
2018 IEEE International Conference on Data Mining

Summarizing Graphs
at Multiple Scales:

Danai
Koutra

University of Michigan

Jilles
Vreeken

CISPA Helmholtz Center
for Information Security

Francesco
Bonchi

ISI Foundation

Roadmap

• 1:30-1:45pm Introduction [Jilles]

• 1:45-2:50pm Network-level Summaries [Francesco]

• 2:55-3:20pm Multi-network Summaries [Danai]

• 3:20-3:40pm –––––– break ––––––
• 3:40-4:05pm Multi-network Summaries [Danai]

• 4:10-4:40pm Node-level Summaries [Jilles]

• 4:40-4:50pm Conclusion [Jilles]

2

3

Part I:
Network-level Summaries

Francesco BonchiJilles Vreeken

Graph Dedensification

4

Intuition: redundancy around high-degree nodes

Main Idea: Compress their neighborhoods
² compressor nodes

Used for exact answers to pattern matching queries

[Maccioni and Abadi, ‘16]

Graph Dedensification: Beyond MDL

5

Guarantees on speedup: precondition
• H: set of high-degree nodes
• M: other nodes
• add compressor node if every node in M has

a directed edge to each node in H
M H

[Maccioni and Abadi, ‘16]

Dedensification vs. Virtual Node Compression

6

Community-related
queries

Dedensification
Pattern-matching

Queries
with guarantees

Virtual Node
Compression [Buehrer ‘08]

Goal: speedup
queries

Goal: compression

Network-level summarization

7

SIGMOD 08 SDM 10

• summarize in supernodes (set of nodes) and
superedges (set of edges)

• follow the MDL principle

• lossless, or lossy with bounded error
• edge corrections

• lossy
• densities
• number of supernodes predefined
• answer queries directly on the

summary (expected-value
semantics)

[Navlakha et al. ’08, LeFevre & Terzi, ‘10]

88[Navlakha et al. ’08]

h
j

i

Compression possible (!)
• many nodes with similar neighborhoods
• collapse these into supernodes (clusters)

and the edges into superedges
² bipartite subgraph of two

supernodes and a superedge
² clique to supernode with a “self-edge”

Correct mistakes (C)
• most superedges are not complete

² nodes don’t have exact same neighbors:
friends in social networks

• remember corrections
² negative edges, not present in superedges
² positive edges, not counted in superedges

Minimize overall cost = ! + $

d e f g

a b c

Y = {a,b,c}
h

j
i

Cost = 14 edges

+(a,h)
+(c,i)
+(c,j)
-(a,d)

Corrections
Cost = 5
(1 superedge +
4 corrections)

Summary
X = {d,e,f,g}

Representation Structure ! = ($, &)
Summary $(($,)$)
• supernode * represents set of nodes +*
• superedge (,, *) represents

all pairs of edges -,* = +.× +0

Corrections &: {(2, 3); 2 256 3 278 5968: 9; <}

Supernodes are key, edges/corrections
easy
• +,* actual edges of < between +, and +*
• cost with (,, *) = 1 + |-,* – +,*|
• cost without (,, *) = |+,*|
• choose minimum, decides whether (,, *) in $

Reconstructing the graph from !
• for all superedges ,, * ∈ $ insert all pairs -,*
• for all +ve corrections +(2, 3), insert (2, 3)
• for all -ve corrections −(2, 3), delete (2, 3)

9

SDM 10

[Navlakha et al. ’08]

C = {+(a,h), +(c,i), +(c,j), -(a,d)}

h

j
i

d e f g

a b c

Y = {a,b,c}
h

j
i

Summary
X = {d,e,f,g}

h

j
i

d e f g

a b c

Greedy
Cost of merging supernodes ! and "
into single supernode #
• recall: cost of a superedge (!, &):

((!, &) = min{|/"& – 1"&| + 1, |1"&|}
• (! = sum of costs of all its edges = Σ& ((!, &)
• 6(!, ") = ((7 + (8 – (#)/((7 + (8)

