Homework #3 Solutions

Due: 4/12/01

- 1. Consider a 1D object in the form $g(x) = m_0$ triangle(x/X), where X = 10 cm. Suppose we wish to image this object (in 1D) applying a 90 degree RF pulse followed by a gradient, $G_x = 10 \text{ mT/m}$.
 - a. What is the Fourier transform of g(x)?
 - b. What is the space-frequency relationship (in Hz/cm) with the above G_x ?
 - c. Give an expression for the received signal, s(t), after the RF pulse.
 - d. What is the maximum spatial extent of the object? What is the maximum frequency component of the object (rotating frame)? What is the minimum required sampling rate, f_s , to prevent aliasing?
 - e. Graphically, draw s(t) and mark the locations of samples when they occur at the rate specified in part d.

Solutions

- a. $F\{g(x)\} = |X| \operatorname{sinc}^2(Xu)$
- b. In general, the frequency space relationship is $\Delta \mathbf{w}(x) = \mathbf{g}G_x x$ or in Hz it is $\Delta f(x) =$ $(\mathbf{g}/2\mathbf{p})G_{x}x = 42.58 \text{ MHz/T} * 10^{-2} \text{ T/m} * 10^{-2} \text{ m/cm} = 4.258 \text{ kHz/cm}.$
- c. We will use the relationship $s(t) = F\{g(x)\}|_{u=k}$. For this problem, $k_x(t) = \frac{g}{2n}G_x t$, therefore $s(t) = |X| \operatorname{sinc}^2(X \frac{g}{2p} G_x t) = 10 \operatorname{sinc}^2(42580t)$, for t measured in seconds.

- d. The object g(x) has maximum extent in x of X = 10 cm. The maximum frequency is $f_{\text{max}} = 42.58 \text{ kHz}. f_s > 2*f_{\text{max}} = 85.16 \text{ kHz}.$
- e. Plot shown here:

- 2. Consider an object with initial magnetization $m_0(x, y) = \operatorname{rect}(x/X, y/Y)$.
 - a. Determine the 2D Fourier transform of $m_0(x,y)$.
 - b. For gradient waveforms $G_x(t) = A$ and $G_y(t) = 0$, give an expression for the received signal (this is similar to 1.c. above, but we have a 2D object).
 - c. Determine the minimum sample spacing in both k_x and k_y to prevent aliasing of the object.
 - d. In the spin-warp pulse sequence (below), determine T_y and G (in terms of ΔG , Δt and other parameters) so that k-space is sampled finely enough to prevent aliasing.

Solutions

- a. $F\{m_0(x,y)\} = |XY| \operatorname{sinc}(Xu)\operatorname{sinc}(Yv)$
- b. We will use the relationship $s(t) = F_{2D} \{m_0(x, y)\}|_{u=k_x(t), v=k_y(t)}$. For this problem, $h_1(t) = \int_0^t A(t) h_1(t) = 0$, therefore, $g(t) = |VV|_{0} \ln q (V \int_0^t A(t))$.

 $k_x(t) = \frac{g}{2p}At; k_y(t) = 0$, therefore $s(t) = |XY| \operatorname{sinc}(X \frac{g}{2p}At)$.

- c. The object $m_0(x,y)$ has maximum extent in x of X/2 and in y of Y/2. Using the relationships discussed in class, $\Delta k_x \leq \frac{1}{2}x_{\max}$ and $\Delta k_y \leq \frac{1}{2}y_{\max}$. Therefore $\Delta k_x \leq \frac{1}{x}$ and $\Delta k_y \leq \frac{1}{y}$.
- d. In a spin-warp pulse sequence, $\Delta k_x = \frac{g}{2p} G \Delta t$ and $\Delta k_y = \frac{g}{2p} T_y \Delta G$. Substituting into the results of part d., we get $G \leq \frac{2p}{g\Delta X}$ and $T_y \leq \frac{2p}{g\Delta GY}$.

- 3. Consider the pulse sequence as shown above. Let $T_y = 5$ ms, and $T_{read} = 20$ ms. Suppose our desired field of views (FOVs) are FOV_x = FOV_y = 20 cm and spatial resolution requirements are $\Delta x = 1$ mm and $\Delta y = 2$ mm. Determine the following:
 - a. ΔG_y (in mT/m)
 - b. $G_{y,max}$ (in mT/m)
 - c. G_{read} (in mT/m)
 - d. Δt (in ms)

Solutions:

- a. FOV_y = $1/\Delta k_y$ and $\Delta k_y = \gamma/2\pi T_y \Delta G_y$, thus $\Delta G_y = 2\pi/(\gamma T_y FOV_y) = 0.023 \text{ mT/m}$.
- b. $\Delta y = 1/(2k_{y,max})$ and $k_{y,max} = \gamma/2\pi T_y G_{y,max}$, thus $G_{y,max} = 2\pi/(\gamma T_y 2 \Delta y) = 1.17 \text{ mT/m}$.
- c. $\Delta x = 1/W_{kx}$ and $W_{kx} = \gamma/2\pi T_{read} G_{read}$, thus $G_{read} = 2\pi/(\gamma T_{read} \Delta x) = 1.17 \text{ mT/m}$.
- d. FOV_x = $1/\Delta k_x$ and $\Delta k_x = \gamma/2\pi \Delta t \ G_{read}$ and $G_{read} = 2\pi/(\gamma \ T_{read} \Delta x)$, thus $\Delta t = T_{read} \Delta x / FOV_x = 0.1 \text{ ms} (100 \text{ } \mu \text{s}).$
- 4. Consider the following slice selection pulse RF and gradient pulses. Let $G_{slice} = 10 \text{ mT/m}$, the desired slice thickness be $\Delta z = 5 \text{ mm}$, and $B_0 = 1.5 \text{ T}$.

- a. Determine the center frequency and bandwidth of the RF excitation.
- b. Describe an RF pulse, $B_1(t)$, that has these features.

Solutions:

- a. The center frequency for this RF pulse will be at $w_0 = gB_0$ or $f_0 = 63.87$ MHz. For a thickness $\Delta z = 5$ mm, the frequency bandwidth is $\Delta f = \Delta z^* G_{\text{slice}} \gamma/2\pi = 2.13$ kHz.
- b. The RF pulse, $B_1(t)$, has the form $B_1(t) = A \operatorname{sinc}(t/T) \exp(i2\pi f_0 t)$, which has a spectrum of *TA* rect(*T*(*f*-*f*₀)). In the rotating frame, it is $B_1(t) = A \operatorname{sinc}(t/T)$, which has a spectrum of *TA* rect(*Tf*). This rect function has a width 1/T, so for a bandwidth Δf , we set $T = 1/\Delta f$, where Δf is defined in part a. The amplitude must be selected for a flip angle of **a**. The area under the RF pulse is *AT*, so we set gAT = a or $A = a/Tg = a\Delta f/g$. Therefore, $B_1(t) = a\Delta f/g \operatorname{sinc}(\Delta f t) \exp(i2\pi f_0 t)$.