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Ultrasound Notes 3: Array Systems

While early US systems used a single focus tranducer and mechanical sweeping of the
transducer to different angles, nearly all modern US systems are array systems where
focussing is not preset and beam steering is done through time delays associated with
each element of the array.

Transmit mode: Focussing and Beam Steering

Typical array system shown here in transmit mode:

el “‘j < TTrenducets
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where X, is the x coordinate of the n™ element (0 is at the center of the array).

For focussing at (z,x,=0) set the delay to:

X2

' =7(X,,2,Xx,=0)=—"
2cz

(Actually, this is a negative delay — to focus on-axis in the Fresnel zone, we require that
the edge elements fire before the center element because they have farther to propagate.)

In polar coordinates, for focussing at (ro, &):

X,sing, x,” cos® 6,
2cr,

' =7(X,, 1, 6,) =—

A focal depth and direction (ro, &) is selected once when the pulse is transmitted. Once it

leaves the transducer, it can no longer be changed.
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Receive mode: Delay-Sum Beamforming

VACESOD B NN
i _A.__. %, _bi._ ES

\\ Vo let 'C,\ ,
\.,_.h__/LE(Q__A,@

- Signals from each transducer are delayed and summed to produce a signal localized

to the focal point, e.g. (ro, &):
N
v({t) = D v, (t+ )
n=1

- Signal from other angles are suppressed by destructive interference of the wavefronts
when summed together (recall the each pulse is made up of modulated waves at a
carrier frequency, fo.

- Unlike the transmit case, the received data can be combined in many different ways.
In otherwords, we can separately focus for any point in time (depth plane, r). Also
we can focus to any angle at by reprocessing the data. Typically, “dynamic”
focussing is used to focus for each depth plane — here 7’,, changes for every depth
r=ct/2.

Sampling in Space
At each point in time, the array is actually sampling the instantaneous pressure wave as a

function of space. Aliasing is potentially a problem. A quick review of sampling:
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Aliasing can be prevented if less than r has accrued between neighboring samples. For

our case of waves impinging upon the detector array, sampling becomes a bigger issues if

the source of the waves is coming from a large angle, 6:
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The sampling requirement for this case can be written as the maximum difference in
propagation delay between a point (r,8) an two neighboring transducer elements cannot

lead to phase accrual of greater than r:
(T(Xn, 1, 0) = 7(Xn11,1,0))- wp| <7 Vr,6,n

assuming the element spacing is d (€.9. Xn+1 = X, + d), then:
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(7(X,: 1, 0) = T(Xy0, 7, 6)) - 0y

n+1?

x,” cos? @

=|r—x,siné+

2 2
14 (x, +d)sing - KaF ) cOS ‘9}-&

2r C

=|dsing -

2x,dcos® @ d?cos’ 6| @,
2r 2r c

The worst case is for plane waves, that is r — oo

(2(%,, 1, 6) = 7(X, .1, 7,6))- @, | = |d sin 9-%

<z

dsin6’-2—7[
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and thus:
dsing|<Z
2

and if we want to unambiguously distinguish between arrival directions (points of

reflectivity) over a full r of angle, then:

d<?
2
In this case, the number of transducer elements, N, should be:
N = % > % = 2 - (Numerical Aperture)

The “Numerical Aperture” for an array is the size of the transducer in terms of the

number of wavelengths (e.g. N.A. = 2a/1).

Comments:

— We’ve just talked about the array sampling a pressure wave propagating towards the
transducer. It is important to realize that sampling also occurs during transmit as well
— in order to unambiguously transmit a wave in a particular direction (over = angles) ,
we also need to satisfy the above transducer spacing.

— Below under discussion of the point spread function, we will see the effects of

insufficient sampling by the array.
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Angular Sampling of the Object
For this analysis, we will consider the far-field (or focal plane) solution:

cosd -e™
p(r,0) = == ——Sis()}|_sne

A
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As described above, we must transmit our beam at a particular angle (&) and thus, this
axis is discretized as well:

sin @

S(-) issampled at locations

This is a reverse sampling argument — we are sampling the FT of s(x) and thus the
samples of S(u) must be positioned at least as close as half the maximum extent of s(x).

Thus, if s(x) goes from [-a, a], then:
A[sin 9} L1
A 2a

Asing < a = - L
2a  Numerical Aperture

This is the solution for the receive only or a transmit only case.

