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Notes on the Fourier Transform

Definition. The Fourier Transform (FT) relates a function to its frequency domain equivalent.
The FT of a function g(x) is defined by the Fourier integral:

G(s)= Fig)} =~ g(x)e > dx
for x,s € R. There are a variety of existence criteria and the FT doesn’t exist for all functions.
For example, the function g(x) = cos(1/x) has an infinite number of oscillations as x — 0and the

FT integral can’t be evaluated. If the FT does exist, then there is an inverse FT relationship:

g() = F G} = [ Gs)e?™ds

Uniqueness: Given the existence of the inverse FT, it follows that if the FT exists, it must be
unique. That is, for a function forms a unique pair with its FT:
g(x) & G(s)

Caveat. An exception to the uniqueness property is a class of functions called “massless” or

. . . . ,x=0 . .
“null” functions. An example is the continuous function f(x)= {0 * 0 This function and others
#

>

like it have the same Fourier transform as f(x) = 0: F(s) = 0. Thus, the uniqueness exists only for
a function plus or minus arbitrary null functions. In practice, these functions are not realizable
(energyless) and thus, for the purposes of this class we will assume that the FT is unique.

Alternate FT Definition. In the above derivation, the s is the frequency parameter. There is
another common FT definition that uses a radian frequency parameter w:

G(@) = Flg@)} = [ g(x)e ™ dx = G(s)|,

with an inverse FT of:

=w/2x
2(x) = F 1{G(w)} = e j * G0)e™Pdw
27 9—©

Units. If x has units of Q, then s will have units of “cycles/Q” or Q"'. Please note that under our
definition of the FT, this is not an angular frequency with units of radians/Q, but just plain Q.
Please also keep in mind that x is the index of variation — for example, we can have g(x)
represent a velocity that varies as a function of spatial location x. The function g(x) has units

cm/s, but x has units cm and G(s) has units of cm/s, but s has units of cm™.

Examples:
X S
Time Temporal Frequency
s (seconds) s, Hz, cycles/s
Distance Spatial Frequency
cm cm’, cycles/cm
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Symmetry Definitions. We first decompose some function g(x) in to even and odd components,
e(x) and o(x), respectively, as follows:
e(x)= 3[g(x) +g(=x)]
o(x)=3[g(x) —g(-x)]
thus,
g(x) = e(x) + o(x)
and
e(x) =e(—x) and o(x) =—o(x)
A function, g(x), is Hermitian Symmetric (Conjugate Symmetric) if:
Re{g(x)} = e(x) and Im{g(x)} = o(x)
thus,

g(x) = e(x) +io(x) = g * (—x)

Symmetry Properties of the FT. There are several related properties:

If g(x) is real, then G(s) is Hermitian symmetric (e.g. G(s) = G*(-s) ).

If g(x) is real and even, G(s) is real and even.

If g(x) is real and odd, G(s) is imaginary and odd.

If g(x) is real, G(s) can be defined strictly by non-negative frequencies (s >0 ).

If g(x) is imaginary, then G(s) is Anti-Hermitian symmetric (e.g. G(s) = -G*(-s) ).

Nk =

Proof of 1.
G(s) = j g(x)e ™ dx

= I[e(x) + o(x)[cos 27zsx — i sin 27zsx ]dx (cos is even, sin is odd)
= Ie(x) cos 27msxdx + J'o(x) cos 27msxdx — i.[ e(x)sin 27sxdx — ij o(x) sin 27msxdx

= Ie'(x)dx + J‘o'(x)dx - ijo"(x)dx - ije"(x)dx

=FE(s)+0—i-0—-iO(s) (cos isevenin s,sinisoddiss, Iodd(x) =0)

= E(s)—i0(s)
= E(-s)+i0O(-s)

=G*(-s)  Q.ED.

Comment. One interesting consequence of the symmetry properties is that if g(x) is real, the only
one-half of the Fourier transform is necessary to specify the function — this follows from
property 1. above. More specifically, g(x) is strictly determined by G(s) for all non-negative
frequencies (s).
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Comment on negative frequencies. Consider a real-valued signal — imagine a voltage on a wire
or the sound pressure against your eardrum — the Fourier transform of these is completely
specified by the non-negative frequencies (e.g. G(-s) = G*(s)). We can argue that we have the
concept of a frequency (oscillations/second), but it doesn’t really make physical sense to talk
about positive or negative frequencies. In this case, we could argue that the having positive and
negative frequencies is merely a mathematical convenience. Are there cases where negative
frequencies have meaning? Consider the bit in a drill — it can turn clockwise or counter
clockwise and different rotational rates. Here positive and negative frequencies have physical
meaning (the direction of rotation). As we shall see, there are cases in medical imaging where
this distinction is important, for example, the magnetic moment in MRI is a case where the sign
indicates the direction of precession.

