
Noll (2006)  X-ray Notes 3: Page 1 

X-Ray Notes, Part III 

Noise in Detectors 

Consider an output to an x-ray system that looks like this: 

 
We define a number of quantities (slightly different definitions that used by Macovski): 

Contrast: SSC /Δ=   

Signal to Noise Ratio: sSSNR σ/=  

Contrast to Noise Ratio: SNRCSCNR s ⋅=Δ= σ/  

 

Previously, we described the SNR for a system having pixels distributed according to a 

Poisson R.V.  If the mean value of the photon counts for a pixel is μ = N, then the signal 

to noise ratio of for that pixel will be: 
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The probability density function for the Poisson R.V. is:  
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We will now describe the probability distribution of detected photons.  Suppose the 

incident x-ray photons arriving at the detector are Poisson(N) and that the detector has 

efficiency η, as describe previously.  We can view the detector as a binary random 

system in which the photon is detected with probability p = η: 
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Thus, the detected photons are also Poisson distributed, but will have probability ηN  and 

the SNR of the detected photons is now: 

N
N

NSNR η
η

η
==det  

Comments: 

1. It is also easy to show that the number of photons that are not detected is also a 

Poisson process with parameter probability (1-η)N.   

2. The sum of Poisson processes is also Poisson.   

3. Finally, if the incident photons are Poisson, then the number of photons that reach 

the detector will also be Poisson.  Attenuation processes that independently affect 

photons work exactly as above. 
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Cascaded Poisson Processes 

Consider an x-ray photon that interacts with the detector and generates a shower of 

photons: 

 
We can model the number of light photons, Y, as the number of random variables: 
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where Xi is the number of light photons for x-ray photon number i and M is the number of 

x-ray photons (Poisson(ηN)).  For now, g1 is also viewed as the gain of light conversion 

process).  We now determined the characteristics of Y: 

[ ][ ]

[ ]

1

1

1
/

/][

Ng

MgE

XEE

YEEYEY

M

M

i
iMYM

MYM

η=

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

==

∑
=  

and 

[ ][ ]

[ ]

[ ]
2
1

2
1

2
1

2
1

2
11

2
1

11

2
/

/
2

][

)1()(

][

gMENg

gMMgE

gMMggME

XXXEE

YEEYE

M

M

ij
ji

M

i

M

i
iMYM

MYM

+=

+=

−++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+=

=

∑∑∑
≠==

η

 

and finally: 
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This has two components: the first represents the variance in the number of photons for a 

given sum length and the second represents the variation that comes from changes in the 

length of the sum.  This can also be written as: 
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we can now write a new expression for the SNR: 
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This last part of this expression can be thought of as the SNR degradation term.  If the 

gain is very large, then this process will result in essentially no loss of SNR. 

 

For additional cascaded Poisson processes, e.g.:  
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where Zi as Poisson(g2) and then: 
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it follows that: 
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and the SNR can be written as: 
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For additional cascaded processes, this situation continues: 
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If any of the cascaded gains are small (or even close to one) then the SNR will be 

reduced.  Thus, in the design of detector systems, it is important that the product of all of 

the gain is kept large.  For example, we want g1 >> 1, g1g2 >> 1, g1g2g3 >> 1, … 

Example 

Consider a scintillating screen that produces g1 = 500 light photons/x-ray photon detected 

and that it takes roughly 200 light photons to convert a silver halide particle to an 

observable grain in the developed film – that is, g2 = 1/200.  The SNR reduction factor 

will then be: 
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The 1/g1 term, which is large, doesn’t contribute to any loss of SNR.  The 1/g1g2 term is 

the source of SNR reduction. 

Overall System Response and SNR Example 

Let’s consider the following system: 
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1. The source function be: ))/(exp()( 22
0 arnrs π−=  where n0 has units of 

photons/cm2. 

2. The transmission function is: ))/(exp()( 22
2
1

2
1 brrt π−+=  where 

))/(exp( 22
2
1 brπ−  represents the lesions that we are trying to detect.  The contrast 

in the transmission function is C = 1. 

3. We’ll estimate the recorder response function as the region of light captured by 

the aperture of the fiber optic coupling:  ))/(exp()( 22 crrh π−= . 

4. Let a = 10 mm, b = 10 mm and c = 1 mm. 

5. z=d/2: the object magnification factor is M = 2 and  

the source magnification factor is m = -1. 

6. The gains are g1 = 500 light photons/interaction, g2 = 0.1 are captured by the 

optical coupling, the optional g3 = 100 photons/photon in the light amplifier, and 

g4 = 0.05 for the fiber losses, optical coupling and inefficiencies of the CCD. 

The function in the transducer is: 
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This convolution is most easily solved in the Fourier domain: 
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and back to the image domain: 
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From this expression, it is clear the lesion contrast after the system response will be: 
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which is reduced by about 20% from the input function.  The number of x-ray photons 

that fall within a pixel (the area of the optical coupling) is: 
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The final SNR with out g3 is: 
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where the SNR reduction factor is: 
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and with the optional light amplifier, the SNR reduction factor is: 
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which demonstrates a common practice of inserting gain system (image intensifiers, for  

example) before the low gain components (including the human eye). 
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Compton Scattered X-rays 

Consider the following object with an x-ray opaque core: 

 
the output image might look like this: 

 

on which we can define a contrast SSC /Δ=  and a contrast to noise ratio 

sSCNR σ/Δ= .  Now, consider that the scattered photons – here some fraction of the 

scattered photons will scatter forward and will generate additional photons in the final 

image.   

 

The distribution of the scattered photons will look something like the object convolved 

with the forward scattering distribution.  The final image will be the sum of the 

transmitted photons and the scattered photons.   