Recall that the actual beam function is:
B(r,0) =h; (o, r,0)h;(w,1,0)

=[p(r,0)f

]

and this is the function that is used to sample the object in the angular direction. Since
we must now sample the square of the FT of the space limited aperture function, we must

know the maximum extent of the its IFT, which is s(x)* s(x). If if s(x) goes from [-a, a],
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then s(x)* s(x) is bounded by a function that extends of [-2a, 2a]. For example, if s(x) =
rect(x/2a), then s(x)* s(x) = triangle(x/2a), which goes from -2a to 2a. Thus:

Asin&’siz 1
4a 2-N.A.

- How many beams to sample n?

max(sing) —min(sin®) _1-(-1) _8a_, \ A
A(sin 0) Alda A

- Is sampling uniform in 6? No, sampling is uniform in siné.
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- Shouldn’t we just sample more finely than we need to? No.
= |t takes extra time (you can’t transmit the next pulse at a new angle until the
last one is received).
= Itadds no new information.

- What happens if we don’t sample finely enough? We might miss an object feature.
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Point Spread Function for Discrete Transducers
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For odd N:
NY _
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and the FT is:

S(u) = wsinc(wu) - [comb(du) * D sinc(Du)]

=%sinc(wu)- i sinc(D(u —ED

Substituting u = sin @ 4, in the far field (or focal plane) for an on-axis beam, we get:
p(r,0) =K cosHsinc(w%) . z sinc(za(¥ _ED

N=—o0

- the first sinc function provides additional weighting as a function of 6. This could

reduce the angular “field of view” by restricting over what range of angles we can
effectively transmit to/receive from.

Let’s look at these effects for a Nyquist sampled array (d=4/2). First we look at the effect

of the terms weighting the angular field of view:

cosé and sinc(w%)

We know that w < d, so w < A/2. The worst case (narrowest) is for w = 4/2. Here are

plots of these functions (and the product of these functions — the lowest line on the plots):
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Wieighting Acrass Angular Field of View
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Thus the weighting, while present, is not significantly different than the original cosé&

weighting. These weighting functions are independent of the numerical aperture.

Simulations

For the Nyquist sampled array (d=4/2), we get:

p(r,0) =K cosHsinc(WSi%ey i sinc((N.A.)- (sin@ —2n))

N=—o0
The argument of the sinc is zero only for n=0 — the main lobe (desired beam) and this

occurs at 6=0. For d=4, we get:

p(r,0) =K cos@sinc(ws‘i%e) : i sinc((N.A.)- (sin@ —n))

N=-00

The argument of the sinc is zero for.

n 12 Type
0 0 Main Lobe

1| A2 Grating

-1| -2 | Grating

For d=24, we get:

p(r,9)=Kcosesinc(wSi%9)- i sinc((N.A.)-(sine_gn

n=—o

The argument of the sinc is zero for.
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n 2 Type
0 0 Main Lobe

1| 6 Grating

-1| —#/6 | Grating

2 | 2 Grating

-2 | -2 | Grating

Comments:
e Observe that he main lobe doesn’t change in each case.

e The grating lobes are aliases resulting from subsampling of the spatial waves by
the discrete transducer.

e In the sum of sinc functions, the n=0 term is the main beam
e The n=0 terms are “grating” lobes — additional responses at angular locations

other than the desired angle (in this case & = 0).

Main and grating lobes in the following simulation of discrete transmitters:

Nyquist sampled (#/2) Subsampled (1)

LELERRNN

Subsampled (23.) Subsampled (4#)

oy
\\\\““\

W
"

o SmmMm

‘-l
f"‘#u””m

Fy

'y
i

)
f?(f};,;f}




Noll (2006) US Notes 3: page 10

Grating Lobes with Beam Steering

We can derive the above expressions for the case where the beam is steered to another

s(x) = lcomb(ijrect(lje“m‘”% *rect(lj
d d D W

which has as its transform:

S(u) =%sinc(wu). i Sinc(D(u _sing, _ED

location, &h:

A d

N=—o0

and thus:

=—o0

p(r,0) = K cos @ sinc(wy) >3 sinc(Za(¥ _sin6, _ ED
Finally, for a Nyquist sampled array (d=4/2):

p(r,0) = K cosHsinc(WSi%e) - i sinc((N.A.)- (sin @ —sin 6, — 2n))

N=—00

The size of the grating lobes, however, is dramatically affected by the numerical aperture.
First, let’s determine if the main lobe of any of the grating lobes can appear in the field of
view. For-n < 6, )< r, there are no cases for which (sin 8- sinéy) > 2. Thus, the
argument of the sinc can never be zero and the main lobe of any of the grating lobes will
not appear in the field of view. Side lobes, however, can appear. The value of the
argument of the sinc is weighted by the numerical aperture and thus, we are pushed

farther out. In general, these sidelobes produce additional ripple in the background.

