Homework #2

Due Date: October 5, 2004

- 1. The purpose of this problem is to visualize the effect of frequency dependent dispersion in an ultrasound system. Use the following parameters: $f_0 = 1.5$ Mhz, c = 1500 m/s, attenuation is $\beta = 0.1$ cm⁻¹MHz⁻¹. Compute and plot the envelope of the received signals for ideal reflectors (R=1) at depths z=0, 4, 8, and 12 cm. Use the template Matlab program "templateh02 1.m" on the course web site. Do this for:
 - a. $a(t) = rect(t f_0/3)$
 - b. $a(t) = exp[-(tf_0/3)^2]$
 - c. Comment on the differences in dispersion between these pulses. Which would make a better pulse to use in a practical ultrasound system? Why?
- 2. The power density in a pressure wave is given by $I \propto p^2$, where *p* is the amplitude of the pressure wave. Suppose we have a boundary between two media that have impedances Z_A and Z_B , where $Z_B = 5Z_A$.
 - a. Calculate the reflected and transmitted power density through the boundary assuming the angle of incidence $\theta = 0$ and the power density of the incident wave is I_{0} . (Pressure wave goes from A to B.)
 - b. Instead of going directly from medium A to medium B, we insert two intermediate media (C & D), where $Z_C = 2Z_A$ and $Z_D = 3Z_A$. (Pressure wave goes from A to C to D to B.) Calculate power density transmitted to medium B through these 3 boundaries assuming the angle of incidence $\theta = 0$. This is a form of impedance matching. Please neglect multiple reflections.
- 3. Consider a planar ultrasound transducer with no focusing. We are going to examine the transmit diffraction pattern in 1D (ignore y dimension). Assume that the transducer height is $2a = 10 \text{ mm} (C(x) = \text{rect}(x/2a)), f_0 = 1.5 \text{ MHz}, \text{ and } c = 1500 \text{ m/s}.$
 - a. What is the wavelength (λ) of the sound waves and what is the wavenumber (k)? At what approximate depth does the Fraunhoffer zone begin?
 - b. Using the Fresnel approximation, determine the magnitude of the pressure response as a function of x_z for z = 25, 50, 100, 200 mm. Specifically, plot $|p(z,x_z)|$ vs. x_z . Use the template Matlab program "templateh02_3.m" on the course web site.
 - c. For each depth, estimate the width of the response (e.g. the width at 50% of the peak response know as FWHM for Full-Width Half-Maximum).
 - d. Determine (analytically) the Fraunhoffer approximation for z = 100, 200 mm. Plot your analytical expression for $|p(z,x_z)|$ vs. x_z and compare your results to part 3(b).
- 4. Consider the ultrasound transducer of problem 3, but now we add focusing.
 - a. Determine the complex aperture function for a focusing plane at z = 50 mm.
 - b. Using the Fresnel approximation, determine the magnitude of the pressure response as a function of x_z for z = 25, 50, 100, 200 mm. Specifically, plot $|p(z,x_z)|$ vs. x_z . This will also use the template Matlab program "templateh02_3.m" on the course web site (case = 2).
 - c. For each depth, estimate the FWHM of the response. Compare these to the results in problem 3(c).
 - d. Determine (analytically using the FT) and expression for $|p(z,x_z)|$ vs. x_z for z = 50 mm. Compare your results to part 4(b).