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Roadmap

• 1:30-1:45pm Introduction [Jilles] 

• 1:45-2:50pm Network-level Summaries [Francesco]

• 2:55-3:20pm Multi-network Summaries [Danai]

• 3:20-3:40pm –––––– break ––––––
• 3:40-4:05pm Multi-network Summaries [Danai]

• 4:10-4:40pm Node-level Summaries [Jilles]

• 4:40-4:50pm Conclusion [Jilles]
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Part I:
Network-level Summaries

Francesco BonchiJilles Vreeken



Graph Dedensification

4

Intuition: redundancy around high-degree nodes

Main Idea: Compress their neighborhoods
² compressor nodes

Used for exact answers to pattern matching queries

[Maccioni and Abadi, ‘16]



Graph Dedensification: Beyond MDL

5

Guarantees on speedup: precondition
• H: set of high-degree nodes
• M: other nodes
• add compressor node if every node in M has 

a directed edge to each node in H
M             H

[Maccioni and Abadi, ‘16]



Dedensification vs. Virtual Node Compression

6

Community-related 
queries

Dedensification
Pattern-matching

Queries
with guarantees

Virtual Node 
Compression [Buehrer ‘08]

Goal: speedup 
queries

Goal: compression



Network-level summarization

7

SIGMOD 08 SDM 10

• summarize in supernodes (set of nodes) and 
superedges (set of edges)

• follow the MDL principle 

• lossless, or lossy with bounded error
• edge corrections

• lossy
• densities
• number of supernodes predefined
• answer queries directly on the 

summary (expected-value 
semantics)

[Navlakha et al. ’08, LeFevre & Terzi, ‘10]



88[Navlakha et al. ’08]
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Compression possible (!)
• many nodes with similar neighborhoods 
• collapse these into supernodes (clusters) 

and the edges into superedges
² bipartite subgraph of two 

supernodes and a superedge
² clique to supernode with a “self-edge”

Correct mistakes (C)
• most superedges are not complete

² nodes don’t have exact same neighbors: 
friends in social networks

• remember corrections
² negative edges, not present in superedges
² positive edges, not counted in superedges

Minimize overall cost = ! + $

d e f g

a b c

Y = {a,b,c}
h

j
i

Cost = 14 edges

+(a,h)
+(c,i)
+(c,j)
-(a,d)

Corrections
Cost = 5
(1 superedge + 
4 corrections) 

Summary
X = {d,e,f,g}



Representation Structure ! = ($, &)
Summary $(($, )$)
• supernode * represents set of nodes +*
• superedge (,, *) represents 

all pairs of edges -,* = +.× +0

Corrections &: {(2, 3); 2 256 3 278 5968: 9; <}

Supernodes are key, edges/corrections 
easy
• +,* actual edges of < between +, and +*
• cost with (,, *) = 1 + |-,* – +,*|
• cost without (,, *) = |+,*|
• choose minimum, decides whether (,, *) in $

Reconstructing the graph from !
• for all superedges ,, * ∈ $ insert all pairs -,*
• for all +ve corrections +(2, 3), insert (2, 3)
• for all -ve corrections −(2, 3), delete (2, 3)
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[Navlakha et al. ’08]

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

h

j
i

d e f g

a b c

Y = {a,b,c}
h

j
i

Summary
X = {d,e,f,g}

h

j
i

d e f g

a b c



Greedy
Cost of merging supernodes ! and "
into single supernode #
• recall: cost of a superedge (!, &): 

((!, &) = min{|/"& – 1"&| + 1, |1"&|}
• (! = sum of costs of all its edges = Σ& ((!, &)
• 6(!, ") = ((7 + (8 – (#)/((7 + (8)

Main idea: 
recursive bottom-up merging of supernodes
• if 6(!, ") > 0, merging ! and "

reduces the cost 
• normalize the cost: remove bias 

towards high degree nodes
• creating supernodes is key: superedges

and corrections can be computed later

10[Navlakha et al. ’08]

u v

w

cu = 5; cv =4

cw = 6 (3 edges, 3 corrections)

s(u,v) = 3/9



Greedy
Recall !(#, %) = (() + (+ – (-)/(() + (+)

GREEDY algorithm
• start with / = 0
• at every step, pick pair with max !(. ) value, merge
• if no pair has positive !(. ) value, stop

11[Navlakha et al. ’08]
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s(b,c)=.5
[ cb = 2; cc=2; cbc=2 ]

a
bc

d

e

fgh
C = {+(h,d)}

a
bc

d

ef
gh

C = {+(h,d),+(a,e)}

s(e,f)=1/3
[ ce = 2; cf=1; cef=2 ]

s(g,h)=3/7
[ cg = 3; ch=4; cgh=4 ]

Cost reduction: 11 to 6



Randomized

GREEDY is slow
• needs to find the pair with (globally) max !(. ) value
• processes all pair of nodes at a distance of 2-hops
• every merge changes costs of all pairs with %&

Main idea: light-weight randomized procedure
• instead of choosing the globally best pair,

(randomly) choose node '
• merge the best pair containing (

12[Navlakha et al. ’08]



Randomized

RANDOMIZED algorithm
• unfinished set ! = #$
• at every step, randomly 

pick a node % from !
• find that node & with 
max *(%, &) value

• if *(%, &) > 0 then 
² merge % and & into 0
² put 0 in !