Convolution Definition. The convolution operator is defined as:
o0
g *h(x)= [g(&h(x~&)dE
-00
The convolution operator commutes:

g *h(x) = [g(Oh(x-&)dE = [g(x - HA(E)AE = h(x)* g(x)

The delta function, 6(x). The Dirac delta or impluse function is a mathematical construct that
is infinitely high in amplitude, infinitely short in duration and has unity area:

P d [5(x)dx =1
YV E0.x20 )

Most properties of d(x) can exist only in a limiting case (e.g. as a sequence of functions
g,(x) = o(x)) or under an integral. Some important properties of &(x):
[ 8(x)g(x)dx = g(0), with g(x) continuous at x = 0

j o(x —a)g(x)dx = g(a), with g(x) continuous at x = a

_[5 (ax)g(x)dx = |—1|g(0), with g(x) continuous at x = 0
a

F{o(x)} =1

Delta function properties. First two are technically only defined under the integral, but we’ll
still talk about them.

Similarity (stretching) S(ax) = 1L )

la|
Product/Sifting g(x)6(x —a) = g(a)o(x —a)
Sifting [a5(-ardx = g(@
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Convolution

g(x)*(x) = 6(x)* g(x) = g(x)

g)*o(x-a)=0(x-a)*g(x) =g(x-a)

Fourier Transform Theorems. There are many Fourier transform properties and theorems.
This is a partial list. Assume that F{g(x)} =G(s), F{h(x)} = H(s)and that a and b are constants:

Linearity

F{ag(x)+bh(x)} =aG(s)+bH(s)

Similarity (stretching)

Flg(ax) =|%G<§)

Shift Fig(x—a)} = G(s)e ™

Convolution Fig(x)*h(x)} = G(s)H(s)

Product F{g(x)h(x)} = G(s)* H(s)

Complex Modulation Fig(x)e™} = G(s —s,)

Modulation F{g(x)cos(2ms,x)} = 1[G(s —59) + G(s +5)]
Fig(x)sin(27s0x)} = £ [G(s = 59) ~ G(s +5¢)]

Rayleigh’s Power J.|g(x)|2dx =J.|G(s)|2ds

Cross Power

j g(x)h* (x)dx =j G(s)H * (s)ds

Axis Reversal

Flg(=x)} =G*(s)

Complex Conjugation

Fig*(x);=G*(=9)

Autocorrelation

Fig(x)* g(-x)} = G(s)G * (5) =|G(s)|”

Reverse Relationships

F{G(x)} = g(=9)

Differentiation F {% g(x)} =1i215G(s)

Moments F{xg(x)}:LiG(s)
2r ds

DC Value [ g(x)dx =G(0)

Some common FT pairs:

g(x) G(s)
1 5(s)
o(x) 1
c0s(275 %) L[5(s—s59)+ (s +59)]
sin(275x) %[5(s—s0)—§(s+so)]
rect(x) = {1 | | < % sinc(s) = M
0 |q4=1
sinc(x) rect(s)
=R <1 sinc’(s)
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—me? 2
€ e
) {1 x>0 1
sgn(x) = -
& -1 x<0 i7Ts
o 2
1+ (2m)?
e~ for x > 0;0, otherwise 1-i27s
1+ (2m)?
o 7"
Jo(27mx) rect(s/2)
z(1-s)"
comb(x) comb(s)

The comb function, comb(x). The sampling or “comb” function is a train of delta functions:

comb(x) = > O0(x—n)
n=—ow
The Fourier transform of comb(x) is:
F {comb(x)} = comb(s)
Proof.

