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Notes on the Fourier Transform 
 
Definition.  The Fourier Transform (FT) relates a function to its frequency domain equivalent.  
The FT of a function g(x) is defined by the Fourier integral: 

dxexgxgFsG xsi∫
∞

∞−
−== π2)()}({)(  

for ., ℜ∈sx   There are a variety of existence criteria and the FT doesn’t exist for all functions.  
For example, the function g(x) = cos(1/x) has an infinite number of oscillations as 0→x and the 
FT integral can’t be evaluated.  If the FT does exist, then there is an inverse FT relationship: 

dsesGsGFxg xsi∫
∞
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Uniqueness:  Given the existence of the inverse FT, it follows that if the FT exists, it must be 
unique.  That is, for a function forms a unique pair with its FT: 

)()( sGxg ↔  
 
Caveat.  An exception to the uniqueness property is a class of functions called “massless” or 

“null” functions.  An example is the continuous function 
0,0
0,1

{)(
≠
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=
x
x

xf .  This function and others 

like it have the same Fourier transform as f(x) = 0: F(s) = 0.  Thus, the uniqueness exists only for 
a function plus or minus arbitrary null functions.  In practice, these functions are not realizable 
(energyless) and thus, for the purposes of this class we will assume that the FT is unique. 
 
Alternate FT Definition.  In the above derivation, the s is the frequency parameter.  There is 
another common FT definition that uses a radian frequency parameter ω: 
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with an inverse FT of: 
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Units.  If x has units of Q, then s will have units of “cycles/Q” or Q-1.  Please note that under our 
definition of the FT, this is not an angular frequency with units of radians/Q, but just plain Q-1.  
Please also keep in mind that x is the index of variation – for example, we can have g(x) 
represent a velocity that varies as a function of spatial location x.  The function g(x) has units 
cm/s, but x has units cm and G(s) has units of cm/s, but s has units of cm-1.   
 
Examples: 

x s 
Time 

s (seconds) 
Temporal Frequency 

s-1, Hz, cycles/s 
Distance 

cm 
Spatial Frequency 
cm-1, cycles/cm 
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Symmetry Definitions.  We first decompose some function g(x) in to even and odd components, 
e(x) and o(x), respectively, as follows: 
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A function, g(x), is Hermitian Symmetric (Conjugate Symmetric) if: 

)(*)()()(
thus,
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Symmetry Properties of the FT.  There are several related properties: 
1. If g(x) is real, then G(s) is Hermitian symmetric (e.g. G(s) = G*(-s) ). 
2. If g(x) is real and even, G(s) is real and even. 
3. If g(x) is real and odd, G(s) is imaginary and odd. 
4. If g(x) is real, G(s) can be defined strictly by non-negative frequencies ( 0≥s ). 
5. If g(x) is imaginary, then G(s) is Anti-Hermitian symmetric (e.g. G(s) = -G*(-s) ). 
 
 
Proof of 1. 
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Comment.  One interesting consequence of the symmetry properties is that if g(x) is real, the only 
one-half of the Fourier transform is necessary to specify the function – this follows from 
property 1. above.  More specifically, g(x) is strictly determined by G(s) for all non-negative 
frequencies (s). 
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Comment on negative frequencies.  Consider a real-valued signal – imagine a voltage on a wire 
or the sound pressure against your eardrum – the Fourier transform of these is completely 
specified by the non-negative frequencies (e.g. G(-s) = G*(s)).  We can argue that we have the 
concept of a frequency (oscillations/second), but it doesn’t really make physical sense to talk 
about positive or negative frequencies.  In this case, we could argue that the having positive and 
negative frequencies is merely a mathematical convenience.  Are there cases where negative 
frequencies have meaning?  Consider the bit in a drill – it can turn clockwise or counter 
clockwise and different rotational rates.  Here positive and negative frequencies have physical 
meaning (the direction of rotation).  As we shall see, there are cases in medical imaging where 
this distinction is important, for example, the magnetic moment in MRI is a case where the sign 
indicates the direction of precession. 
 
