Homework #2

Due: 3/27/00

- 1. Consider a magnetic dipole, **M**, in the presence of an applied main magnetic field, $\mathbf{B}=\mathbf{B}_0\mathbf{k}$, where **k** is the unit vector in the z-direction. Assume that initially, **M** is at equilibrium, has length M₀ and is aligned with the main magnetic field (along the zdirection). Describe (or sketch) the position of **M** in the <u>rotating frame</u> using a frame frequency of at $\omega_0 = \gamma B_0$ for the following <u>sequence of events</u>. Please ignore the effects of any T1 or T2 relaxation.
 - a. At equilibrium.
 - b. A rotating magnetic field of strength B_1 and rotational frequency ω_0 is applied for a period of time $\tau_1 = \pi/(2 \gamma B_1)$.
 - c. The main field is changed to **B**=(B₀+ Δ B)**k** for a period of time $\tau_2 = \pi/(\gamma \Delta B)$.
 - d. A rotating magnetic field of strength B_1 and rotational frequency ω_0 is again applied for a period of time $\tau_3 = \pi/(2 \gamma B_1)$.
- 2. Determine the 1D Fourier Transform (FT) of the following:
 - a. rect(x-b)
 - b. rect(ax)
 - c. rect(ax)rect(ax)
 - d. rect(x) * rect(x) * rect(x) [* = 1D convolution]
 - e. $\operatorname{sinc}(x)\cos(2\pi f_0 x)$
 - f. $\exp(-\pi(x-x_0)^2)$
- 3. Determine the 2D FT of the following:
 - a. rect(x)sinc(y)
 - b. $\operatorname{sinc}(x-a)\operatorname{sinc}(y/b)$
 - c. $\exp(-\pi (r/a)^2)$
 - d. $exp(-\pi r^2)^{**}exp(-\pi r^2)^{**}exp(-\pi r^2)$ [** = 2D convolution]
 - e. $\exp(-\pi((x-x_0)^2+(y-y_0)^2))$
- 4. Consider the function $g(x) = \operatorname{sinc}^2(x/X)$. Determine its spectrum, G(s). Next, determine the sampling frequency f_s that will prevent aliasing when sampling g(x).
- 5. Consider the function $g(x,y) = \exp(-\pi(x^2+y^2))$ (a real and even function) which has the 2D-FT: $G(u,v) = \exp(-\pi(u^2+v^2))$. Describe (in words) what happens to the appearance of the function and of its spectrum (its 2DFT) for each of the following modifications:
 - a. g(x/a, y/a) for a > 1
 - b. *g*(*ax*,*ay*) for *a*>1
 - c. g(x-a,y) for a>0
 - d. a g(x,y) for a>0
 - e. -g(x,y)
 - f. $g(x,y)\cos(2\pi f_0 x)$
 - g. $g(x,y)\exp(i2\pi f_0 x)$