F{comb(x)} = F{ ié(x - n)} = fefz’”“ = F(s)

The RHS of the above expression can be viewed as the exponential Fourier series representation
of a periodic function F(s) with period 1 and ¢, = 1 for all n. Recall, the Fourier series

expressions are:
© " VA o
F(s)= Y a,e”™ wherea, = [F(s)e ™ ds.

n=—00 B A

Now, let G(s) = rect(s)F(s) (one period of F(s)) and thus F(s)= > G(s—m). Now observe that

m=—o0
A ) © .
a, = [F(s)e ™ ds = [G(s)e ™ ds = F{G(s)}| _ =1
,% —0
One function that satisfies this relationship is G(s) = &s). Thus, one possible Fourier transform
of comb(x) is:

F(s)= >.6(s—m)=comb(s)
m=—o0
By uniqueness of the Fourier transform, this is the unique Fourier transform of comb(x).
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Sampling and replication by comb(x). The comb function can be used to sample or extract

values of a continuous function g(x). Sampling with period X can be done as:
o0

goomb(E) = Y g(MFE-n) =X YgWS(x-nX)=X ¥ gnX)d(x—nX).

n=-—9o n=—o0 n=—w
By the stretching and sifting properties of the delta function. A function g(x) can be replicated
with period X by convolving with a comb function:

g0 *comb(X) = ¥ [g(0* 8@ -n)]= X S[e(x)*S(x—nx)]= X 3 g(r—nX)

n=—o0 n=—0 n=—00

By the stretching and convolution properties of the delta function.

Sampling Theory. When manipulating real objects in a computer, we must first sample the
continuous domain object into a discretized version that the computer can handle. As described
above, we can sample a function g(x) at frequency f; = 1/X using the comb function:

2,(x) = g(x)comb(2) = X . g(nX)5(x—nX).

n=—0

The Fourier transform is:
G, (s) = G(s)* Xcomb(Xs)

=G(s)* §X5(XS —m)

m

_G(s)* ¥ 8(s—mf,)

m=—00

S G(s - mf,)

m=—0
Thus, sampling in one domain leads to replication of the spectrum in the other domain. The
spectrum is periodic with period f;. Typically, only frequencies less than f/2 can be represented
in the discrete domain signal. Any components that lie outside of this spectral region
(=f,/2<s< f,/2) results in “aliasing” — the mis-assignment of spectral information.

] . 4 Replicated
G(s) Original G(s) p
Spectrum Spectra

v

-fs/2 / fs/2
Aliasing
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The Whittaker-Shannon sampling theorem states that a band limited function with maximum
frequency s,.4c can be fully represented by a discrete time equivalent provided the sampling
frequency satisfies the Nyquist sampling criterion:

1
fS:}ZQ’S

max

If this is the case, then the original spectrum can be extracted (by filtering) and by uniqueness of
the FT, the original signal can be reconstructed. To reconstruct the original signal, we apply a
reconstruction filter H(s) =rect(s/ f,) = rect(Xs):

G(s) = G,(s)H(s) = G, (s)rect(Xs)

= G(s), if thereis no aliasing
In the x domain, this results in “sinc” interpolation:
§(x) = g,(x)* Lsine(3)

- { i g(nX)o(x — nX)} *sinc(s)

n=—00

= i sinc(*4X)g(nX)

If the Nyquist criterion is met, then g(x) = g(x).

n Info from all
42(x), gs(n) te) samples contribute
e to this point
/ \()_/‘ Q ,"" (1‘~-.
x= X

1D Linear Systems

Consider a system S['] with an input function f{x) and an output or response function g(x) =
S[f(x)]. This system is linear if and only if:

Slofi (x) + B> ()] = aS[fi()]+ BS[f2(x)] = agy (x) + Be (x)

for all ¢, B, fi and f,. More generally, the superposition of an arbitrary set of input functions will
yield a net response that is the superposition of responses to each input function alone.
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Additionally, if any input is scaled (e.g. by ) then the output will also be scaled by the same
amount.

Based on the sifting properties of the delta function, we know that
o0
fx)= ff(§)5(x —&)ds = f(x)*6(x)
—00

which is the superposition of an infinite number of weighted and shifted delta functions. Based
on linearity the output of this system g(x) = S[f(x)] is:

g(x) = S[ [GLES 5)4 = [r&slo(-o)kig

(The system operates on functions of x and f{¢) is a constant scaling factor.) S[Xx- &)]isa
special function know as the impulse response and can is defined as:

h(x:€) = S[5(x = &)
is the response to an impulse located at x = & and
g = [ f(&h(x;&)dé

is known as the superposition integral. This representation for the output is valid for any linear
system.