Convolution Definition.  The convolution operator is defined as: 

∫
∞

∞
−=

-
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The convolution operator commutes: 
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The delta function, ).(xδ   The Dirac delta or impluse function is a mathematical construct that 
is infinitely high in amplitude, infinitely short in duration and has unity area: 
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≠
=∞
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Most properties of )(xδ  can exist only in a limiting case (e.g. as a sequence of functions 
)()( xxgn δ→ ) or under an integral.  Some important properties of )(xδ : 
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Delta function properties.  First two are technically only defined under the integral, but we’ll 
still talk about them. 
Similarity (stretching) )(

||
1)( x
a

ax δδ =  

Product/Sifting )()()()( axagaxxg −=− δδ  
Sifting ∫ =− )()()( agdxaxxg δ  
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Convolution 
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Fourier Transform Theorems.  There are many Fourier transform properties and theorems.  
This is a partial list.  Assume that )()}({ sGxgF = , )()}({ sHxhF = and that a and b are constants: 
 
Linearity )()()}()({ sbHsaGxbhxagF +=+  
Similarity (stretching) )(1)}({
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Rayleigh’s Power  ∫∫ = dssGdxxg 22 )()(  
Cross Power ∫∫ = dssHsGdxxhxg )(*)()(*)(  
Axis Reversal )(*)}({ sGxgF =−  
Complex Conjugation )(*)}(*{ sGxgF −=  
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Reverse Relationships )()}({ sgxGF −=  
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Some common FT pairs: 
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<

=
x
x

x  
s

ss
π

π )sin()(sinc =  

sinc(x) rect(s) 
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comb(x) comb(s) 
 
The comb function, comb(x).  The sampling or “comb” function is a train of delta functions:  

∑
∞

−∞=
−=

n
nxx )()(comb δ  

The Fourier transform of comb(x) is: 
{ } )(comb)(comb sxF =  

Proof. 
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n
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
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The RHS of the above expression can be viewed as the exponential Fourier series representation 
of a periodic function F(s) with period 1 and αn = 1 for all n.  Recall, the Fourier series 
expressions are: 
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n
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n ∫∑
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22 )(  where,)( ππ αα . 

Now, let G(s) = rect(s)F(s) (one period of F(s)) and thus ∑
∞

−∞=
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m
msGsF )()( .  Now observe that  
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One function that satisfies this relationship is G(s) = δ(s).  Thus, one possible Fourier transform 
of comb(x) is: 

)(comb)()( smssF
m

=−= ∑
∞

−∞=
δ  

By uniqueness of the Fourier transform, this is the unique Fourier transform of comb(x). 
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Sampling and replication by comb(x).  The comb function can be used to sample or extract 
values of a continuous function g(x).  Sampling with period X can be done as: 

∑∑∑
∞

−∞=

∞

−∞=

∞

−∞=
−=−=−=

nnn
X
x

X
x nXxnXgXnXxxgXnxgxg )()()()()()()(comb)( δδδ . 

By the stretching and sifting properties of the delta function.  A function g(x) can be replicated 
with period X by convolving with a comb function: 
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nnn
X
x

X
x nXxgXnXxxgXnxgxg )()(*)()(*)()(comb*)( δδ  

By the stretching and convolution properties of the delta function. 
 
Sampling Theory.  When manipulating real objects in a computer, we must first sample the 
continuous domain object into a discretized version that the computer can handle.  As described 
above, we can sample a function g(x) at frequency fs = 1/X using the comb function: 

∑
∞

−∞=
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n
X
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The Fourier transform is: 

∑
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Thus, sampling in one domain leads to replication of the spectrum in the other domain.  The 
spectrum is periodic with period fs.  Typically, only frequencies less than fs/2 can be represented 
in the discrete domain signal.  Any components that lie outside of this spectral region 
( 2/2/ ss fsf ≤≤− ) results in “aliasing” – the mis-assignment of spectral information. 
 