• else remove % from !
• repeat till ! is not empty

13
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b c

d
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fg
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Picked e; s(e,f)=3/5
[ ce = 3; cf=2; cef=3 ]

a
b c

d

efg

h

C = {+(a,e)}
[Navlakha et al. ’08]
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Reduces the cost 
up to 40%

Cost of GREEDY 20% 
lower than RANDOMIZED

RANDOMIZED is 60% 
faster than GREEDY

[Navlakha et al. ’08]



Approximate Representation !є
Approximate representation
• recreating exactly is not always necessary
• reasonable approximation enough to compute 

communities, anomalous traffic patterns, etc.
• use approximation to get further reduction

Generic Neighbor Query
• given node #, find its neighbors $# ∈ &
• Apx-nbr set $’# estimates $# with є-accuracy
• bounded error: 

())*)(#) = |$’# \Nv| + |$# \N’#| < є |$#|
• number of neighbors added or deleted is at 

most є-fraction of the true neighbors 

Intuition for computing !є
• deleting correction (4, 6) adds error for 4 and 6
• from exact representation !, remove (maximum) 

corrections s.t. є-error guarantees still hold

15

C = {-(a,d), -(a,f)}

Y = {a,b}

X = {d,e,f,g}

d e f g

a b

For є = .5, we can remove 
one correction of a

d e f g

a b

[Navlakha et al. ’08]



Computing approx. representation

Reducing size of corrections
• correction graph !: 

for every correction ", $ ∈ &, add edge (", $) to !
• removing (", $) reduces size of &, but adds error of 1 to " and 

$
• recall bounded error: )**+*(,) = |/’, \Nv| + |/, \N’,| < є|/,|
• implies we can remove up to $, = є|/,| edges incident on ,
• maximum cost reduction: remove subset 7 of 8! of 

max size s. t. 7 has at most $, edges incident on ,

Same as the $-matching problem
• find matching 7 ⊂ 8: s.t. at most $, edges incident on , ∈ 7
• for all $, = 1, traditional matching problem
• solvable in time <(=>2) [Gabow-STOC-83]

² (for graph with > nodes and = edges)

16

+(a,b)
+(.)
-(.)

C

S

+(.)
-(.)

Cє

[Navlakha et al. ’08]



Computing approx. representation

Reducing size of summary
• removing superedge (", $) is bulk removal 

of all pair edges &'(, 

• However, each node in )' and )( has 
different $ value

• … does not map to clean matching-type problem

A GREEDY approach
• pick superedges by increasing |&'(| value
• delete (', () if that doesn’t violate є-bound for nodes in 

)',)(
• if there is correction (", $) for &'( in -, we cannot remove 

(', (); since removing (', () violates error bound for " or $

17
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+(.)
-(.)

Cє

Sє

[Navlakha et al. ’08]



APXMDL

Compute the !(#, %) for '
Find %є
• compute ), with *) = %
• find maximum ,-matching - for ); 
%є = % −-

Find #є
• pick superedges (/, 0) in # without 

correction in %є ascending in |2/0|
• remove (/, 0) if that doesn’t violate 
є-bound for any node in 3/ ∪ 30

Apx-representation !є = (%є, #є)

18
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+(a,b)
+(.)
-(.)

C

[Navlakha et al. ’08]



19[Lefevre & Terzi ’10]

Original graph Node partition
Summary

Expected adjacency matrix 
resulting from the summary

Adjacency matrix of 
the original graph
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Query answering

Expected adjacency matrix
can be seen as a probabilistic 
(uncertain) graph

Queries to the original graph 
can be approximated directly 
on the summary

expected value semantics

[Lefevre & Terzi, ’10] *[Riondato et al, ‘14]

Example:

Expected degree of node #2:
2/3 + 2/3 + 1/3 + 1/3 = 2

Other measures
• expected eigenvector centrality
• expected number of triangles*
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Minimize the 
reconstruction error

A summary is good when the 
expected adjacency matrix is
close to original adjacency
matrix

Define reconstruction error as
difference between the matrices

Problem: given an integer !
find a !-partiton of the nodes
s.t. the corresponding summary
minimizes reconstruction error.