Main idea:
recursive bottom-up merging of supernodes
• if 6(!, ") > 0, merging ! and "

reduces the cost
• normalize the cost: remove bias

towards high degree nodes
• creating supernodes is key: superedges

and corrections can be computed later

10[Navlakha et al. ’08]

u v

w

cu = 5; cv =4

cw = 6 (3 edges, 3 corrections)

s(u,v) = 3/9

Greedy
Recall !(#, %) = (() + (+ – (-)/(() + (+)

GREEDY algorithm
• start with / = 0
• at every step, pick pair with max !(.) value, merge
• if no pair has positive !(.) value, stop

11[Navlakha et al. ’08]

a
b c

d

e

fg

h

a
bc

d

e

fg

h

s(b,c)=.5
[cb = 2; cc=2; cbc=2]

a
bc

d

e

fgh
C = {+(h,d)}

a
bc

d

ef
gh

C = {+(h,d),+(a,e)}

s(e,f)=1/3
[ce = 2; cf=1; cef=2]

s(g,h)=3/7
[cg = 3; ch=4; cgh=4]

Cost reduction: 11 to 6

Randomized

GREEDY is slow
• needs to find the pair with (globally) max !(.) value
• processes all pair of nodes at a distance of 2-hops
• every merge changes costs of all pairs with %&

Main idea: light-weight randomized procedure
• instead of choosing the globally best pair,

(randomly) choose node '
• merge the best pair containing (

12[Navlakha et al. ’08]

Randomized

RANDOMIZED algorithm
• unfinished set ! = #$
• at every step, randomly

pick a node % from !
• find that node & with
max *(%, &) value

• if *(%, &) > 0 then
² merge % and & into 0
² put 0 in !

• else remove % from !
• repeat till ! is not empty

13

a
b c

d

e

fg

h

Picked e; s(e,f)=3/5
[ce = 3; cf=2; cef=3]

a
b c

d

efg

h

C = {+(a,e)}
[Navlakha et al. ’08]

14

Reduces the cost
up to 40%

Cost of GREEDY 20%
lower than RANDOMIZED

RANDOMIZED is 60%
faster than GREEDY

[Navlakha et al. ’08]

Approximate Representation !є
Approximate representation
• recreating exactly is not always necessary
• reasonable approximation enough to compute

communities, anomalous traffic patterns, etc.
• use approximation to get further reduction

Generic Neighbor Query
• given node #, find its neighbors $# ∈ &
• Apx-nbr set $’# estimates $# with є-accuracy
• bounded error:

())*)(#) = |$’# \Nv| + |$# \N’#| < є |$#|
• number of neighbors added or deleted is at

most є-fraction of the true neighbors

Intuition for computing !є
• deleting correction (4, 6) adds error for 4 and 6
• from exact representation !, remove (maximum)

corrections s.t. є-error guarantees still hold

15

C = {-(a,d), -(a,f)}

Y = {a,b}

X = {d,e,f,g}

d e f g

a b

For є = .5, we can remove
one correction of a

d e f g

a b

[Navlakha et al. ’08]

Computing approx. representation

Reducing size of corrections
• correction graph !:

for every correction ", $ ∈ &, add edge (", $) to !
• removing (", $) reduces size of &, but adds error of 1 to " and

$
• recall bounded error:)**+*(,) = |/’, \Nv| + |/, \N’,| < є|/,|
• implies we can remove up to $, = є|/,| edges incident on ,
• maximum cost reduction: remove subset 7 of 8! of

max size s. t. 7 has at most $, edges incident on ,

Same as the $-matching problem
• find matching 7 ⊂ 8: s.t. at most $, edges incident on , ∈ 7
• for all $, = 1, traditional matching problem
• solvable in time <(=>2) [Gabow-STOC-83]

² (for graph with > nodes and = edges)

16

+(a,b)
+(.)
-(.)

C

S

+(.)
-(.)