G(s)

s

G(s)

s
-fs/2 fs/2

Original
Spectrum

Replicated
Spectra

Aliasing  
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The Whittaker-Shannon sampling theorem states that a band limited function with maximum 
frequency smax can be fully represented by a discrete time equivalent provided the sampling 
frequency satisfies the Nyquist sampling criterion:  

max21 s
X

fs ≥=  

If this is the case, then the original spectrum can be extracted (by filtering) and by uniqueness of 
the FT, the original signal can be reconstructed. To reconstruct the original signal, we apply a 
reconstruction filter )(rect)/(rect)( XsfssH s == : 

aliasing no is  thereif ,)(

)(rect)()()()(ˆ

sG

XssGsHsGsG ss
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==
 

In the x domain, this results in “sinc” interpolation: 

)()(sinc

)(sinc*)()(

)(sinc*)()(ˆ 1
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
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
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If the Nyquist criterion is met, then )()(ˆ xgxg = . 
 

g(x), gs(n)

x

g(x)

x

Info from all
samples contribute
to this point

 
 

 
1D Linear Systems 

 
Consider a system S[.] with an input function f(x) and an output or response function g(x) = 
S[f(x)].  This system is linear if and only if: 
 

[ ] [ ] [ ] )()()()()()( 212121 xgxgxfSxfSxfxfS βαβαβα +=+=+  
 

for all α, β, f1 and f2.  More generally, the superposition of an arbitrary set of input functions will 
yield a net response that is the superposition of responses to each input function alone.  
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Additionally, if any input is scaled (e.g. by α) then the output will also be scaled by the same 
amount.   
 
Based on the sifting properties of the delta function, we know that  

∫
∞

∞−

=−= )(*)()()()( xxfdxfxf δξξδξ  

which is the superposition of an infinite number of weighted and shifted delta functions.  Based 
on linearity the output of this system g(x) = S[f(x)] is: 

[ ]∫∫
∞

∞−

∞

∞−

−=











−= ξξδξξξδξ dxSfdxfSxg )()()()()(  

(The system operates on functions of x and f(ξ) is a constant scaling factor.)  S[δ(x- ξ)] is a 
special function know as the impulse response and can is defined as: 
 

[ ])();( ξδξ −= xSxh  
 

is the response to an impulse located at x = ξ and 

∫
∞

∞−

= ξξξ dxhfxg );()()(  

is known as the superposition integral.  This representation for the output is valid for any linear 
system.   
 
Now, consider a system that is shift invariant (or time invariant for functions of time).  We 
define a system as being shift invariant if and only if: 
 

g(x-a) = S[f(x-a)] 
 
for all g and a.  For linear, shift invariant systems, the impulse response can be written as: 
 

[ ] )()0;()();( ξξξδξ −=−=−= xhxhxSxh  
 
The superposition integral then becomes: 

∫
∞

∞−

=−= )(*)()()()( xhxfdxhfxg ξξξ  

the convolution of the input function with the impulse response, h(x).  For linear, shift invariant 
systems (or linear, time-invariant systems) only, we can then consider the Fourier domain 
equivalent: 
 

G(s) = F(s)H(s) 
 
Where H(s) is known as the transfer function or system spectral response. 
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Notes on the 2D Fourier Transform 

 
Definition.  The 2D Fourier Transform (FT) relates a function to its frequency domain 
equivalent.  The FT of a function g(x,y) is defined by the 2D Fourier integral: 

∫ ∫
∞

∞−

∞

∞−

+−== dxdyeyxgyxgFvuG vyxui )(2),()},({),( π  

There is also an inverse FT relationship: 

∫ ∫
∞

∞−

∞

∞−

+− == dudvevuGvuGFyxg vyxui )(21 ).()},({),( π  

 
Uniqueness:  Given the existence of the inverse FT, it follows that if the FT exists, it must be 
unique.  That is, for a function forms a unique pair with its FT: 

),(),( vuGyxg ↔  
 
2D FT in Polar Coordinates.  We consider a special case where the functional form of g(x,y) is 
separable in polar coordinates, that is, g(r,θ) = gR(r)gΘ(θ).  Since gΘ(θ) is periodic in θ, it has a 
Fourier series representation: 

∑
∞

−∞=
Θ =

n

in
neag θθ )( . 

