Homework \#4 Solutions

(Do not hand in, for practice only)

1. Consider a volume coil and a surface coil. Let the volume coil have sensitivity, $S_{v}(x)=1$, and the surface coil have the following sensitivity pattern (as a function of distance from the coil):
$S_{s}(x)=\frac{1}{\left(1+\left(\frac{x}{a}\right)^{2}\right)^{3 / 2}}$, where a is the coil radius.
Let the noise variance of the volume coil be $\sigma_{v}{ }^{2}=1$ and the noise variance of the surface coil be $\sigma_{s}^{2}=0.001 a^{3}$, where a is assumed to be in units of cm .
a. For $a=5 \mathrm{~cm}$, determine for which distance from the object surface it is advantageous (from a signal to noise ratio standpoint) to use the surface coil over the volume coil (and vice versa). $\mathrm{SNR}=($ signal intensity $) / \sigma$, where σ is the noise standard deviation.
b. For $a=10 \mathrm{~cm}$, determine for which distance from the object surface it is advantageous to use the surface coil over the volume coil (and vice versa).

Solutions:

Assume that the signal strength (as a function of x) is equal to sensitivity $S(x)$ and the noise is equal to σ. The signal to noise ratio is then $S(x) / \sigma$. For the volume coil $S_{v}(x)=1$ and $\sigma_{v}=1$, therefore $S N R_{v}=1$. For the surface coil, the SNR is

$$
\operatorname{SNR}_{s}=\frac{1}{(0.1 \cdot a)^{3 / 2}\left(1+\left(\frac{x}{a}\right)^{2}\right)^{3 / 2}}=\frac{1}{\left((0.1 \cdot a)\left(1+\left(\frac{x}{a}\right)^{2}\right)\right)^{3 / 2}}
$$

To find the region where $S N R_{s}>S N R_{v}$, we merely need to find for which x that $S N R_{s}>1$.
a. $a=5 \mathrm{~cm}, S N R_{s}>S N R_{v}$, for $x<5 \mathrm{~cm}$, that is if we are interested in a structure closer to the coil than 5 cm , it is preferred (from the SNR standpoint) to use the surface coil, otherwise the volume coil is better.

$$
\begin{gathered}
S N R_{s}=\frac{1}{\left(0.5\left(1+\left(\frac{x}{5}\right)^{2}\right)\right)^{3 / 2}}>1 \\
0.5\left(1+\left(\frac{x}{5}\right)^{2}\right)<1 \\
\left(\frac{x}{5}\right)^{2}<1 \\
x<5
\end{gathered}
$$

b. $a=10 \mathrm{~cm}, S N R_{v}>S N R_{s}$, for all non-zero values of x, therefore, the volume will always have better SNR. (No values of x satisfy the below relationship.)

$$
\begin{gathered}
\operatorname{SNR}_{s}=\frac{1}{\left(1\left(1+\left(\frac{x}{10}\right)^{2}\right)\right)^{3 / 2}}>1 \\
\left(1+\left(\frac{x}{5}\right)^{2}\right)<1 \\
\left(\frac{x}{10}\right)^{2}<0 \\
x^{2}<0
\end{gathered}
$$

2. Consider 1 gram of gray matter brain tissue. Assume that the physiological parameters for this tissue at rest are:
$f=$ perfusion rate $=0.55 \mathrm{ml} / \mathrm{min} / \mathrm{g}$
Oxygen extraction fraction (OEF) $=0.5$
Cerebral metabolic rate of oxygen $(\mathrm{CMRO} 2)=a \operatorname{OEF} f$, where a is a constant
$V=$ Fractional blood volume $=0.05$
$Q=$ Concentration of deoxyhemoglobin $=b V$ OEF, where b is a constant
$R 2^{\prime}=\frac{2 Q}{3 b}\left(\right.$ in $\left.\mathrm{ms}^{-1}\right)$, the relation component due to magnetic field perturbations $R 2=1 / 60\left(\right.$ in ms $\left.^{-1}\right)$
a. What is the resting state $T 2 *$?
b. For $\mathrm{TE}=30 \mathrm{~ms}$, what is the image intensity (assume $\mathrm{TR} \gg T 1$)?

Now assume that the brain tissue becomes active resulting in an increase in the oxygen metabolism (CMRO2) of 5\%. In order the satisfy the metabolic needs of the tissue, the perfusion rate (f) increases by 40%, which also results in a blood volume (V) increase of 20%.
c. What is the new OEF? Has this gone up or down?
d. What is the new Q ? Has this gone up or down?
e. What is the new $R 2$ '? Has this gone up or down?
f. What is the new $T 2 *$? Has this gone up or down?
g. For $\mathrm{TE}=30 \mathrm{~ms}$, what is the image intensity (assume TR >> T1)? Has this gone up or down?

Solutions:

a. For this part, recall that decay rates add: $R 2 *=R 2+R 2$ '. First, let's determine the resting state $R 2^{\prime}=\frac{2 Q}{3 b}=2 / 3 V \mathrm{OEF}=2 / 3 * 0.05 * 0.5=1 / 60 \mathrm{~ms}^{-1} . R 2 *=R 2+R 2$, $=1 / 30 \mathrm{~ms}^{-1}$. Or T2 ${ }^{*}=30 \mathrm{~ms}$.
b. Image intensity $=\rho\left(1-\exp (-\mathrm{TR} / T 1) \exp \left(-\mathrm{TE} / T 2^{*}\right)=\rho \exp (-1)=0.3679 \rho\right.$.
c. Using the equation for CMRO2, we solve for $a=$ CMRO2 $2 / f$. and substituting new values for flow and CMRO2, we get: $1.05 *(\mathrm{CMRO} 2)=a \mathrm{OEF}_{\text {new }}(f) * 1.4=$ $\mathrm{CMRO} 2 * 2 * \mathrm{OEF}_{\text {new }} * 1.4$, and solving for $\mathrm{OEF}_{\text {new }}=0.375$. This has gone down.
d. $Q=b V \mathrm{OEF}_{\text {new }}$ and V has increased 20% to 0.06 so $Q=0.0226 b$. This has gone down from $0.025 b$.
e. $R 2^{\prime}=\frac{2 Q}{3 b}=2 / 3 V \mathrm{OEF}=2 / 3 * 0.06 * 0.375=1 / 66.667 \mathrm{~ms}^{-1}$. This has gone down.
f. $R 2^{*}=R 2+R 2^{\prime} \rightarrow \mathrm{T} 2^{*}=31.38 \mathrm{~ms}$. This has gone up.
g. Image intensity $=\rho \exp (-\mathrm{TE} / T 2 *)=\rho \exp (-1)=0.3868 \rho$. This has gone up by 5.1%.

