y- mY)g(x,y)

n,m=-¥

¥
= XY § d(x- nX,y- mY)g(nX,mY)
n,m=-¥
The discrete domain equivalent is gq(n,m) = g(nX, mY) = g¢(nX, mY). In the Fourier domain, the
result is:

10
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G, (u,v) = G(u,v)** XYcomb(Xu, Yv)

=G(u,v)** gd(u- V- )

n,m=- ¥

¥
= a6Wu-v-9)
n,m=-¥
Thus, sampling in one domain leads to replication of the spectrum in the other domain. Spacing
of the replicated spectrais (1/X,1/Y). The Whittaker-Shannon sampling theorem in 2D states that
aband limited function with maximum frequencies Smaxx and Smaxy Can be fully represented by a
discrete time equivaent provided the sampling frequency satisfies the Nyquist sampling
criterion:
1 2s and13 2s. ..
X Y Y

max, X

Under these circumstances, there is no spectral overlap (or aliasing) the original spectrum and by
uniqueness of the FT, the original signal can be reconstructed.

To reconstruct the original signal, we apply areconstruction filter H (u,v) = rect(Xu)rect(Yv).
é(u, V) = Gg(u,v)H (u,v) = G4(u, v)rect( Xu)rect(Yv)
=G(u,v),if thereisnodiasng
snpx

In the (X,y) domain, this corresponds to “sinc” interpolation in 2D (sinc(x) =

):

a(x,y) = g4(x, ¥)** s sinc(x)sinc(y)

é & u . :
=a é d(x- nX,y- mY)g(nX,mY)g* *sinc(¥)snc(s)
Em=-¥ a

¥
= § snc(2)sinc(X™M)g(nX, mY)

n,m=- ¥

¥
= Q snc()snc(X™)g, (n, m)

n,m=-¥
The last line demonstrates how the original continuous signal can be retrieved from the discrete
sampled version of g(x,y).

11
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Relatives of the FT and Other FT Relationships

2D Discrete Space FT. Above, we saw that a sampled signal resulted in a periodic extensonsin
k-space. Accordingly, the signal is defined by a single period of that space, e.g.
G (u, v)rect(Xu)rect(Yv) . The 2D discrete space Fourier transform is a normalized version of
the 2D continuous domain Fourier transform of a sampled object.
¥ ¥
Gawyx,wy)=a a 9gq(nme
n=-¥ m=-¥
where is gq¢(n,m) = g(nX, mY). Theinverse FT relationshipis:
[
gq(n,m) = iz O O Gy Wy ,wy)e W WY M) vy iy
-p-p

i (Wy n+wy m)

we now recognize that

Go(U,V) = XY Gy Wx Wy ) by ok e, =2pwy

One can consider G4 (wy ,wy ) €ither to be space limited to (-p, p) or periodic with period 2p in
both directions.

2D FT of Period Signals. Suppose we define aperiodic signa g(x, y) that is period in x with
period X and periodic in y with period Y as:.

¥y ¥
gxy)= & a gxv(x-nX,y-my)
n=-¥ m=-¥
s &
=0xy(x,Y)**a a dx-nX,y- my)
n=-¥ m=-¥

1 aeXxX yo
= X, y)* * —— com
=Oxy (X Y) Xy XY o

where gyy (X, Y) iszero outside of thedomain [0: X)“ [0:Y). The Fourier transform of this
functionis:
G(u,v) = Gyy (u, v)comb(Xu Yv)

&1 k | 60

= Gyy (U, V)G— a a dQU' — V- ——Z
XY y—yi—x € X Y g

¥ ¥ .

o o 1 ﬂ |O% k |O
= Gy & S v L
ki,i XY XMEX'Yp & X' Yg

2D Fourier Series. The above expression makes the relationship between the 2D Fourier
transform and the 2D Fourier series obvious. Taking the inverse 2D FT of the above we get:

12
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¥ ¥
G(xy) =F HGuV)} = ¢ Buv)e?® ™ Wdud
-¥-¥
Lok ly
X 1 ak 1oty
=ad ada obxyeg €
k=-y 1=y XY eX Yg
gé gé i2p€d%+lvy9
=a a &«e ° °

which isthe 2D Fourier series representation of a 2D periodic signal, where the Fourier series
coefficients ¢ | are:

o0, =Lt g g 10
kI~ yy XYgx’Y
1
=—Flox x V) _k 1
XY |u_x’u_y
¥ ¥ i @K MO
1 . iI2pg_+_=
:_Y O (Pxv (X y)e eX Y agxdy
VAR
1 XY i ?%;%9
=—- 0p(xye ¢ Zdxdy
XYOO

Thus, aperiodic signa can be represented by a discrete set of coefficients.

2D FT of Discrete and Periodic Signals. A discrete signal leads to period Fourier domain and
the periodic signal leadsto a discrete Fourier domain. So, the 2D FT of adiscrete and periodic
signal should be discrete and periodic. Let g4(n,m) be period with periods N, M. To find its

2D FT wetake Gy (wy ,wy) and evaluate it at wy =2%k,wY = %I to yield the 2D Discrete
FT:

_ N-1M-1 -iszSLk+ﬂ9
Gy(k)=a a Ga(nme N Mo
n=0 m=0
for k,IT z2. Gy (k,I) isaso periodic with periods N, M. Theinverse FT is:
1 NIM-1_ jop &K, M0
gainm=——2a8 a Gy(kl)e &N Mo
NM 2o 120

13
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2D Discrete FT of afinite series. In the above case, since both g4(n,m) and éd (k,I) are
periodic with periods N, M. Each can be complete described by afinite 2D series (of sizes
NxM). Thus, we can define the 2D DFT of afinite discrete series, gq4(n, m), using an

assumption of a periodic extension — that is, in determining its spectrum we assume that we are
just looking at asingle period of the function. Thus, the 2D DFT is:

N-1M-1 Ligp @K, MmO
GakD=a a gq(nme N Mo
n=0 m=0

for nmi (O:N-1)" (0:M-1) and k,IT (0:N-12)" (0:M -1). Theinverse FT is:

1 N1M-1 jop &K, M0
ga(nm=="2a a Gykle &N Mo
NM =0 120

These functions are implemented by Matlab’'s fft2 and ifft2 function.

These related to the continuous FT by the following relationshis:

1 ek | 6
Gu(kl)=—G — 9
a (kD) =50 G X MY &

(and recdll the Gg =G for abandlimited g).

14
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Examples of Fourier Transforms:

2D datain Low gpatial freq High spatial freq
image domain data (image domain) data (image domain)

2D datain Low gpatial freq High spatial freq
Fourier domain data (Fourier domain) data (Fourier domain)

15
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g(x.y) = rect(x)rec(y)
G(u,v) = sinc(u)sinc(v)

scaling (magnification)
property

scaling (magnification)
property

shifting property

modulation

Abs(Fourier)

Real (Fourier)

1/9/03

Imag(Fourier)

16
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1/9/03

g(x,y) = sinc(x)sinc(y)
G(u,v) = rect(u)rect(v)

sampling pattern with Dx = Dy

In the Fourier transform we have the
replication pattern with spacing

1/Dx = 1/Dy

sampling pattern with Dx < Dy

In the Fourier transform we have the
replication pattern with spacing

1/Dx > 1/Dy

sampling pattern with Dx << Dy
Thishasdiasing in they (v) direction

Image Data Fourier Data
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