Here are two cases of arrays for which Nyquist sampling has not been achieved.
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Beam Pattem - Far Field/Focal Plane - a=5%lambda,Na5
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Beam Pattern - Far Field/Focal Plane — Beamn Steered to 15 Degrees
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Comments:
- Observe that the grating lobes are worse for off-axis beams.
- For Nyquist sampled arrays, the effects of grating lobes is minimal.

- The grating lobes affect both the transmit and receive patterns.
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Processing for Delay-Sum Beamforming
- The US pulse is fired once - therefore, we must choose a particular steering and
depth of focus and set up the delays at the time of transmission. This is easily done -

for focussing at (ro, &):

(et 0y =SS 0 , xnzzcsrso2 0,
- The receive signal at time t corresponds to depth r = tc/2.
= Ateach point t we need a new focal depth, r.
= Usually, the receive angle is the same as the transmit angle, 6.
= We need a different set of delay for each depth (time sample).
- One common way of implementing the delays is with a tapped delay line. Each
transducer has a delay line such as:
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First, we look at focussing only:

thus the tap number is set by:

m(t) = mt{ tAt}

The particular tap that has been selected is changed when:
m(tk) - m(tk+1) =1.
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How small does At need to be? The phase error introduced by the coarseness of the
delay line is:

Ag = 27 At
Typically, a phase error less than 10 degrees is necessary for good quality beam
forming:

A 2m 1l 1

36 24, 36f,

For example, if fo =5 MHz, then At < 6 ns (sampling rate = 180 MHz).

= This is a high sampling rate — devices would be expensive.

= Synchrony and accuracy along a long delay line for many channels is difficult.
How many taps would be necessary? Let’s look at focusing and beam steering delays

for a sample configuration withr=2 cm,a=2 cm:

2

a 2cm-2cm
maxr, =

2cr  2-0.15cm/us - 2cm
This corresponds to about 10° taps.
For beam steering, the maximum delay (end-to-end of array is):

2a _ 2-2cm

c 0.15cm/us -

This corresponds to about 5x10° taps.

Practical Beam Forming System

While the above could be built with today’s technology, there is an eloquent solution to

this hardware challenge that can lead to substantial cost savings. This solution involves

the “quadrature” or complex demodulation to an intermediate frequency, which is then

sampled and followed by a software phase correction term.
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Now, first consider a reflection at some location (ro,#), the propagation time will be
7n = 7(Xp, r, @) and the analytic signal at transducer n will be a(t —rn)e"i‘"0 (t=7n)
Recall the actual received waveform is a real valued function:

vy (t) = sn{a(t —z,)e @0 (t=n) }: a(t—r)coswg(t —7)
(with some scaling factors dropped). First, let’s look at demodulation part of this

receiver. There are two channels — the “I”” or in-phase channel and “Q” or quadrature

channel:

| = LPF{a(t — 7,) cos w, (t — 7,)2 cos mt }
= LPF{a(t - 7,)[cos((w, — @, )t — w,T,) + cos(e, + o, )t ]}

=a(t—rz,)cos(Aat —w,7,)
where Aw = w, — @, << @, (the difference between the transmit frequency and the local

oscillator in the receiver). For the Q channel:

= LPF{a(t — z,) cos wg (t — 7,,)2sin ayt}

= LPF{a(t - 7)[sin((@wg — @)t — w7, + Sin(eg + o) )t]}

=a(t —z,)sin(Aat — wgry)
Now, we define the baseband signal for element n, by (t):

by (t) = | TiQ = a(t — r,)e 121 %0n

We include F to note that there are two ways to construct the baseband signal — this is
equivalent to choosing either the positive or negative sideband during the demodulation
process (recall cos modulation results in positive or negative sidebands).
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To simplify the subsequent analysis, we will let m=ax or Aw =0, or:

by (t) = at — 7,)e™ @07

- Note that the e*'®0n is a constant phase term not a time varying term. One
interesting analogy is that this brings us back to the steady-state approximate that we
used in the original derivation of the Frensel zones. Specifically, time delays are now
converted into phase factors (recall, we first put phase functions to focus and later
derived that this is equivalent to time delays).