It can be shown that 

{ } ∫
∞

⋅−=
02 )2()(2)()( rdrrJrgeiergF nR

innin
RD ρππφθ  

where the part under the integral in known as the Hankel transform of order n, and )(⋅nJ , is the 
nth order Bessel function of the first kind: 

∫−

−=
π

π

ϕϕ ϕ
π

deaJ nai
n

)sin(

2
1)( . 

(Derivation of the Hankel transform relationship relies on )cos(2)(2 φθρππ −−+− = riyvxui ee .)  Thus, the 
2D FT in polar form is: 

{ } ∫∑
∞∞

−∞=
Θ ⋅−==

0
)2()(2)()()(),( rdrrJrgeiagrgFG nR

inn

n
nR ρππθφρ φ  

For the special case of circular symmetry of g, that is, g(r,θ) = gR(r), then: 

∫
∞

==
0 0 )2()(2)(),( rdrrJrgGG R ρππρφρ  

which is also a circularly symmetric function.  The inverse relationship is the same: 

∫
∞

=
0 0 )2()(2)( ρρρπρπ drJGrgR  

 
Symmetry Properties of the FT.  If g(x,y) is real, then G(u,v) is Hermitian Symmetric, that is, 
G(u,v) = G*(-u,-v).  If g(x,y) is real and even, that is, g(x,y)=g(-x,-y), then G(u,v) is also real and 
even.  Finally, as described above, if we have a real and circularly symmetric function g(r,θ) = 
gR(r), the G(ρ,φ) = G(ρ), a real and circularly symmetric function. 
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The delta function, ).,( yxδ   The delta function in two is equal the to product of two 1D delta 
functions )()(),( yxyx δδδ = .  In a manner similar to the 1D delta function, the 2D delta 
function has the following definition: 

∫ ∫ =
==∞

= 1),(  and  
otherwise  ,0

0  and  0,
{),( dxdyyx

yx
yx δδ  

Most properties of ),( yxδ  can be derived from the 1D delta function.  There is also a polar 
coordinate version of the 2D delta function: ./)(),( rryx πδδ =  
 
Fourier Transform Theorems.  Let a and b are non-zero constants and F{g(x,y)} = G(u,v) and 
F{h(x,y)} = H(u,v). 
 
Linearity { } ),(),(),(),( vubHvuaGyxbhyxagF +=+  
Magnification { } ),(),( 1

b
v

a
u

ab GbyaxgF =  

Shift { } )(2),(),( vbuaievuGbyaxgF +−=−− π  
Complex Modulation { } ),(),( )(2 bvauGeyxgF ybxai −−=+π  
Convolution/Multiplication 

{ }

{ } ),(**),(),(),(

),(),(),(**),(

),(),(),(**),(

vuHvuGyxhyxgF

vuHvuGyxhyxgF

ddyxhgyxhyxg

=

=

−−= ∫ ∫ ηξηξηξ

 

Separability 
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ygxgyxg

YX
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Power 

∫∫∫∫

∫∫∫∫

=

=

dudvvuHvuGdxdyyxhyxg

dudvvuGdxdyyxg

),(*),(),(*),(

),(),( 22

 

Axis Reversal ),(*)},({ vuGyxgF =−−  
 
Some common 2D FT pairs: 
 

),( yxg  ),( vuG  
1 ),( vuδ  

),( yxδ  1 
),( byax −−δ  )(2 vbuaie +− π  

222 yxr eee πππ −−− =  
222 vu eee πππρ −−− =  

1)2cos()2cos( ⋅= xx ππ  [ ] )()1()1(2
1 vuu δδδ ++−  

)(rect1)(rect yy ⋅=  )(sinc)( vuδ  
)(rect)(rect byax  )(sinc)(sinc1

b
v

a
u

ab  

1,0
1,1
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>
≤

=
r
r

r  ))(jinc)2(1 ρ
ρ
πρ

=
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r
1  ρ

1  

comb(x,y) = comb(x)comb(y) comb(u,v) = comb(u)comb(v) 
 
 
The comb function in 2D, comb(x,y).  The 2D sampling or comb function is defined as 
comb(x,y)=comb(x)comb(y) and has the 2D FT F{comb(x,y)}= comb(u,v).  Formally, the 2D 
comb function is defined as: 

∑
∞

−∞=

−−=
mn

mynxyx
,

),(),(comb δ  

In a manner similar to the 1D case, we can prove that Fourier transform of the 2D comb function 
is also a 2D comb function as given in the above table. 
 