[Lefevre & Terzi, ’10]



Greedy algorithm

GREEDY agglomerative hierarchical clustering
1) put each vertex in a separate supernode;
2) until the number of supernodes is !

1) merge the two supernodes whose merging 
minimizes the reconstruction error;

3) output the resulting ! supernodes;

Main limitations
• no quality guarantees
• very slow

22[Lefevre & Terzi, ’10]



23[Riondato et al, ’14, DMKD]

Original graph Node partition
Summary

Expected adjacency matrix 
resulting from the summary

Adjacency matrix of 
the original graph

ICDM’14

DMKD

Overcomes GraSS limitations
• fast algorithm with constant-factor approx. guarantee
• generalize reconstruction error to !"-reconstruction error
• consider cut-norm error
• among contributions: practical use of extreme graph 

theory, with cut-norm and algorithmic version of 
Szemerédi’s Regularity Lemma.



ALGORITHM: 
just cluster the rows of the adjacency matrix!

24



ALGORITHM: 
just cluster the rows of the adjacency matrix!

25[Riondato et al, ’14, DMKD]
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Influence-based 
Summarization

Influence-based summarization methods aim to 
discover a short representation of the influence 

flow in large-scale graphs.



Sparsification-based method: SPINE

Idea: keep only edges that explain the information 
propagation (“backbone” of influence network)
• i.e. that maximize the likelihood of observed data

• assuming the Independent Cascade model
• no grouping

27[Mathioudakis et al., ‘11.]

!"#: at least one 
node succeeds 
to influence $
%&': all nodes fail 

log + , = .
/∈1

log +/ ,

= .
/∈1

.
2∈3

(log !/# 5 + log!/'(5)



Community-level Social Influence (CSI)

Goal: summarize information propagation and social 
influence
• Independent Cascade model to find influence 

between communities (extension from nodes)
Output: Community = set of nodes that share a similar 
influence tendency over nodes in other communities

28[Mehmood et al., ‘13.]



Community-level Social Influence (CSI)

Algorithm:
• recursive application of 

METIS for hierarchical 
communities

• EM algorithm to learn 
pairwise influence
relationships

• merge two communities 
(with same parent)
² MDL or BIC to select 

the “best” cut

29[Mehmood et al., ‘13.]



CSI: Y! Memes, Flixster, Twitter 

30[Mehmood et al., ‘13.]

• No correlation between influence and link probabilities.
• Even dense communities do not exhibit strong internal influence.

Community-to-
community

Influence 
Probabilities

Social Links
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Pattern mining-based 
Summarization

Pattern mining techniques aim to summarize 
an input network via structural patterns.

(can also be combined with 
grouping techniques and compression)



Using Frequent Patterns

Target: 
• compress web gaphs
• support community discovery
Main idea:
• Frequent pattern mining: patterns 

are replaced with a virtual node
Algorithm:
• Phase 1: Clustering of similar 

nodes (probabilistic sampling)

• Phase 2: Frequent pattern mining 
by casting outlinks as an itemset

32[Buehrer and Chellapilla, ‘08]



Egocentric Abstraction

33

Main Ideas:
• unsupervised approach that creates an abstract 

representation of an ego-network
• edge filtering: based on frequent or rare patterns

[Li et al., ’09]                    



Motif Simplification
Tailored detection algorithms for three motifs:

• Fans

• Connectors

• Cliques

34[Dunne and Shneiderman, ‘13.]



Motif Simplification

Target: Visualization
• less screen space and layout effort
• better understanding

35

Lostpedia wiki edits 
(bipartite network)

US Senate 2007 
co-voting network

[Dunne and Shneiderman, ‘13.]



Main Underlying Idea: Minimum 
Description Length

36

Option 1

min L(M)  +  L(D|M)
# bits 
for M

# bits for the 
data using M

~Occam’s razor

[M] 
Ø

[D|M](1,
a)

(1,d)
(1,f)
(2,c)
(3,a)
(3,d)
(3,f)
(6,d)
(6,f)

[M]
(1,6,3:
a,d,f)

[D|M]
-(6,a)
+(2,c)

a  b c  d  e  f
1
2
3
4
5
6

Option 2

a  d  f   b  e  c
1
6
3
4
5
2

a  d  f  …
1
2
3
...

a  d  c  …
1
2
3
...

a  b  c …
1
2
3
...

simple and good
explanations



Using Grouping and Compression

37

Two-part representation 
• Aggregated graph S: 

² !"#$%: collection of original nodes
² !&$'%: edges between all node pairs in !"#$%

• Edge corrections (:
² to recreate the 

original nodes

[Navlakha et al., ’09]                    



Using Grouping and Compression

38

Algorithmic Ideas:
• merge node groups when the MDL cost decreases

• Greedy: iteratively merge nodes 
with highest MDL cost reduction 
² only considers pairs of nodes 

within 2-hops from each other
• Randomized: 

randomly picks nodes 
and merges it with its 
best neighbor in 2-hop 
neighborhood

[Navlakha et al., ’09]                    



VoG: Vocabulary-based Summarization

Find: 

Lady Gaga 
Fan Club

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]

201

1

Given: a large unlabeled    
graph

Find: a succinct summary
efficiently

Find important 
graph structures.



