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Notes on MRI, Part II 

 

Signal Reception in MRI 

 

The signal that we detect in MRI is a voltage induced in an RF coil by changes in magnetic flux 

from the precessing magnetization in the object.  One expression for the voltage induced in a coil 

is: 
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where Φ is the flux in the coil.  A common configuration is to use the same RF coil to transmit 

B1 fields to the object and to receive signal from the magnetization.  Assume, for a given coil 

configuration and current I1, the RF field generated is B1.  By the principle of reciprocity, the 

coil’s receive sensitivity can be defined as C1 = B1/I1. 

 

The incremental voltage produced by magnetization in an element dr is: 
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Now suppose our magnetization comes from a precessing spins having magnetization m0 in the 

presence of a magnetic field of size B0 + ∆B (it has a resonant frequency of ω0 + ∆ω).  That is: 
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and suppose the coil is position in the x-z plane making the sensitivity lines (flux lines) point in 

the y-direction: 
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The voltage induced in the coil, which will become our received signal sr(t), can then be shown 

to be: 

tCmdEtsr )cos()()( 000 ωωωω ∆+∆+==  

That is, the voltage on the wire will be a cosinusoidal variation at the resonant frequency and 

with an amplitude proportional to the coil sensitivity, the resonant frequency, and the size of the 

magnetization.  We commonly make an assumption that ∆ω is small relative to ω0 (a good 

assumption) and thus, the (ω0 + ∆ω) term in the amplitude scaling is approximately a constant 

and can be absorbed into C: 

tCm )cos( 00 ωω ∆+  

If we include T2 relaxation, the received signal will look something like this: 

 

This signal is known as the Free Induction Decay or FID (free – meaning it is not being driven 

by an RF pulse, induction – the action of a magnetic moment precessing around a magnetic field 

was first called (by Bloch) nuclear induction, and decay – meaning T2 decay).  If we take the 

Fourier transform of this received signal we will get approximately the following spectrum: 
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where the size of the spectral peaks at +/- ω0 + ∆ω is proportional to m0. 

 

Now, suppose we groups of spin at different frequencies and amplitudes: 

A: mA, ∆ωA 

B: mB, ∆ωB 

Now the voltage induced in the coil will be the sum of these two groups of spins: 

tCmtCmdEts BBAAr )cos()cos()( 00 ωωωω ∆++∆+==  

and the spectrum will have peaks at frequencies +/-(ω0 + ∆ωΑ,Β) and amplitudes proportional to 

mA,B. 

 

 

In general, the voltage induced in the coil will be the summation (or integral) over the 

magnetization components that comprise the object we are imaging. 

 

Complex Demodulation 

The received signal, sr(t), is a real-valued voltage.  We transform this to a baseband signal using 

a complex demodulator, as shown here: 
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The components of this system are a local oscillator that supplies a cosine and a sine wave at 

frequency ω0.  The received signal, sr(t), is multiplied by these signals and then low pass filtered 

(LPF) in order to produce a two signals that have a reduced bandwidth.  These signals are then 

sampled using analog to digital (A/D) converters and then the sampled signals are combined on 

the computer to create a complex signal, s(t). 

 

We first look at the upper and lower channels of the complex demodulator for a single 

component of the received signal at location r.  The upper channel of the demodulator yields: 
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and the lower channel yields: 
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We can then construct the combined signal, s(t): 
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This is a rotation in the complex plane at frequency ∆ω and the resultant spectrum will look like: 

 

Using a similar arguments, we can determine the baseband signal for the case of two objects (A 

and B, described above) as (we’ve let C = 1): 

))(exp())(exp()( 00 timtimts BBAA ωωωω ∆+−+∆+−=  

 

 

Important points!   

1. These complex signal are equivalent to the solutions to the Bloch equations in the rotating 

frame of reference.  Through complex demodulation, we have access to the signal in the 

rotating frame where the frame frequency is determined by the local oscillator of the 

demodulator.   

2. Since the signal s(t) exists only on the computer, it is possible to have a complex signal. 

3. The RF coil sums or integrates this signal from the entire object (or for the part of the object 

to which the coil is sensitive. 

 

Spatial and Temporal Variations 

 

We will now generalize our solution to the Bloch equations to functions in the object domain, for 

example: 
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Please note the distinction between the subscript x, which denotes the direction of a 

magnetization vector, and the argument x, which denotes the spatial location of that 

magnetization vector. 

