Information Sheet

Instructor:	Douglas C. Noll Department of Biomedical Engineering and Radiology	
Office:	GG Brown 3412 615-1704 -OR- dnoll@umich.edu	BIRB 1088 764-9194
Mail:	3304 GG Brown 2350 Hayward Ann Arbor, MI 48109-2125	Fax: 936-1905
Lectures:	Tues/Thurs: 4:30-6:30, 2 nd half of winter term, EECS 3427	
Office Hours:	Tues/Thurs: 2:30-4, GG Brown 3412	
Prerequisites:	Integral calculus, trigonometry, physics (EM theory) Some exposure to Fourier transforms is useful, but not necessary	
Text:	None. Readings will given through handouts and most course notes will be available on the web.	
Course Web Site:	http://www.bme.umich.edu/~dnoll/BME483/ -or- http://www.eecs.umich.edu/~dnoll/BME483/	
Course Announcements: In class and by e-mail - all registered students must send me their e-mail addresses.		
Course Description:	Introduction to the physics, techniques and applications of magnetic resonance imaging (MRI). Basics of nuclear magnetic resonance physics, spectral analysis and Fourier transforms, techniques for spatial localization, MRI hardware. Applications of MRI including magnetic resonance properties of biological tissues and contrast agents, imaging of anatomy and function.	
Grading:	30% Homework, 30% Midterm Exam, 40% Final Exam	
References:	 Understanding Magnetic Resonance Imaging RC Smith and RC Lange (1998, CRC Press) NMR in Medicine: The Instrumentation and Clinical Applications SR Thomas and RL Dixon (1986, Amer. Inst. of Physics) Magnetic Resonance Imaging MT Vlaardingerbroek and JA den Boer (1996, Springer) Magnetic Resonance Imaging EM Haacke, et al. (1999, Wiley-Liss) 	

Tentative Syllabus

(Each class below represents 2 hours of lectures.)

NMR Physics

- 1. 3/6 Introduction, Policies, Overview of medical imaging modalities, Concept of nuclear spin, Magnetic moment, Precession of a top, Precession of the moment
- 2. 3/8 Field dependence, Two-state energy systems, Rotating frame of reference, Excitation
- 3. 3/13 RF fields and coils, Relaxation (T1 and T2), Free Induction Decay (FID), Spinechoes

Biological Tissues and Contrast

4. 3/15 NMR Properties of Biological Tissues, Contrast Agents, Optimizing Contrast

Spectral Analysis

- 5. 3/20 Fourier Transforms, Basic Theory, Properties and Relationships
- 6. 3/22 Time-frequency vs. space-spatial frequency, 2D Transforms

Localization

- 7. 3/27 Fourier Transforms of the FID, Magnetic field distributions, susceptibility, chemical shift, review for midterm exam
- 8. 3/29 Midterm exam (1 hr.), Gradient fields and coils, 1D localization
- 9. 4/3 2D localization, Projection imaging, Spin-warp imaging and reconstruction
- 10. 4/5 Slice Selection, Putting it all together, Overall system architecture

Applications - Functional MRI and Clinical Uses of MRI

- 11. 4/10 Tour and demonstrations, Functional MRI Laboratory, BIRB 1089.
- 12. 4/12 Major clinical applications: neuro, body, musculo-skeletal, cardiac, oncology; imaging methods and image interpretation, physiology of brain activation, MRI observable phenomena
- 13. 4/17 Blood oxygenation contrast, imaging considerations, rapid imaging techniques, statistical analysis, single-event imaging
- 14. 4/19 Final exam (2 hrs) time to be determined.