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Notes on the Fourier Transform 

 
Definition.  The continuous domain Fourier Transform (FT) relates a function to its frequency 
domain equivalent.  The FT of a function g(x) is defined by the Fourier integral: 
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for ., ℜ∈sx   There are a variety of existence criteria and the FT doesn’t exist for all functions.  
For example, the function g(x) = cos(1/x) has an infinite number of oscillations as 0→x and the 
FT integral can’t be evaluated.  However, if the FT exists, then there is an inverse FT 
relationship: 
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Uniqueness:  Given the existence of the inverse FT, it follows that if the FT exists, it must be 
unique.  That is, for a function forms a unique pair with its FT: 
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Caveat.  An exception to the uniqueness property is a class of functions called null functions.  

An example is the continuous function 
0,0

0,1
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same Fourier transform as f(x) = 0: F(s) = 0.  Thus, the uniqueness exists only for a function plus 
or minus arbitrary null functions.  In practice, this caveat is not important and for the purposes of 
this class we will assume that the FT is unique. 
 
Symmetry Definitions.  We first decompose some function g(x) in to even and odd components, 
e(x) and o(x), respectively, as follows: 
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A function, g(x), is Hermitian Symmetric (Conjugate Symmetric) if: 
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Symmetry Properties of the FT.  There are several related properties: 
1. If g(x) is real, then G(s) is Hermitian symmetric (e.g. G(s) = G*(-s) ). 
2. If g(x) is real and even, G(s) is real and even. 
3. If g(x) is real and odd, G(s) is imaginary and odd. 
4. If g(x) is real, G(s) can be defined strictly by non-negative frequencies ( 0≥s ). 
5. If g(x) is imaginary, then G(s) is Anti-Hermitian symmetric (e.g. G(s) = -G*(-s) ). 
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Proof of 1. 
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Comment.  One interesting consequence of the symmetry properties is that if g(x) is real, the only 
one-half of the Fourier transform is necessary to specify the function – this follows from 
property 1. above.  More specifically, g(x) is strictly determined by G(s) for all non-negative 
frequencies (s). 
 
Comment on negative frequencies.  Consider a real-valued signal – imagine a voltage on a wire 
or the sound pressure against your eardrum – the Fourier transform of these is completely 
specified by the positive frequencies (since G(-s) = G*(s)).  We can argue that we have the 
concept of a frequency (oscillations/second), but it doesn’t really make physical sense to talk 
about positive or negative frequencies..  We could argue that the having positive and negative 
frequencies is merely a mathematical convenience.  Are there cases where negative frequencies 
have meaning?  Consider the bit in a drill – it can turn clockwise or counter clockwise and 
different rotational rates.  Here positive and negative frequencies have physical meaning (the 
direction of rotation).  As we shall see, the magnetic moment in NMR is a case where the sign 
indicates the direction of precession. 
 
Convolution Definition.  The convolution operator is defined as: 
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[**The delta function material is only for completeness – not necessary for this class**] 
 
The delta function, ).(xδ   The delta function is a mathematical construct that is infinitely high 
in amplitude, infinitely short in duration and has unity area: 
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Most properties of )(xδ  are defined only in a limiting case (e.g. as a sequence of functions 
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Delta function properties.  First two are technically only defined under the integral, but we’ll 
still talk about them. 
Similarity (stretching) 
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Fourier Transform Theorems.  There are many Fourier transform properties and theorems.  
This is a partial list.  Assume that )()}({ sGxgF = , )()}({ sHxhF = and that a and b are constants: 
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Rayleigh’s Power  ∫∫ = dssGdxxg
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Sampling Theory.  When manipulating real objects in a computer, we must first sample the 
continuous domain object into a discretized version that the computer can handle.  There are 
numerous ways to think about the sampling, but we will consider the effect on the frequency 
domain (s) of sampling uniformly in x.  Consider a signal g(x), with FT G(s), which is sampled 
with spacing ∆x, e.g.: gs(n) = g(n ∆x), where gs is a discrete function.  The FT of gs is  

∑ −=
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evaluated from 2/2/ ss fsf ≤≤− , where fs = 1/∆x, the sampling frequency.  What this relationship 
says is that the sampled spectrum is the original spectrum replicated with spacing fs and that only 
frequencies less than fs/2 can be represented in the discrete domain signal.  Any components that 
lie outside of this spectral region ( 2/2/ ss fsf ≤≤− ) results in “aliasing” – the mis-assignment of 
spectral information. 
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Aliasing  
The Whittaker-Shannon sampling theorem states that a band limited function with maximum 
frequency smax can be fully represented by a discrete time equivalent provided the sampling 
frequency satisfies the Nyquist sampling criterion:  
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where fs is known as the Nyquist frequency.  The reconstructed signal is given by: 
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Some common FT pairs: 
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Units.  If x has units of Q, then s will have units of “cycles/Q” or Q-1.  Please note that this is not 
an angular frequency with units of radians/Q, but just plain Q-1.  Please also keep in mind that x 
is the index of variation – for example, we can have g(x) represent a velocity that varies as a 
function of spatial location x.  The function g(x) has units cm/s, but x has units cm. 
 