Cє

[Navlakha et al. ’08]

Computing approx. representation

Reducing size of summary
• removing superedge (", $) is bulk removal

of all pair edges &'(,

• However, each node in)' and)(has
different $ value

• … does not map to clean matching-type problem

A GREEDY approach
• pick superedges by increasing |&'(| value
• delete (', () if that doesn’t violate є-bound for nodes in

)',)(
• if there is correction (", $) for &'(in -, we cannot remove

(', (); since removing (', () violates error bound for " or $

17

S

+(.)
-(.)

Cє

Sє

[Navlakha et al. ’08]

APXMDL

Compute the !(#, %) for '
Find %є
• compute), with *) = %
• find maximum ,-matching - for);
%є = % −-

Find #є
• pick superedges (/, 0) in # without

correction in %є ascending in |2/0|
• remove (/, 0) if that doesn’t violate
є-bound for any node in 3/ ∪ 30

Apx-representation !є = (%є, #є)

18

S

+(.)
-(.)

Cє
Sє

+(a,b)
+(.)
-(.)

C

[Navlakha et al. ’08]

19[Lefevre & Terzi ’10]

Original graph Node partition
Summary

Expected adjacency matrix
resulting from the summary

Adjacency matrix of
the original graph

20

Query answering

Expected adjacency matrix
can be seen as a probabilistic
(uncertain) graph

Queries to the original graph
can be approximated directly
on the summary

expected value semantics

[Lefevre & Terzi, ’10] *[Riondato et al, ‘14]

Example:

Expected degree of node #2:
2/3 + 2/3 + 1/3 + 1/3 = 2

Other measures
• expected eigenvector centrality
• expected number of triangles*

21

Minimize the
reconstruction error

A summary is good when the
expected adjacency matrix is
close to original adjacency
matrix

Define reconstruction error as
difference between the matrices

Problem: given an integer !
find a !-partiton of the nodes
s.t. the corresponding summary
minimizes reconstruction error.

[Lefevre & Terzi, ’10]

Greedy algorithm

GREEDY agglomerative hierarchical clustering
1) put each vertex in a separate supernode;
2) until the number of supernodes is !

1) merge the two supernodes whose merging
minimizes the reconstruction error;

3) output the resulting ! supernodes;

Main limitations
• no quality guarantees
• very slow

22[Lefevre & Terzi, ’10]

23[Riondato et al, ’14, DMKD]

Original graph Node partition
Summary

Expected adjacency matrix
resulting from the summary

Adjacency matrix of
the original graph

ICDM’14

DMKD

Overcomes GraSS limitations
• fast algorithm with constant-factor approx. guarantee
• generalize reconstruction error to !"-reconstruction error
• consider cut-norm error
• among contributions: practical use of extreme graph

theory, with cut-norm and algorithmic version of
Szemerédi’s Regularity Lemma.

ALGORITHM:
just cluster the rows of the adjacency matrix!

24

ALGORITHM:
just cluster the rows of the adjacency matrix!

25[Riondato et al, ’14, DMKD]

26

Influence-based
Summarization

Influence-based summarization methods aim to
discover a short representation of the influence

flow in large-scale graphs.

Sparsification-based method: SPINE

Idea: keep only edges that explain the information
propagation (“backbone” of influence network)
• i.e. that maximize the likelihood of observed data

• assuming the Independent Cascade model
• no grouping

27[Mathioudakis et al., ‘11.]

!"#: at least one
node succeeds
to influence $
%&': all nodes fail

log + , = .
/∈1

log +/ ,

= .
/∈1

.
2∈3

(log !/# 5 + log!/'(5)

Community-level Social Influence (CSI)

Goal: summarize information propagation and social
influence
• Independent Cascade model to find influence

between communities (extension from nodes)
Output: Community = set of nodes that share a similar
influence tendency over nodes in other communities

28[Mehmood et al., ‘13.]

Community-level Social Influence (CSI)

Algorithm:
• recursive application of

METIS for hierarchical
communities

• EM algorithm to learn
pairwise influence
relationships

• merge two communities
(with same parent)
² MDL or BIC to select

the “best” cut

29[Mehmood et al., ‘13.]