Now, consider a system that is shift invariant (or time invariant for functions of time). We
define a system as being shift invariant if and only if:

gx-a) = S[fix-a)]

for all g and a. For linear, shift invariant systems, the impulse response can be written as:
h(x;§) = S[6(x = &)= h(x - £:0) = h(x &)
The superposition integral then becomes:
B
glx) = ff(é)h(x —5)ds = f(x)* h(x)
the convolution of the input function_\j;ith the impulse response, /4(x). For linear, shift invariant

systems (or linear, time-invariant systems) only, we can then consider the Fourier domain
equivalent:

G(s) = F(s)H(s)

Where H(s) is known as the transfer function or system spectral response.
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Notes on the 2D Fourier Transform

Definition. The 2D Fourier Transform (FT) relates a function to its frequency domain
equivalent. The FT of a function g(x,y) is defined by the 2D Fourier integral:

G(u,v) = Fig(x, )} = [ [ g(x, y)e ™ dxdy

—00—00

There is also an inverse FT relationship:

g(x,y)=F ' {G(u,v)} = j J.G(u.v)eiz”(x”+vy)dudv

—00—00

Uniqueness: Given the existence of the inverse FT, it follows that if the FT exists, it must be
unique. That is, for a function forms a unique pair with its FT:

g(x,y) & G(u,v)

2D FT in Polar Coordinates. We consider a special case where the functional form of g(x,y) is

separable in polar coordinates, that is, g(7,6) = gr(r)ge( ). Since ge(6) is periodic in 6, it has a
Fourier series representation:

go(0)= D ae".

n=—00

It can be shown that

Foplga(re = =iy e™ [ 22g, ()], Qarp)rdr
where the part under the integral in known as the Hankel transform of order n, and J,(-), is the
n"™ order Bessel function of the first kind:

Jn (Cl) — i"‘_’; ei(asin(p—n(p)d¢ .

(Derivation of the Hankel transform relationship relies on e *#*") = ¢ 27<09) y Thys, the
2D FT in polar form is:

Gp.$) = Fig,(Ngo©@)}= Y a, (i) e" - [ 21, ()], Qmrp)rdr

n=—00

For the special case of circular symmetry of g, that is, g(r,6) = gr(r), then:
G(p.§)=G(p) =2x[ g4(r)J,Qp)rdr

which is also a circularly symmetric function. The inverse relationship is the same:

gx(r) =27 [ G(p)J,(2mrp) pdp

Symmetry Properties of the FT. If g(x,y) is real, then G(u,v) is Hermitian Symmetric, that is,
G(u,v) = G*(-u,-v). If g(x,y) is real and even, that is, g(x,y)=g(-x,-y), then G(u,v) is also real and
even. Finally, as described above, if we have a real and circularly symmetric function g(»,6) =
gr(r), the G(p,9) = G(p), a real and circularly symmetric function.
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The delta function, &(x, y). The delta function in two is equal the to product of two 1D delta
functions o(x,y) =0(x)0(y). In a manner similar to the 1D delta function, the 2D delta

function has the following definition:
5( ) {OO,XZO and y:O dIIé‘( )dd 1
X,y)= , an X, y)dxdy =
Y 0, otherwise Y 4
Most properties of o(x, y) can be derived from the 1D delta function. There is also a polar

coordinate version of the 2D delta function: o(x, y)=0(r)/ r.

Fourier Transform Theorems. Let a and b are non-zero constants and F'{g(x,y)} = G(u,v) and
F{h(x.y)} = H(u,v).

Linearity Flag(x, ) +bh(x,y)} = aG(u,v) + bH (u,v)
Magnification Flg(ax,by)}= w G(&, 2

Shlft F{g(x —a,y— b)} — G(u’v)e—ﬂﬂ(ua-%—vb)
Complex Modulation F{g(x, y)e!2rxaryb) }= G(u—a,v—Db)
Convolution/Multiplication 2(x, ») **h(x, y) = J' J’ (& Mh(x— &,y —n)dédn

Flg(x,») **h(x, y)} = G(u,v)H (u,v)

Flg(x, p)h(x,y)} = G(u,v) **H (u,v)