Examples: 

Time 
Seconds (s) 

Temporal Frequency 
s-1, Hz, cycles/s 

Distance 
cm 

Spatial Frequency 
cm-1, cycles/cm 
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Notes on the 2D Fourier Transform 

 
Definition.  The 2D Fourier Transform (FT) relates a function to its frequency domain 
equivalent.  The FT of a function g(x,y) is defined by the 2D Fourier integral: 
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There is also an inverse FT relationship: 
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Uniqueness:  Given the existence of the inverse FT, it follows that if the FT exists, it must be 
unique.  That is, for a function forms a unique pair with its FT: 

),(),( vuGyxg ↔  
 
Symmetry Properties of the FT.  If g(x,y) is real, then G(u,v) is Hermitian Symmetric, that is, 
G(u,v) = G*(-u,-v).  If g(x,y) is real and even, that is, g(x,y)=g(-x,-y), then G(u,v) is also real and 
even. 
 
The delta function, ).,( yxδ   The delta function in two is equal the to product of two 1D delta 
functions )()(),( yxyx δδδ = .  In a manner similar to the 1D delta function, the 2D delta 
function has the following definition: 
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Most properties of ),( yxδ  can be derived from the 1D delta function.  There is also a polar 
coordinate version of the 2D delta function: ./)(),( rryx πδδ =  
 
Fourier Transform Theorems.  Let a and b are non-zero constants. 
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Sampling Theory in 2D.  We now sample a 2D object and will consider the effect on the 
frequency domain (u,v) of sampling uniformly in x and y.  Consider a signal g(x,y), with FT 
G(u,v), which is sampled with spacing ∆x and ∆y, e.g.: gs(n,m) = g(n ∆x, m ∆y), where gs is a 
discrete function.  The FT of gs is  
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spectrum is the original spectrum replicated with spacing x∆
1  and y∆

1  (the sampling 

frequencies) and that only frequencies less than one-half of these frequencies can be represented 
in the discrete domain signal.  Any components that lie outside of this spectral region will result 
in “aliasing” – the mis-assignment of spatial frequency information. 
 
The Whittaker-Shannon sampling theorem in 2D states that a band limited function with 
maximum frequencies smax,x and smax,y can be fully represented by a discrete time equivalent 
provided the sampling frequency satisfies the Nyquist sampling criterion:  
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Under these circumstances, there is no spectral overlap (or aliasing) the original spectrum and by 
uniqueness of the FT, the original signal can be reconstructed.  The reconstructed image is given 
by: 
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If the Nyquist criterion is met, then ),(),(ˆ yxgyxg = .  This is “sinc” interpolation in 2D. 
 
Some common 2D FT pairs: 
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Examples of Fourier Transforms: 
 

 
 2D data in Low spatial freq High spatial freq 
 image domain data (image domain) data (image domain) 
 

 
 2D data in Low spatial freq High spatial freq 
 Fourier domain data (Fourier domain) data (Fourier domain) 
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g(x,y) = rect(x)rec(y) 
G(u,v) = 
sinc(u)sinc(v) 
 
 
scaling 
(magnification) 
property 
 
 
 
scaling 
(magnification) 
property 
 
 
 
shifting property 
 
 
 
 
 
modulation 

  Image Abs(Fourier) Real(Fourier) Imag(Fourier) 
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g(x,y) = sinc(x)sinc(y) 
G(u,v) = rect(u)rect(v) 
 
 
 
 
sampling pattern with ∆x = ∆y 
In the Fourier transform we have the  
replication pattern with spacing 
1/∆x = 1/∆y 
 
 
 
 
sampling pattern with ∆x < ∆y 
In the Fourier transform we have the  
replication pattern with spacing 
1/∆x > 1/∆y 
 
 
 
sampling pattern with ∆x << ∆y 
This has aliasing in the y (v) direction 
 

 
  Image Data Fourier Data 

 
 

 


