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- 1:30-1:45pm Introduction [Jilles]
- 1:45-2.50pm Network-level Summaries [Francesco]
« 2:55-3:20pm  Multi-network Summaries DEREN

« 3:20-3:40pm break
3:40-4:05pm Multi-network Summaries DEREN
- 4:10-4:40pm  Node-level Summaries [illes]
« 4:40-4:50pm Conclusion [Jilles]



Part lll:
. ocal Summarization

Jilles Vreeken



Why do we want a summary?

We want to gain insight in the structure of the data

« capturing the key aspects of the data,
* |n easily interpretable terms,
« without redundancy

The techniques we've seen so far aim at this
* but, do they really deliver? in all interesting cases?

All deliver one single summary for all of the data
« what do we lose by explaining all the data at once?



Nodes with ‘Descriptions’
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Parameter-free |dentification of Cohesive Subgroups

in Large Attributed Graphs (Akoglu et al 2012)
find joint-partition of adjacency matrix and feature matrices

‘people who buy A1, A3, but not A2 all know each other’

B [Akoglu et al, "12]
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feature-matrix grid cells can be interpreted as ‘descriptions’, e.g.
‘people with features A1 and A2 but not A3 know each other well’,



Nodes with ‘Descriptions’
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lteratively add a split on either features or nodes

- after each split, re-arrange nodes and features s.t.
sum of entropies over each induced grid cell is minimized

« stop when MDL determines splitting does not provide sufficient gain

B [Akoglu et al, "12] 6



Globally not-quite Optimal

Globally summarizing gives an overview, but

we are not always equally interested in all the data

Moreover, by optimizing a single global objective,

choices made in how we summarize one part of
the data have an effect on other parts of the data

subgraph G¢' may be easy to explain, but its locally
optimal summary the global summary well

globally optimal often means locally suboptimal!



L ocal Summaries

Why not mine local summaries?

* node groups with exceptional connectivity
that come with easy to interpret descriptions

For example, /

‘oeople who watch cat videos  often interact’

By not having to care about all the data all the time
« we obtain locally optimal and actionable summaries
* easy to interpret, allowing for alternate explanations



Subgroup Discovery in Graphs

Subgroup Discovery

* given data D and a language L,
find those expressions o € L,
such that forascores: D - R

we have high |s(D) — s(a(D))I

B [Ki6sgen, '96, Friedman, ‘99]



Subgroup Discovery in Graphs

Subgraph Discovery
* givenagraph G(V,E),
language L of expressions over nodes
e.g. ‘nodes with cat_video = yes’
and a score s over subgraphs,
e.g. ‘average number of edges per node’

* find those expressions o € L,
such that the score over induced subgraph G, is high,
e.qg. stands out from the score over the whole graph G

Easily understandable, actionable, local summaries

B [Atzmueller et al. '16, Pool et al. ‘14] 10



Discovering Subgroups in Graphs

Key challenges

» define score s
< existing measures mainly consider density
= yseful scores are often non-monotone, non-submodular, etc
- define a language £
<~ existing languages consider

= explicit node attributes (cat-video = yes)
= implicit node attributes (in-degree > 3)

- efficient algorithm to search over 2+
<~ beam search often used as greedy heuristic without guarantees

< exact search is possible using branch-and-bound
if we have an efficiently computable tight optimistic estimator §

B [Knobbe et al. '05, Grosskreutz et al. ‘08] 77



Example Subgroup Discovery
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Explain me this...

We do not always care about summarize graph G
entirely

* how to explain nodes § € VV marked by external process?

What can G explain about § ?

« are S close by each other?

* are § segregated?

* how many groups do they form?

