Homework #8
Due Date: Mar. 21, 2005

1. O&W 5.29

2. O&W 5.30 (a) and (c)

3. O&W 5.36 (a) and (b), parts (i-iii).

4. O&W 7.21

5. O&W 7.22

6. Consider the signal \(x(t) = \frac{1}{A} \text{sinc} \left(\frac{t}{A} \right) \), where \(A = 4 \).

 (a) For what values of \(T \) will this signal be adequately sampled.
 (b) Use Matlab’s fft function to calculate the Fourier transform of \(x(n) \) for \(n \) in the range \([−N/2 : N/2−1]\) where \(N = 64 \) and plot the magnitude and phase of \(X(\omega) \) from \(−\pi \) to \(\pi \). Do this for at least two values of \(T \), one where the signal is adequately sampled and one where it is not.

7. Consider the signal \(x(t) = \text{rect} \left(\frac{t}{A} \right) \), where \(A = 7 \).

 (a) Determine (analytically) the continuous FT of this signal and plot in Matlab.
 (b) Now, sample with sampling period \(T = 1 \). Determine the DTFT (analytically or numerically) of this signal and plot in Matlab.
 (c) Compare the continuous and discrete FT’s over the range \(−\pi \) to \(\pi \).
 (d) Take the result of part (a) and create \(X(\omega) + X(\omega − 2\pi) + X(\omega + 2\pi) \). Plot this signal over \(−\pi \) to \(\pi \) and compare to parts (a) and (b).