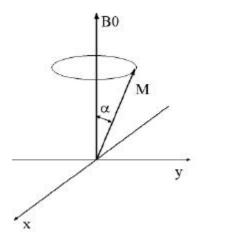
Homework #1


Due: 3/15/00

1. Determine the net nuclear magnetization of a 40 mM concentration of sodium (Na) ions at 1 T and at 310 K. 40 mM is the average concentration of Na in the human brain. Magnetization is the net magnetic dipole per unit volume. Your answer should have units A/m. Show your work.

(Hint: 1 Molar concentration of some molecule (or ion) indicates that there is 1 mole of molecules (ions) per 1 liter of solvent (e.g., water). Units help: $J/T = Am^2$)

Useful constants: k (Boltzmann's) = $1.38 \times 10^{-23} \text{ J/K}$ Avagadro's number = $6.02 \times 10^{23} \text{ (mole)}^{-1}$ $\gamma = 2\pi \times 1.127 \times 10^7 \text{ (T s)}^{-1} \text{ for }^{23}\text{Na}$ h (Plank's) = $6.63 \times 10^{-34} \text{ J s}$; h(bar) = h/2 π

2. For a magnetization vector **M** and an applied field \mathbf{B}_0 and an angle α separating them, show that the rate of precession of **M** around \mathbf{B}_0 is $\omega_0 = \gamma \mathbf{B}_0$. To show this, calculate the speed of the tip of **M** and divide by the path to precess around \mathbf{B}_0 .

- 3. A material has equilibrium magnetization M_0 and relaxation time constants T_1 and T_2 . If a $\pi/2$ excitation pulse is applied, find the expression for |M(t)|, the magnitude of the magnetization vector as a function of time. Show that if $T_2 < T_1$, |M(t)| can never exceed M_0 .
- 4. Consider two materials A and B with the same M_0 , but with T_2 relaxation times (T_{1A} , T_{2A}) and (T_{1B} , T_{2B}). Let $\Delta s_{xy}(t) = M_{xyA}(t) M_{xyB}(t)$ be the difference in transverse magnetization and $\Delta s_z(t) = M_{zA}(t) M_{zB}(t)$ be the difference in longitudinal magnetization. Assume a $\pi/2$ excitation pulse. Find an expression for the time that maximizes each of the above differences.