Challenges
Challenge 1: What subgraphs to consider?
For n nodes è 2n possible subgraphs

e.g., n = 266 è ~1080 subgraphs!
Only 1080 atoms in

the universe!

Idea 1: Use a graph vocabulary.

popularity sockpuppets

Idea 2: Use compression.
influence

propagation

Only 1080 atoms in
the universe!

Challenge 2: Which subgraphs are important?

DDoS attackbest graph  == shortest lossless
summary description

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



Minimum Graph Description 

Given: a graph G with adjacency matrix A

Find: model M s.t.
minL(G,M)  =  min { L(M) + L(E) }

Adjacency A Model M Error E

plain

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



Minimum Graph Description 

Given: a graph G with adjacency matrix A

Find: model M s.t.
minL(G,M)  =  min { L(M) + L(E) }

Adjacency A Model M

1) Minimize       
description

2)Scalable

How?

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]
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≈?

MDL  cost

Could use: 
ANY (overlapping) subgraph
extraction method 

METIS 
+ SlashBurn
+ Spectral clustering  
+ Modularity
+ Community detection 
+  k-coreshub?

Maximum  
bipartite 

subgraph?

NP-hard!

LN(|st|−1)   + log n    + log(              ) + L(E+ ) + L(E− )hub ID |st|−1
n−1# of 

spokes spokes IDs extra missingErrorsStar structure

6

argmin

≈

of 
3

ste
p1of 

3
ste

p2 VoG: Shape DetectionVoG: Subgraph ExtractionVoG: Vocabulary-based 
Graph Summarization



VoG: Summary Assembly

encoding cost
of the whole 

graph
minimize

Should we show all structures?

Choose the structures that:

No, MDL will decide!

of 
3

ste
p3

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



s

Summary Encoding Cost

L(G, M) = LN(|M|+1)                 + 

log(          )               +

Σ(-logP(x(s)|M) + L(s)) +

L(E)

|M|+|Ω|-1
|Ω|-1

#  of 
structures

#  of structures
per type

for each structure
its encoding length

3#  of 
structures

#  of structures
per type

for each structure 
its encoding length

errorserrors

min L(G,M)  over 2 # structures possible summaries

: 1    : 1 : 1

its
connectivity

its
shape

hard! # struct: 500-30,000

of 
3

ste
p3



VoG Summary Assembly

=   # bits as noise  - # bits as structure
compression 
gain

Too many

Overlaps?

Savings

of 
3

ste
p3

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



L(G,M)

# iteration

…

Ø

VoG Summaryof 
3

ste
p3

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



VoG Summaryof 
3

ste
p3

Input Output

ranked on importance
“Attention routing”

1

2

3

4

5

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



VoG Runtime

VoG is near-linear on # edges of the input graph.

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



VoG: Understanding Wiki

MapLover FlaBot
co-edited

Ukrained

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



Stars: 
admins, 

bots,
heavy users vandals vs. admins

VoG: Understanding Wiki

Bipartite core 2:
edit war

UR

Kiev vs. Kyiv

Bipartite core 1:
edit war

[Koutra et al., SIAM SDM ’14.]                    [Koutra et al., Stat. Anal. Data Min. J. ’14.]



Summarization as an Evaluation 
Metric for Clustering

• Extension of VoG [Liu et al.’16] to handle:
² overlapping edges (extra penalty) and 
² multiple clustering methods
² clustering as a summarization tool

52[Liu et al., ‘16]



Summarization for Visualization

53

Condense [Liu et al.’16] VoG [Koutra et al.’14] Chocolate co-editor graph

[Liu et al., ‘16]



MEGS
Similar in vein to VoG
• based on MDL, assumes node order
• summarizes the whole graph, instead of 

only parts with well-identified structure
• does not allow overlapping supernodes

54
hub

bipartite

tree
clique

sparse

[Goebl et al., ‘16]



Attributed Graph Summarization

The vast majority of methods are 
based on grouping
• nodes that are structurally

similar + share attributes

55



For more details

• Based on survey
https://dl.acm.org/citation.cfm?id=3186727

56

https://dl.acm.org/citation.cfm?id=3186727
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