CSI: Y! Memes, Flixster, Twitter

30[Mehmood et al., ‘13.]

• No correlation between influence and link probabilities.
• Even dense communities do not exhibit strong internal influence.

Community-to-
community

Influence
Probabilities

Social Links

31

Pattern mining-based
Summarization

Pattern mining techniques aim to summarize
an input network via structural patterns.

(can also be combined with
grouping techniques and compression)

Using Frequent Patterns

Target:
• compress web gaphs
• support community discovery
Main idea:
• Frequent pattern mining: patterns

are replaced with a virtual node
Algorithm:
• Phase 1: Clustering of similar

nodes (probabilistic sampling)

• Phase 2: Frequent pattern mining
by casting outlinks as an itemset

32[Buehrer and Chellapilla, ‘08]

Egocentric Abstraction

33

Main Ideas:
• unsupervised approach that creates an abstract

representation of an ego-network
• edge filtering: based on frequent or rare patterns

[Li et al., ’09]

Motif Simplification
Tailored detection algorithms for three motifs:

• Fans

• Connectors

• Cliques

34[Dunne and Shneiderman, ‘13.]

Motif Simplification

Target: Visualization
• less screen space and layout effort
• better understanding

35

Lostpedia wiki edits
(bipartite network)

US Senate 2007
co-voting network

[Dunne and Shneiderman, ‘13.]

Main Underlying Idea: Minimum
Description Length

36

Option 1

min L(M) + L(D|M)
bits
for M

bits for the
data using M

~Occam’s razor

[M]
Ø

[D|M](1,
a)

(1,d)
(1,f)
(2,c)
(3,a)
(3,d)
(3,f)
(6,d)
(6,f)

[M]
(1,6,3:
a,d,f)

[D|M]
-(6,a)
+(2,c)

a b c d e f
1
2
3
4
5
6

Option 2

a d f b e c
1
6
3
4
5
2

a d f …
1
2
3
...

a d c …
1
2
3
...

a b c …
1
2
3
...

simple and good
explanations

Using Grouping and Compression

37

Two-part representation
• Aggregated graph S:

² !"#$%: collection of original nodes
² !&$'%: edges between all node pairs in !"#$%

• Edge corrections (:
² to recreate the

original nodes

[Navlakha et al., ’09]

Using Grouping and Compression

38

Algorithmic Ideas:
• merge node groups when the MDL cost decreases

• Greedy: iteratively merge nodes
with highest MDL cost reduction
² only considers pairs of nodes

within 2-hops from each other
• Randomized:

randomly picks nodes
and merges it with its
best neighbor in 2-hop
neighborhood

[Navlakha et al., ’09]

VoG: Vocabulary-based Summarization

Find:

Lady Gaga
Fan Club

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

201

1

Given: a large unlabeled
graph

Find: a succinct summary
efficiently

Find important
graph structures.

Challenges
Challenge 1: What subgraphs to consider?
For n nodes è 2n possible subgraphs

e.g., n = 266 è ~1080 subgraphs!
Only 1080 atoms in

the universe!

Idea 1: Use a graph vocabulary.

popularity sockpuppets

Idea 2: Use compression.
influence

propagation

Only 1080 atoms in
the universe!

Challenge 2: Which subgraphs are important?

DDoS attackbest graph == shortest lossless
summary description

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

Minimum Graph Description

Given: a graph G with adjacency matrix A

Find: model M s.t.
minL(G,M) = min { L(M) + L(E) }

Adjacency A Model M Error E

plain

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

Minimum Graph Description

Given: a graph G with adjacency matrix A

Find: model M s.t.
minL(G,M) = min { L(M) + L(E) }

Adjacency A Model M

1) Minimize
description

2)Scalable

How?

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

43

≈?

MDL cost

Could use:
ANY (overlapping) subgraph
extraction method

METIS
+ SlashBurn
+ Spectral clustering
+ Modularity
+ Community detection
+ k-coreshub?

Maximum
bipartite

subgraph?