Separability g(x,y)=gx(x)gy(»)
Fig(x,y)} = Fip o A8 x (0} Fip , 18y (1)}

=Gy W)Gy(v)

Power ”|g(x, y)|2 dxdy = J..”G(u, v)|2 dudv

” g(x, )h* (x, y)dxdy = ” G(u,v)H * (u,v)dudv

Axis Reversal Flg(=x,=y)} =G *(u,v)

Some common 2D FT pairs:

g(x,y) G(u,v)
1 5(u,v)
5(x,y) 1
o(x—a,y—>b) o i2m(uatvb)
eimz :eimzefﬂyz eiﬁﬂz :eiﬂuzeﬂwz
cos(27x) = cos(27x) - 1 -1 +5w+n)
rect(y) =1-rect(y) O (u)sinc(v)
rect(ax)rect(by) wsinc(%)sinc(%)
circ(r) = {1’ rel J1@p) = jinc(p))
0,r>1

10
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X /o

comb(x,y) = comb(x)comb(y) comb(u,v) = comb(u)comb(v)

The comb function in 2D, comb(x,y). The 2D sampling or comb function is defined as
comb(x,y)=comb(x)comb(y) and has the 2D FT F{comb(x,y)}= comb(x,v). Formally, the 2D
comb function is defined as:

comb(x, y) = ié‘(x —n,y—m)

In a manner similar to the 1D case, we can prove that Fourier transform of the 2D comb function
is also a 2D comb function as given in the above table.

Sampling Theory in 2D. In a manner similar to sampling in 1D, sampling in 2D can be
modeled as multiplying a function times the 2D comb function. With sample spacing of X and Y,
in the x and y directions, the sampled function is:

g.(6,y) = g(x, y)comb(:,2) = g(x.y) 38 —n 2 —m)

n,m=—o

= XY i5(x— nX,y-mY)g(x,y)

n,m=—o0

= XY ) §(x—nX,y—mY)g(nX,mY)
The discrete domain equivalent is g (n,m) = g(nX, mY) = g(nX, mY). In the Fourier domain, the
result is:
G, (u,v) = G(u,v) **XYcomb(Xu, Yv)

:G(M,V)** Zg(u_%vv_%)

n,m=—0

= > Gu-L4,v-=)

Thus, sampling in one domain leads to replication of the spectrum in the other domain. Spacing
of the replicated spectra is (1/X,1/Y). The Whittaker-Shannon sampling theorem in 2D states that
a band limited function with maximum frequencies Syqy» and suqx, can be fully represented by a
discrete time equivalent provided the sampling frequency satisfies the Nyquist sampling
criterion:

L22s andl22s
X

max,x max,y

Under these circumstances, there is no spectral overlap (or aliasing) the original spectrum and by
uniqueness of the FT, the original signal can be reconstructed.

11
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To reconstruct the original signal, we apply a reconstruction filter H (u,v) = rect(Xu)rect(Yv).
G(u,v) = G, (u,v)H (u,v) = G, (u, v)rect( Xu)rect(Yv)

= G(u,v), if thereis no aliasing
sin zox

In the (x,y) domain, this corresponds to “sinc” interpolation in 2D (sinc(x) =

):

g(x,y) = g,(x,y) **gysinc(§)sinc()

= Z o(x—nX,y—-mY)g(nX,mY) | **sinc(<)sinc(s)

n,m=—o0

= ) sinc(:=2X)sinc(*5 1 )g(nX, mY)

n,m=—0

= ) sinc(*X)sinc(*51)g, (n, m)

The last line demonstrates how the original continuous signal can be retrieved from the discrete
sampled version of g(x,y).

12
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Examples of Fourier Transforms:

2D data in Low spatial freq High spatial freq
image domain data (image domain) data (image domain)

2D data in Low spatial freq High spatial freq
Fourier domain data (Fourier domain) data (Fourier domain)

13
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rect(x/2)

-0.5
-5 0 5

14

25

2*sinc(2*S)

-2 -1 0 1 2

14



BME/EECS 516 (2004) FT Notes

rect(x/2)*rect(y/2) circ

-5 _5

4*sinc(2*u)*sinc(2*v) jinc

4*sinc(2*u)*sinc(2*v) 4 jinc

-2
3

-1
2

0
1

1
0

2

-2 -1 0 1 2

15
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g(x,y) = rect(x)rec(y)
G(u,v) = sinc(u)sinc(v)

scaling (magnification)
property

scaling (magnification)
property

shifting property

modulation

Image

FT Notes

Abs(Fourier)