- Now, we need to sample bn(t), but this has phase variations that occur much more
slowly. The sampling must occur only fast enough to capture:

=  Amplitude changes in a(t) and not in the carrier (apt).
- Sampling at fs = (2-4)xf, is adequate for good beam forming. Thus we get a 10-fold

reduction in the sampling rate and number of taps in the delay line.

When constructing the final baseband signal, we need to do 2 things:

1. Shift the envelop functions by discrete sample values - [z'n ] so that they align.

Since a(t) is smoothing varying and we are not relying on it to do constructive or
destructive interference, this correction can be fairly coarse.

2. Apply a phase term ay7,'= w7y, (essentially the quadratic and linear phases for

focusing). This phase factor insures that the wavefronts will add constructively
for the focal point and destructively for wavefronts coming from other directions.
Observe that this is a multiplicative factor and doesn’t need to discretized in the
same way the shifts do. Thus, high accuracy is possible.

The final baseband signal is:
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I’ve included the + and — terms here because you may not always know how your
demodulation is done (e.g. in the US project). Now, keeping only the positive term, we

make an approximation that a(t) is varies little over At and thus:

N _ N N N
b(t) = % z a(t - T + . lblkro ~ i z a(t _ _Ojelkr() — a[t _ _Ojelkro
n=1 C

N n=1 ¢
Recall that:
 _To_Xn sin & N xn2 cos? &
"¢ c 2cr
Xp Sin 6 xn2 cos? & ' Tie di ;
P + ,and [z',, |is discretized to mAt

C 2cry

- Observe the additional phase term e’ g necessary to bring align the phases
before summing.

- The phase correction term is calculated is not discretized and is applied to the
digitally sampled data and thus can be performed with very high accuracy.

- The final received signal is the proportional to b(t) and the reflectivity at a point at
depth, ro.

- Commonly, data is presented as |[R(tc/2,0)b(t)| or log|R(tc/2,H)b(t)|.

- Let’s look again at errors — the error in phase due to the coarseness of samples
iISA¢ = AwAt and Aw can be made arbitrarily small (even 0).

- The other source of error is scalar from poor sampling of a(t), but with a sample rate
of fs = (2-4)f, and the pulse length T=3/f,, we insure that 6-12 samples are made over

the pulse shape. (The delays align the pulses prior to summation.)

Scan Conversion

The final process in a US system is scan conversion to present the data as an image in a
rectilinear coordinate space to the user. This involves conversion from our beam data,
which exists in a domain that is equally spaced in sin@ and in r, to physical space, which

is a domain that is equally spaced in x and z:
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This process is often driven by needs of display memory, which scans its domain (x, z)

and requests interpolates from the acquired data in (siné, r) space. In this case, the output

coordinates drives the interpolation process — in other words, it is “output-driven.” There

are approaches to interpolation that are “input driven,” but we will not describe those

here.
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One simple and common approach to interpolation is bilinear interpolation:

Smet

Here, we find the 4 nearest neighbors and perform linear interpolation in two directions.

First, let’s take our output coordinates and give its equivalent in the input space:

i X
r=+x?+z> and sing==

r

The of four nearest neighbors are determined from:

r-=Ar- ceil(L); r-=Ar ~f|00r(L];
Ar Ar

sin@* :Asine-ceil( sin ng;sin o :Asine-floor[ sing j

Asin Asiné
and the data are:
P, =data(r,sind"); P, =data(r,sin@"); P, = data(r*,sin@"); P, = data(r*,sin6")
and distances of several segments are:
a=r—-r;b=r"-r;c=sin@-sind ;d =sin@" —sinof
and finally:

_ bdP, +bcP, + adP, + acP,
B ArAsin @

P(x,2)

There are, of course, many other (and better) methods for interpolation in a 2D space.

Temporal Resolution

The temporal resolution of an US system is determined by the time required to image an
entire sector. Typically only one pulse is traversing the body at any given time. Thus the

minimum time between pulses is given by:
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For example, if rmax = 20 cm, then T = 267 ps.
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For M beams in a sector, the time for one frame will be Tame = TM. For rpa =20 cm
and M =128 then Tsame = 33 ms. Thus the frame rate will be about 30 Hz.

Overall System Architecture
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