Sampling Theory in 2D.  In a manner similar to sampling in 1D, sampling in 2D can be 
modeled as multiplying a function times the 2D comb function.  With sample spacing of X and Y, 
in the x and y directions, the sampled function is: 

),(),(

),(),(

),(),(),(comb),(),(

,

,

,

mYnXgmYynXxXY

yxgmYynXxXY

mnyxgyxgyxg

mn
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Y
y

X
x

Y
y

X
x

s

∑

∑

∑

∞

−∞=

∞

−∞=

∞

−∞=

−−=

−−=

−−==

δ

δ

δ

 

The discrete domain equivalent is gd(n,m) = g(nX, mY) = gs(nX, mY).  In the Fourier domain, the 
result is: 

∑

∑

∞

−∞=

∞

−∞=

−−=

−−=

=

mn
Y
m

X
n

mn
Y
m

X
n

s

vuG

vuvuG

YvXuXYvuGvuG

,

,

),(

),(**),(

),(comb**),(),(

δ  

Thus, sampling in one domain leads to replication of the spectrum in the other domain.  Spacing 
of the replicated spectra is (1/X,1/Y).  The Whittaker-Shannon sampling theorem in 2D states that 
a band limited function with maximum frequencies smax,x and smax,y can be fully represented by a 
discrete time equivalent provided the sampling frequency satisfies the Nyquist sampling 
criterion:  

yx s
Y

s
X max,max, 21 and 21

≥≥  

Under these circumstances, there is no spectral overlap (or aliasing) the original spectrum and by 
uniqueness of the FT, the original signal can be reconstructed. 
 



BME/EECS 516 (2004) FT Notes 12 

 12 

To reconstruct the original signal, we apply a reconstruction filter ).(rect)(rect),( YvXuvuH =  

aliasing no is  thereif ,),(

)(rect)(rect),(),(),(),(ˆ

vuG

YvXuvuGvuHvuGvuG ss

=

==
 

In the (x,y) domain, this corresponds to “sinc” interpolation in 2D (sinc(x) = 
x

x
π

πsin ): 

),()(sinc)(sinc

),()(sinc)(sinc

)(sinc)(sinc**),(),(

)(sinc)(sinc**),(),(ˆ

,

,

,

1

mng

mYnXg

mYnXgmYynXx

yxgyxg

d
mn

Y
mYy

X
nXx

mn
Y
mYy

X
nXx

Y
y

X
x

mn

Y
y

X
x

XYs

∑

∑

∑

∞

−∞=

−−

∞

−∞=

−−

∞

−∞=

=

=









−−=

=

δ

 

The last line demonstrates how the original continuous signal can be retrieved from the discrete 
sampled version of g(x,y). 
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Examples of Fourier Transforms: 
 

 
 2D data in Low spatial freq High spatial freq 
 image domain data (image domain) data (image domain) 
 

 
 2D data in Low spatial freq High spatial freq 
 Fourier domain data (Fourier domain) data (Fourier domain) 
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g(x,y) = rect(x)rec(y) 
G(u,v) = sinc(u)sinc(v) 
 
 
 
 
 
 
scaling (magnification) 
property 
 
 
 
 
 
scaling (magnification) 
property 
 
 
 
 
 
shifting property 
 
 
 
 
 
 
modulation 

  Image Abs(Fourier) Real(Fourier) Imag(Fourier) 
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g(x,y) = sinc(x)sinc(y) 
G(u,v) = rect(u)rect(v) 
 
 
 
 
sampling pattern with ∆x = ∆y 
In the Fourier transform we have the  
replication pattern with spacing 
1/∆x = 1/∆y 
 
 
 
 
sampling pattern with ∆x < ∆y 
In the Fourier transform we have the  
replication pattern with spacing 
1/∆x > 1/∆y 
 
 
 
sampling pattern with ∆x << ∆y 
This has aliasing in the y (v) direction 
 

 
  Image Data Fourier Data 
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2D Linear Systems 
 
Consider an imaging system with an input image I1(x,y) that goes through some system S[.] and 
produces an output image I2(x,y), e.g. I2(x,y) = S[I1(x,y)]. 

