Homework #3

Due: 4/12/01

- 1. Consider a 1D object in the form $g(x) = m_0$ triangle(x/X), where X = 10 cm. Suppose we wish to image this object (in 1D) applying a 90 degree RF pulse followed by a gradient, $G_x = 10$ mT/m.
 - a. What is the Fourier transform of g(x)?
 - b. What is the space-frequency relationship (in Hz/cm) with the above G_x ?
 - c. Give an expression for the received signal, s(t), after the RF pulse.
 - d. What is the maximum spatial extent of the object? What is the maximum frequency component of the object (rotating frame)? What is the minimum required sampling rate, f_s , to prevent aliasing?
 - e. Graphically, draw s(t) and mark the locations of samples when they occur at the rate specified in part d.
- 2. Consider an object with initial magnetization $m_0(x, y) = \operatorname{rect}(x/X, y/Y)$.
 - a. Determine the 2D Fourier transform of $m_0(x,y)$.
 - b. For gradient waveforms $G_x(t) = A$ and $G_y(t) = 0$, give an expression for the received signal (this is similar to 1.c. above, but we have a 2D object).
 - c. Determine the minimum sample spacing in both k_x and k_y to prevent aliasing of the object.
 - d. In the spin-warp pulse sequence (below), determine T_y and G (in terms of ΔG , Δt and other parameters) so that k-space is sampled finely enough to prevent aliasing.

- 3. Consider the pulse sequence as shown above. Let $T_y = 5$ ms, and $T_{read} = 20$ ms. Suppose our desired field of views (FOVs) are FOV_x = FOV_y = 20 cm and spatial resolution requirements are $\Delta x = 1$ mm and $\Delta y = 2$ mm. Determine the following:
 - a. ΔG_y (in mT/m)
 - b. $G_{y,max}$ (in mT/m)
 - c. G_{read} (in mT/m)
 - d. Δt (in ms)

4. Consider the following slice selection pulse RF and gradient pulses. Let $G_{slice} = 10 \text{ mT/m}$, the desired slice thickness be $\Delta z = 5 \text{ mm}$, and $B_0 = 1.5 \text{ T}$.

- a. Determine the center frequency and bandwidth of the RF excitation.
- b. Describe an RF pulse, $B_1(t)$, that has these features.