NP-hard!

LN(|st|−1) + log n + log() + L(E+) + L(E−)hub ID |st|−1
n−1# of

spokes spokes IDs extra missingErrorsStar structure

6

argmin

≈

of
3

ste
p1of

3
ste

p2 VoG: Shape DetectionVoG: Subgraph ExtractionVoG: Vocabulary-based
Graph Summarization

VoG: Summary Assembly

encoding cost
of the whole

graph
minimize

Should we show all structures?

Choose the structures that:

No, MDL will decide!

of
3

ste
p3

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

s

Summary Encoding Cost

L(G, M) = LN(|M|+1) +

log() +

Σ(-logP(x(s)|M) + L(s)) +

L(E)

|M|+|Ω|-1
|Ω|-1

of
structures

of structures
per type

for each structure
its encoding length

3# of
structures

of structures
per type

for each structure
its encoding length

errorserrors

min L(G,M) over 2 # structures possible summaries

: 1 : 1 : 1

its
connectivity

its
shape

hard! # struct: 500-30,000

of
3

ste
p3

VoG Summary Assembly

= # bits as noise - # bits as structure
compression
gain

Too many

Overlaps?

Savings

of
3

ste
p3

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

L(G,M)

iteration

…

Ø

VoG Summaryof
3

ste
p3

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

VoG Summaryof
3

ste
p3

Input Output

ranked on importance
“Attention routing”

1

2

3

4

5

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

VoG Runtime

VoG is near-linear on # edges of the input graph.

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

VoG: Understanding Wiki

MapLover FlaBot
co-edited

Ukrained

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

Stars:
admins,

bots,
heavy users vandals vs. admins

VoG: Understanding Wiki

Bipartite core 2:
edit war

UR

Kiev vs. Kyiv

Bipartite core 1:
edit war

[Koutra et al., SIAM SDM ’14.] [Koutra et al., Stat. Anal. Data Min. J. ’14.]

Summarization as an Evaluation
Metric for Clustering

• Extension of VoG [Liu et al.’16] to handle:
² overlapping edges (extra penalty) and
² multiple clustering methods
² clustering as a summarization tool

52[Liu et al., ‘16]

Summarization for Visualization

53

Condense [Liu et al.’16] VoG [Koutra et al.’14] Chocolate co-editor graph

[Liu et al., ‘16]

MEGS
Similar in vein to VoG
• based on MDL, assumes node order
• summarizes the whole graph, instead of

only parts with well-identified structure
• does not allow overlapping supernodes

54
hub

bipartite

tree
clique

sparse

[Goebl et al., ‘16]

Attributed Graph Summarization

The vast majority of methods are
based on grouping
• nodes that are structurally

similar + share attributes

55

For more details

• Based on survey
https://dl.acm.org/citation.cfm?id=3186727

56

https://dl.acm.org/citation.cfm?id=3186727

References
Graph	Summarization	with	Bounded	Error.	Saket	Navlakha,	Rajeev	Rastogi,	and	

Nisheeth Shrivastava.	In	SIGMOD,	2008.

CSI:	Community-level	Social	Influence	Analysis.	Mehmood,	Y.;	Barbieri,	N.;	Bonchi,	F.;	

and	Ukkonen,	A.	In	Proceedings	of	the	European	Conference	on	Machine	Learning	and	

Principles	and	Practice	of	Knowledge	Discovery	in	Databases	(ECML	PKDD),	pages	

48–63.	Springer,	2013.	

GraSS:	Graph	Structure	Summarization.	LeFevre,	K.;	and	Terzi,	E.	In	Tenth	SIAM	

International	Conference	on	Data	Mining	(SDM),	pages	454-465,	2010.	SIAM	

Graph	Summarization	with	Quality	Guarantees.	Riondato,	M.;	García-Soriano,	D.;	and	

Bonchi,	F.	In	Proceedings	of	the	14th	IEEE	International	Conference	on	Data	Mining	

(ICDM),	2014.	