 
 
Several properties that we are interested in are: 
 
• Linearity, which as two parts superposition and scaling.  Thus, a system is linear, if and only 

if: 
[ ] [ ] [ ]),(),(),(),( yxhSyxgSyxhyxgS βαβα +=+  

For a linear system, we can define an impulse response as the output of a system for an 
impulse located at position ),( ηξ : 

[ ]),(),;,( ηξδηξ −−= yxSyxh  
and in general, we can define the output, given some input image I1(x,y), using the 
superposition integral: 

∫ ∫
∞

∞−

∞

∞−

= ηξηξηξ ddyxhIyxI ),;,(),(),( 12  

 
• Space Invariance.  A system is space invariant if and only if: 

I2(x-a,y-b) = S[I1(x-a,y-b)] 
for all a, b, and I1.  Alternately, a system is space invariant if and only if the impulse 
response can be expressed in terms of the shifts of the delta function: 

[ ]),(),( ηξδηξ −−=−− yxSyxh . 
Thus, [ ]),(),( yxSyxh δ=  is all that is needed to specify the system.  The superposition 
integral becomes:  

),(**),(

),(),(),(

1

12

yxhyxI

ddyxhIyxI

=

−−= ∫ ∫
∞

∞−

∞

∞−

ηξηξηξ
 

where ** indicates 2D convolution. 
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Example of a 2D Imaging System.  Here we consider a pinhole imaging system:  

 
Is this system linear?  Assuming that the aperture is open or close and that light always travels in 
straight lines through the hole, then yes, the system is linear. 
 
We should then be able to determine the impulse response.  Let’s first consider two different 
magnifications factors – one for the object and one for the pinhole aperture.  For object 
magnification, we imagine the pinhole in infinitely small: 

 
For a shift of η, in the input, we will get a shift of η

a
b

−  in the output plane.  Thus, we define an 

input (source) magnification term as 
a
bM −= .   

 
Consider then a system for a delta function at position ),( ηξ : 

[ ]
),(

),(),;,(
ηξδ

ηξδηξ
MyMxC

yxSyxh
−−=

−−=
 

where the delta function appears scaled by C and at location ),( ηξ MM . 
   
Is this system space invariant?  No – the above expression cannot be written as a function of 

)( ξ−x  and )( η−y . 
 
Now, given an input image I1(x,y), we can still determine the output image using the 
superposition integral (remember the system is still linear):  
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)','(

'')','()','(

),(),(

),;,(),(),(

12

12

1

12

M
y

M
xI

M
C

ddyx
MM

I
M
C

ddMyMxIC

ddyxhIyxI

=

−−=

−−=

=

∫ ∫

∫ ∫

∫ ∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

ηξηξδηξ

ηξηξδηξ

ηξηξηξ

 

The output is a scaled and magnified version of the input image. 
 
For the pinhole magnification,  

 
imagine that the pinhole had a radius of R then the radius in output plane would be R

a
ba + , 

yielding an aperture magnification function of 
a

bam +
= .  Now, suppose we had some aperture 

function a(x,y), this will now be magnified in the output plane.  Thus, the impulse response will 
take on a form similar to:  
 

),(),;,(
m
My

m
MxCayxh ηξηξ −−

=  

and the ouput image will take on the form: 

)','(**)','(

'')','()','(

),(),(),(

12

12

12

m
y

m
xa

M
y

M
xI

M
C

dd
m

y
m

xa
MM

I
M
C

dd
m
My

m
MxaICyxI

=

−−
=

−−
=

∫ ∫

∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

ηξηξηξ

ηξηξηξ

 

Here the output image is the convolution of the scaled and magnified versions of the input image 
and the pinhole function.  Though this system is not space invariant, we were can still able to 
write the output in the form of a convolution (though not a convolution of the input image, but 
with a magnified version of the input image). 
 