Real(Fourier)

Imag(Fourier)

16

16
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g(x,y) = sinc(x)sinc(y)
G(u,v) = rect(u)rect(v)

sampling pattern with Ax = Ay

In the Fourier transform we have the
replication pattern with spacing
I/Ax = 1/Ay

sampling pattern with Ax < Ay

In the Fourier transform we have the
replication pattern with spacing
1/Ax > 1/Ay

sampling pattern with Ax << Ay
This has aliasing in the y (v) direction

Fourier Data

Image Data

17

17
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2D Linear Systems

Consider an imaging system with an input image /;(x,y) that goes through some system S['] and
produces an output image L (x,y), e.g. [x(x,y) = S[1i(x,y)].

-Iﬂh‘-“h it S — T,lua)

Several properties that we are interested in are:

e Linearity, which as two parts superposition and scaling. Thus, a system is linear, if and only
if:
Slag(x, ») + ph(x, )] = aS[g(x, )]+ BS[h(x, )]
For a linear system, we can define an impulse response as the output of a system for an
impulse located at position (&,77):
h(x,y:&.m) = S[5(x =&,y = )]
and in general, we can define the output, given some input image /,(x,y), using the
superposition integral:

Ly = [ [hEmhtx,y;&ndédn

—00 —00

e Space Invariance. A system is space invariant if and only if:
I(x-a,y-b) = S[1(x-a,y-b)]
for all a, b, and [;. Alternately, a system is space invariant if and only if the impulse
response can be expressed in terms of the shifts of the delta function:

hx=&,y=m) =Sl6(x=&y-m)].
Thus, A(x,y) = S[5 (x, y)] is all that is needed to specify the system. The superposition

integral becomes:
[cole ]

Loy = | [[Emhx=¢& y=-ndédn

—00 —00

=I1(x,y) **h(x, y)
where ** indicates 2D convolution.

18
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Example of a 2D Imaging System. Here we consider a pinhole imaging system:

Iaix2, ya)

%9“ v
—bh

|

FIG. 2.2 Pinhole imaging system with magnification.

Iylxy, 1)

&n

Is this system linear? Assuming that the aperture is open or close and that light always travels in
straight lines through the hole, then yes, the system is linear.

We should then be able to determine the impulse response. Let’s first consider two different
magnifications factors — one for the object and one for the pinhole aperture. For object
magnification, we imagine the pinhole in infinitely small:

PR P ——
Q b

For a shift of #, in the input, we will get a shift of — é77 in the output plane. Thus, we define an
a

b

input (source) magnification term as M = ——.
a

Consider then a system for a delta function at position (&,7):
h(x, y:€,) = S[6 (=&, y=1)]
=Co(x—ME&,y—Mn)
where the delta function appears scaled by C and at location (M¢&, Mn).

Is this system space invariant? No — the above expression cannot be written as a function of
(x—¢) and (y—7).

Now, given an input image /;(x,y), we can still determine the output image using the
superposition integral (remember the system is still linear):
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Ly = [ [1Emhx,y:&mdédn

—00 —00

=C [ [n&no(—ME, y-Mn)dédn

—00 —00

= T TG sty —hdgan

—00 —00
C xl yl
= (=
> 1G5
The output is a scaled and magnified version of the input image.

For the pinhole magnification,

L________J ath
<— — = o - -’q"‘e-

a+b
a

imagine that the pinhole had a radius of R then the radius in output plane would be R,

e . . . a
yielding an aperture magnification function of m = . Now, suppose we had some aperture

a
function a(x,y), this will now be magnified in the output plane. Thus, the impulse response will
take on a form similar to:

x—M -M
B, y3 o) = Ca(* =18 Y=
and the ouput image will take on the form:
x—-M M
BN =C | [ nEma e =M gz
—00 —00
c x—' o/ ANPP
M R m m

1

xV yY x' y
_] SRy
VA V2R

Here the output image is the convolution of the scaled and magnified versions of the input image
and the pinhole function. Though this system is not space invariant, we were can still able to
write the output in the form of a convolution (though not a convolution of the input image, but
with a magnified version of the input image).
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