 

By increasing S  and sσ  the scattered photons will reduce both the contrast and the 

contrast to noise ratio. 

 

How many photons are scattered?  (Derived from Macovski, Problem 3.4)  Let’s look at 

an object of length l having an attenuation coefficient cspert μμμμ ++= .  Let N(0) be 
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the number photons incident upon the object and that the number of photons that have not 

interacted at depth x is N(x).   

 
The number of scattered photons in an interval dx will be: 

dxxNxN cscs )()( μ=  

and the total number of scattered photons will be: 
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Note that N(0)(1-exp(-μl)) is the total number of photons that interact with the object. 

Additive Noise in X-Ray Imaging 

There are two kinds of additive noise that we will consider.  The first is zero-mean 

additive noise, for example, electronic noise in digitized images.  In this case, the mean 

value doesn’t change, but the variance does.  In most cases, the additive noise will be 

independent of the Poisson variation in the received photons and thus, the variances will 

add: 
222
as σσσ +=  
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where 2
aσ  is the variance of the additive noise and 2

sσ  is the Poisson variance.  Thus, the 

SNR is: 

N
N

N
NSSNR

aa ησ
η

ση
η

σ 22 1
1

+
=

+
==  

 

The other kind of additive noise that we will consider is scatter.  Since scatter is also 

Poisson distributed, it isn’t zero mean, and as we’ve discussed before, it does affect the 

contrast.  

 
Consider the case where we have Nt = N transmitted photons and Ns scattered photons 

and a signal difference of ΔN.  The original contrast was: 

N
NC Δ

=  

and our reduced contrast is: 

s
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We also know that the variance of the background signal will be the sum of the variances 

of the to constituent Poisson processes: 

sNN ηησ +=  

and thus, the reduced contrast to noise ratio will be: 
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The scatter CNR reduction factor is N
Ns+1  or Ψ+1 , where 

N
Ns=Ψ  the ratio of 

scatter photons to transmitted photons. 
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SNR Reduction 

To get an idea of how many photons are scattered and strike the detector, we can look at 

an example with an isotropic object with attenuation coefficient μ and an scattering 

component μs: 

 
First, the number of scattered photons generated in each incremental thickness is: 

dzeNdzznzn s
z

ss μμ μ−== 0)()(  

We make a variety of assumptions: 

1. Ignore obliquities 

2. Assume a parallel ray geometry for incident intensity 

3. Assume μ is energy independent 

4. Neglect multiple scatters 

5. Assume isotropic scattering 

Thus, for the number of scattered photons, some fraction, F(z), will be captured: 
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The number of scattered photons at the detector will then be: 
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where G is a geometric, object dependent factor (which has units of length).  For thin and 

wide object, G  0.5L (this results from Ω(z) = 2π) and for long, slim objects G  0.  

Therefore: 

G
N
N

s
s μ==Ψ  

If we take typical values for attenuation coefficients for water at 100 keV, 
1cm 16.0 −≈≈ sμμ , and L = 20 cm and we will let G = 0.4L, then: 

Ψ = 1.28 

resulting in a reduction of SNR of: 

5.11 =Ψ+  

a 50% reduction in SNR. 

Scatter Reduction Grids 

The most common way of reducing scatter is through the use of a scatter reduction grid: 

 
where the gird is made out of some high μ material (like Pb, W) that will block any 

photons that strike it. The grid works principally by cutting down on the acceptance angle 

for scattered photons, Ω: 
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We can define a scatter reduction factor: 
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where Ω’(z) is the acceptance angle of the scatter reduction grid.  In addition to reducing 

the scatter, this also results in a reduction of transmitted photons.  We can define an 

efficiency of the grid by considering transmitted photons blocked by grid and attenuated 

by the filler material: 

 
in equations, this will be: 
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The CNR will now be: 
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where 
t

sR
η

Ψ+1  is the new SNR reduction factor. 
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The Relationship of a Poisson Process to the Exponential R.V. 

Let T be an exponential R.V. that describes the time between events in a Poisson process.  

The derivation follows.  Recall that the probability that an event occurs in interval Δt will 

be p = λΔt.  Also, note that the probability that no event occurs in interval Δt will be  

q = (1 - λΔt).  Now, suppose the we want to know what is the probability that no event 

occurred between 0 and t.  This is the same as saying that we have N = t/Δt inverval in 

which no event can occur.  If these intervals are independent (that is saying that the 

photons don’t interact with each other or tend to come in groups or whatever), the 

probability that no event occurred between 0 and t will be qN: 

{ } ttt ΔΔ−= /)1(t)(0,in  occursevent  noPr λ  

we again determine this function as Δt  0: 
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The probability density function of T, f(t), describes the probability that an event occurs 

at time t and probability distribution function of T (integral of f(t)) describes the 

probability that an event occurs by time t will be equal to: 
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and the probability density function is the derivative of this function: 
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The exponential R.V. is a continuous R.V. of the times between events and is described 

as: 

T ~ Exponential(λ) 

which has a mean an variance of: 
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Memoryless Property 

The exponential R.V. is “memoryless,” meaning that distribution (and density) of event 

times in the future is not affected by past events, that is, at any point in time, the time 

until the next event is an exponential R.V. with parameter λ.  This is the same as saying 

that just because we haven’t seen an event in a long time, we’re not more likely to have 

an event soon.  (Just like the “gambler’s fallacy.”)  Specifically, 

{ } { }tTtTttT >=>+> Pr|Pr 00  

which says “given that an event hasn’t occurred by time t0, the probability that an event 

will not occur by time (t0 + t) will be same as the probability that no event occurs in 

(0,t).”  Proof: 
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