Homework \#2

Due: 3/27/00

1. Consider a magnetic dipole, \mathbf{M}, in the presence of an applied main magnetic field, $\mathbf{B}=\mathrm{B}_{0} \mathbf{k}$, where \mathbf{k} is the unit vector in the z-direction. Assume that initially, \mathbf{M} is at equilibrium, has length M_{0} and is aligned with the main magnetic field (along the z direction). Describe (or sketch) the position of \mathbf{M} in the rotating frame using a frame frequency of at $\omega_{0}=\gamma \mathrm{B}_{0}$ for the following sequence of events. Please ignore the effects of any T 1 or T 2 relaxation.
a. At equilibrium.
b. A rotating magnetic field of strength B_{1} and rotational frequency ω_{0} is applied for a period of time $\tau_{1}=\pi /\left(2 \gamma \mathrm{~B}_{1}\right)$.
c. The main field is changed to $\mathbf{B}=\left(B_{0}+\Delta B\right) \mathbf{k}$ for a period of time $\tau_{2}=\pi /(\gamma \Delta B)$.
d. A rotating magnetic field of strength B_{1} and rotational frequency ω_{0} is again applied for a period of time $\tau_{3}=\pi /\left(2 \gamma \mathrm{~B}_{1}\right)$. s
2. Determine the 1D Fourier Transform (FT) of the following:
a. $\operatorname{rect}(x-b)$
b. $\operatorname{rect}(a x)$
c. $\operatorname{rect}(a x) \operatorname{rect}(a x)$
d. $\operatorname{rect}(x)^{*} \operatorname{rect}(x)^{*} \operatorname{rect}(x) \quad[*=1 \mathrm{D}$ convolution $]$
e. $\operatorname{sinc}(x) \cos \left(2 \pi f_{0} x\right)$
f. $\exp \left(-\pi\left(x-x_{0}\right)^{2}\right)$
3. Determine the 2 D FT of the following:
a. $\quad \operatorname{rect}(x) \operatorname{sinc}(y)$
b. $\quad \operatorname{sinc}(x-a) \operatorname{sinc}(y / b)$
c. $\exp \left(-\pi(r / a)^{2}\right)$
d. $\exp \left(-\pi r^{2}\right)^{* *} \exp \left(-\pi r^{2}\right)^{* *} \exp \left(-\pi r^{2}\right) \quad[* *=2 \mathrm{D}$ convolution $]$
e. $\exp \left(-\pi\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right)\right.$
4. Consider the function $g(x)=\operatorname{sinc}^{2}(x / X)$. Determine its spectrum, $G(s)$. Next, determine the sampling frequency f_{s} that will prevent aliasing when sampling $g(x)$.
5. Consider the function $g(x, y)=\exp \left(-\pi\left(x^{2}+y^{2}\right)\right.$ (a real and even function) which has the 2D-FT: $G(u, v)=\exp \left(-\pi\left(u^{2}+v^{2}\right)\right.$. Describe (in words) what happens to the appearance of the function and of its spectrum (its 2DFT) for each of the following modifications:
a. $g(x / a, y / a)$ for $a>1$
b. $g(a x, a y)$ for $a>1$
c. $g(x-a, y)$ for $a>0$
d. $a g(x, y)$ for $a>0$
e. $-g(x, y)$
f. $g(x, y) \cos \left(2 \pi f_{0} x\right)$
g. $g(x, y) \exp \left(i 2 \pi f_{0} x\right)$