 

We also will allow the applied magnetic field to be a function of both space and time, but as 

before, we will first consider the case where the applied field is only in the z direction: 

( )kB ),,,(),,,( 0 tzyxBBtzyx ∆+=  

In imaging, we are typically dealing with just two of these spatial dimensions.  It can be any of 

these two, but by convention we will use x and y.  Thus, we will typically just use: 

( )kB ),,(),,( 0 tyxBBtyx ∆+=  

If B is constant, the solutions to the Bloch equations will then be: 

))),((exp(),(),,( 00 tyxtiyxmtyxmxy ωω ∆+−=  

where ),(),( yxByx ∆=∆ γω .  In the rotating frame, the solution is: 

)),(exp(),(),,( 0, tyxiyxmtyxm rotxy ω∆−=  

In mxy,rot(x,y,t), the x,y in the argument refers to physical (x,y) locations in space, whereas the xy 

in the subscript refers to a mini-coordinate frame to describe direction of the magnetization 

vector at each point in space.  

 

For a time-varying B field, the solution will take on a form similar to what we have seen before 

(in first set of notes on NMR): 
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and again, in the rotating frame, the solution is: 
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The Signal Equation.  Above, we described the voltage induced in a coil and further 

constructed a baseband signal that gave a representation of the signal in rotating frame.  As 

discussed, the signal will be the sum or integral of all the spins the comprise the object.  For a 

multidimensional object, the signal equation is the integral over the magnetization in the rotating 

frame (again, we will let the coil sensitivity, C = 1): 
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From here onward, we will mostly just consider the magnetization in the rotating frame. 

 

Magnetic Field Non-Uniformity  

There many things that can affect the magnetic field.  These include main  

• Magnetic field inhomogeneity – this reflects our inability to make the field perfectly 

homogeneous.  Most magnets are “shimmed” to about 0.5 parts per million over the size 

of a human head. 

• Magnetic susceptibility – this is the magnetization of tissue itself.  Different tissues, 

bones and the surrounding air all have magnetic susceptibility differences of several part 

per million.  The net field is given as B = B0(1+χ), where χ is the magnetic susceptibility 

(χair is nearly 0, χwater is about –9x10-6 or –9 ppm). 

• Chemical shift – Different chemical species have differing shielding of the nucleus from 

the surrounding electron clouds.  Here the net field is B = B0(1-σ), where σ is the 

chemical shift (a positive chemical shift implies shielding of the nucleus or a downward 

shift in the field).  A common chemical shift the shift between water protons (bonded to 

O) and fat protons (bonded to C): σwf is about 3.35 ppm.  At 1.5 T, this results in a shift 

of the resonant frequency of about 215 Hz.  Below is a proton spectrum in the human 

head with chemical shift along the x-axis with the biggest 3 peaks being N-acetetyl 

apartate (NAA), Creatine, and Choline (water has been suppressed and there is no fat in 
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the middle of the head): 

 

• Gradients – These are intentional linear variations in the magnetic field. 

 

Gradients 

 

Gradient fields are the principle tool for localization in MRI.   

It is important to remember the gradient fields vary along some spatial direction, but that field 

lines are aligned to the main magnetic field.  For example: 

 

The X-Gradient 
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The Y-Gradient 
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The Z-Gradient 
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1D Localization 

Let’s look at the example of a constant, linear variation in the applied field (known as a 

“gradient”).  Specifically, let the variation be the x direction, xGtyxB x ⋅=∆ ),,( , then the 

solution to the Bloch equation is: 
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where the spins will precess at a frequency related to x location, 

∆ω(x) = γGxx 

or 
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Important!  Notice in the preceding expression that frequency has a one-to-one correspondence 

to spatial location in x. 

 

The signal equation for this example is: 
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Now, let’s define  
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a function that represents the integral (over y) of all magnetization at each x location.  Here the 

signal is: 
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Now, if we substitute stGx πγ 2= , we can see that s(t) is really just the 1D FT of m(x): 
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Now, if we want to determine m(x) (recall, our goal in MRI is to make images of the 

magnetization), then it seems logical to take the inverse FT of the received signal.  Rewriting the 

above relationship we get: 
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and now: 
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Recalling, several of our FT relationship, we can also show that: 
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This is the same relationship between frequency and spatial position described before.  The 

negative sign comes from the fact the spins precess in the negative direction (e.g. the negative 

sign in exp(-iωt)).   

 

Let’s look at an example with m(x) = rect(x/X).  The received signal will now be: 
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The 1D FT of s(t) will be: 

{ }







=







 −
⋅=









=















=

=

−=

−=

−=

X

xxG

XG

f
XGXG

X
G

tGXXF
G

tsF
G

xm

x

x

xGfxx

x

xGf

x
x

xGf
x

x

x

x

rect
2

2
rect

2
rect

2

2

2
sinc

2

)(
2

)(

2/

2/

2/

π
γ

γ
π

γ
π

γ
π

π
γ

π
γ

π
γ

π
γ

πγ

πγ

πγ
)

 

(same as the original object). 

 