Summarizing	and	Understanding	Large	Graphs.	Koutra,	D.;	Kang,	U;	Vreeken,	J.;	and	

Faloutsos,	C.	In	Statistical	Analysis	and	Data	Mining,	2015.	John	Wiley	&	Sons,	Inc.	

Reducing	large	graphs	to	small	supergraphs:	a	unified	approach.	Liu,	Y.;	Safavi,	T.;	

Shah,	N.;	and	Koutra,	D.	Social	Netw.	Analys.	Mining,	8(1):	17.	2018.	

57

References
PERSEUS-HUB:	Interactive	and	Collective	Exploration	of	Large-scale	Graphs.	Jin,	
D.;	Leventidis,	A.;	Shen,	H.;	Zhang,	R.;	Wu,	J.;	and	Koutra,	D.	Informatics	(Special	

Issue	``Scalable	Interactive	Visualization''),	4(3).	2017.	

VEGAS:	Visual	influEnce GrAph Summarization	on	Citation	Networks.	Shi,	L.;	Tong,	

H.;	Tang,	J.;	and	Lin,	C.	IEEE	Transactions	on	Knowledge	and	Data	Engineering,	

27(12):	3417–3431.	2015.	

Substructure	Discovery	Using	Minimum	Description	Length	and	Background	

Knowledge.	Cook,	D.	J.;	and	Holder,	L.	B.	Journal	of	Artificial	Intelligence	Research,	
1:	231-255.	1994.

Improving	Network	Visualization	Readability	with	Fan,	Connector,	and	Clique	

Glyphs.	Cody	Dunne	and	Ben	Shneiderman.	Motif	Simplification.	In	Proceedings	of	
the	ACM	SIGCHI	Conference	on	Human	Factors	in	Computing	Systems	(CHI),	2013.

Sparsification of	Influence	Networks.	Michael	Mathioudakis,	Francesco	Bonchi,	
Carlos	Castillo,	Aristides	Gionis,	and	Antti	Ukkonen.	In	KDD.	2011.

58

References
A	Scalable	Pattern	Mining	Approach	to	Web	Graph	Compression	With	
Communities.	Gregory	Buehrer and	Kumar	Chellapilla.	International	Conference	
on	Web	Search	and	Data	Mining,	ACM,	2008.
Set-based	approximate	approach	for	lossless	graph	summarization.	Khan,	K.;	
Nawaz,	W.;	and	Lee,	Y.	Computing,	97(12):	1185–1207.	2015.

Egocentric	Information	Abstraction	for	heterogeneous	social	networks.	Cheng-Te
Li	and	Shou-De	Lin.	2009.	International	Conference	on	Advances	in	Social	Network	
Analysis	and	Mining	(ASONAM).	IEEE,	255–260.
Graph	Summarization	for	Attributed	Graphs.	Wu,	Y.;	Zhong,	Z.;	Xiong,	W.;	and	Jing,	
N.	In	2014	International	Conference	on	Information	Science,	Electronics	and	
Electrical	Engineering	(ISEEE),	pages	503–507,	2014.	
Mining	Summaries	for	Knowledge	Graph	Search.	Qi	Song,	Yinhui Wu,	and	Xin	Luna	
Dong.	In	IEEE	16th	International	Conference	on	Data	Mining	(ICDM),	2016.

59

References
Discovery-driven	Graph	Summarization.	Ning	Zhang,	Yuanyuan Tian,	and	Jignesh	
M.	Patel.	In	ICDE,	2010.

Representing	Web	Graphs.	Sriram	Raghavan	and	Hector	Garcia-Molina.	In	IEEE	
ICDE,	2003.

Efficient	Aggregation	for	Graph	Summarization.	Yuanyuan Tian,	Richard	A	
Hankins,	and	Jignesh	M	Patel.	In	ACM	SIGMOD,	2008.

Compression	of	Weighted	Graphs.	Hannu Toivonen,	Fang	Zhou,	Aleksi Hartikainen,	
and	Atte Hinkka.	In	KDD.	2011.

60

