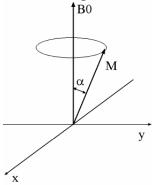
Homework #4

Due Date: Nov. 2, 2006

1. For magnetization vector \mathbf{M} and applied field $\mathbf{B_0}$ with an angle α separating them, use the Bloch equations to show that the rate of precession of \mathbf{M} around $\mathbf{B_0}$ is $\omega_0 = \gamma \mathbf{B_0}$.



- 2. In class, we described quantum mechanical and classical properties of nuclear spin for the hydrogen nucleus, ${}^{1}H$. Let's look at what changes if we are interested in imaging carbon-13, ${}^{13}C$. Assume that $\gamma_{C} = {}^{1}\!\!/ \!\!/ \gamma_{H}$. Please describe the following for carbon in terms of the equivalent terms for hydrogen. Assume all other factors (B₀, temperature, etc.) are the same.
 - a. The difference in energy between spin-up and spin-down states, ΔE . (Please describe ΔE for ¹³C in terms of the ΔE for ¹H.)
 - b. The resonant frequency in the presence of applied field B_0 , ω_0 .
 - c. The number of excess nuclei that are spin-up vs. spin-down, N_{diff} .
 - d. The length of the magnetic dipole for a single nuclear spin, $|\mu|$.
 - e. The size of the equilibrium net magnetic dipole for 1 mole of the substance, $|\mathbf{m}|$.
- 3. Consider a magnetic dipole, \mathbf{M} , in the presence of an applied main magnetic field, $\mathbf{B} = B_0 \mathbf{k}$, where \mathbf{k} is the unit vector in the z-direction. Assume that initially, \mathbf{M} is at equilibrium, has length \mathbf{M}_0 and is aligned with the main magnetic field (along the z-direction). Describe (or sketch) the position of \mathbf{M} in a frame rotating at $\omega_0 = \gamma B_0$ for the following sequence of events. Please ignore the effects of any T1 or T2 relaxation.
 - a. At equilibrium.
 - b. A rotating magnetic field of strength B_1 and rotational frequency ω_0 is applied for a period of time $\tau = 2\pi/(4\gamma B_1)$.
 - c. The main field is changed to $\mathbf{B} = (B_0 + \Delta B)\mathbf{k}$ for a period of time $T = \pi/(\gamma \Delta B)$.
 - d. A rotating magnetic field of strength B_1 and rotational frequency ω_0 is again applied for a period of time $\tau = 2\pi/(4\gamma B_I)$. (Applied in the same direction as in b.)
- 4. Consider two materials, A and B with relaxation constants (T_{1A}, T_{2A}) and (T_{1B}, T_{2B}) respectively. Assume a 90 degree flip angle and at A, B have the same proton density.
 - a. Determine the time that maximizes $\|M_{xy,A}(t)\| \|M_{xy,B}(t)\|$.
 - b. Determine the time that maximizes $\left| M_{z,A}(t) M_{z,B}(t) \right|$.
 - c. Assuming these materials was white matter and gray matter at 1.5 T, determine the repetition time (TR) that maximizes T1 contrast with a TE = 0 and determine the echo time (TE) that maximized T2 contrast for $TR = \infty$.