How can we connect S using G7
. with “simple” paths
* using “good” connectors

B [Akoglu et al. 2013] 74



Simple Connection Pathways

Main idea: use the network structure to explain S

« partition § into groups of nodes, such that:

<+ “simple” paths connect the nodes in each group,
nodes in different groups are

B [Akoglu et al. 2013] 15



Example in Co-Authorship Graph
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Subjectively Interesting

For dense graphs, there are no ‘'simple’ paths
« plain path simplicity by MDL does not work (well)

However, some paths are more expected
« for example, paths between recently active nodes
* we can express Pr(path) using such external information

And mine most informative SteinerTree incrementally
InfContent(edge)

- iterativel th high
iteratively add edge with highest DescLength(edge)

B [Adriaens et al. 2017] 17



Bump Hunting in the Dark

Why explain all query nodes § € V?
* why not as many as possible with one connected subgraph?

Find connected subgraph G’
with nodes and
nodes

* j.e. G' € G is connected, with
high |SnV’'|, and low |V'\ S|

* this is known as discrepancy
maximization: NP-hard on graphs

* note the relation to subgroup discovery!

\ -
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B [Gionis et al. 2017] 18



Bump Hunting in the Dark

Find connected G’ with high |S nV'| and low |[V'\ S|
* NP-hard, no known approximation algorithms

It graph G is a it's ,butifit's a it's

- main idea find a tree Gy € G, then find G' on G

* linear time heuristics to find G based on spanning trees
* variants for full graph access, and for local expansion

Key open guestions
* weighing scheme, expansion strategy, stopping criteria
« and, how to expand to other, more refined measures

B [Gionis et al. 2017] 79



Minimally Inefficient

Connectedness of G’ restricts usefulness

 Instead, find that set of nodes € € V \ S such that
induced subgraph G' = G[S U C] is cohesive

Cohesiveness relates to reachability

- if G’ is not connected, shortest path may be infinite
 efficiency of a graph defined as

1 1
£ = D 2 d

u,vev
UFV

B [Ruchansky et al. 2017]
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Minimally Inefficient

Minimium Inefficiency Subgraph problem

 find those nodes € € V' \ S such that induced
subgraph ¢' = G[S U C] is minimally inefficient

* NP-hard, not known to be approximable: greedy heuristic

B [Ruchansky et al. 2017] 21
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A Picture Says More Than...

ldeally a summary is easy to understand

* most solutions provide pretty presentation
* and, no support for exploration of the summary space

Key difficulties
* how should we present a summary?
* how can we interact with it?

Only few visual summary exploration tools exist
« and out of those, we only cover two

23



Interactive Exploration of
Graph Query Results
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raph Exploration
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What Have We Seen

Summarization of Single Networks
 a lot of work done, in many different angles

Summarization of Multiple Networks
* not so much work done, big open problems

Summarization of Sets of Nodes
« very little work done, very interesting challenges

28



Single network summarization is challenging

* how to decide what is important? Lossy or lossless? What is the
goal of the summary? How to keep things tractable?

Main focus: unatiributed undirected networks
* simple problem is already hard enough, covers many settings

There exists, but only very limited work on
* attributed, directed, or signed networks

Big challenges, huge opportunities!

29



Multiple Networks

Multi-network summarization is more challenging than network-
level summarization
+ How to reduce re-computations? pick the right temporal granularity?

handle node additions / deletions? make methods scale to multiple
networks?

Main focus: temporal networks
<+ Applying static methods on snapshots is not sufficient
< Different models: static snapshots / tensor, graph stream

Very limited work on
< attributed temporal networks
< multiple disparate networks

‘One size does not fit all”! We should be thinking about tailored
summaries: domain-specific, personalized, query-driven etc.

Big challenges, huge opportunities!
30



Taking a local rather than a global perspective

 descriptions of subgraphs, much easier to understand
* no global choices that affect locally optimality!

sSurprisingly little work done

 discovering explainable subgraphs
« explaining node sets
 Interactive exploration and interaction

Big challenges, huge opportunities!

37



Open Research Problems




Open Research Problems




Conclusions

Graph summarization is important and has impact:
 reduction of data volume + storage

* speedup of algorithms + queries

* Interactive analysis

* noise elimination (patterns)

There is a lot of potential for
high-impact contributions!

34



Conclusions

Graph summarization

NO unigque approach or notion

no widely accepted objective function

no standard evaluation measure or benchmark
highly domain and application dependent

There is a lot of potential for
high-impact contributions!
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