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« 1:30-1:45pm Introduction [Jilles]

. 1:45-2:50pm  Network-level Summaries [Francesco]

2:55-3:20pm  Multi-network Summaries EREN
« 3:20-3:40pm break
« 3:40-4:05pm Multi-network Summaries [Danai]
« 4:10-4:40pm Node-level Summaries [Jilles]
« 4:40-4:50pm Conclusion [Jilles]



Part I:
Network-level Summaries
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Graph Dedensification

Intuition: redundancy around high-degree nodes

Main ldea: Compress their neighborhoods
<~ compressor nodes

Used for exact answers to pattern matching queries

@ high-degree node
O low-degree node (O compressor node

B [Maccioni and Abadi, ‘16] 7



Graph Dedensification: Beyond MDL

Guarantees on speedup: precondition
- H: set of high-degree nodes ()
- M: other nodes @

« add compressor node if every node in M has
a directed edge to each node in

M—>

@ high-degree node
O low-degree node (O compressor node

B [Maccioni and Abadi, 16]



Dedensification vs. Virtual Node Compression

O Dedensification
| | 6 Pattern-matching
O e O O Queries
S8R N O with guarantees
O—s@—O O Goal: speedup
@ high-degree node C) q UerieS

(O low-degree node (O compressor node

Virtual Node
Compression [suenrer ‘o8]

Community-related
queries

Goal: compression




Network-level summarization

SIGMOD 08 SDM 10

Graph Summarization with Bounded Error

GraSS: Graph Structure Summarization

f A a .
Saket Naviakha Rajeev Rastogi Nisheeth Shrivastava .. .
Dept of Comptte r Science Yahoo! Labs Bell Labs Research Kristen LeFevre! Evimaria Terzi!
sity of Maryland Bangalore, India Bangalore, India ) )
Col II g P k MD USA 20742 rrastogi@yahoo-inc.com nisheeths@alcatel-lucent.com
et d.edu

e summarize in supernodes and
superedges
follow the MDL principle

* |ossless, or lossy with bounded error lossy

e edge corrections « densities
* number of supernodes predefined

e answer queries directly on the
summary (expected-value
semantics)

B [Navlakha et al. '08, LeFevre & Terzi, ‘10] /



Graph Summarization with Bounded Error Cost = 14 edges
* many nodes with similar neighborhoods
* collapse these into supernodes (clusters)
and the edges into superedges
+ bipartite subgraph of two .Summary
< cligue to supernode with a “self-edge”
Correct mistakes (C) - ’
« most superedges are not complete
<~ nodes don’t have exact same neighbors:

Saket Navlakha Rajeev Rastogi‘ Nisheeth Shrivastava ‘ ‘ ‘
Dept. of Computer Science Yahoo! Labs Bell Labs Research
University of Maryland Bangalore, India Bangalore, India
College Pa k MD lI.JS‘A 20742 rrastogi@yahoo-inc.com nisheet hs@alcatel-lucent.com
Compression possible (S) 2 b ?
supernodes and a superedge
friends in social networks

- remember corrections Corrections
<~ negative edges, not present in superedges +(a,h) Cost =5
<~ positive edges, not counted in superedges +(c.i) (1 superque +
i 4 corrections)
Minimize overall cost= S+ C +((Cl(Jj))
(a,

B [Naviakha et al. '08] 8



Representation Structure R = (S, C)

Summary
Summary S(VS,ES) -
* supernode v represents set of nodes A, . .
* superedge (u,v) represents ‘
all pairs of edges m,,, = A X A,

. C = {+(ah), +(c,i), +(c.j), ~(a.d)}
Corrections C: {(a,b); a and b are nodes of G}

Supernodes are key, edges/corrections
easy

- A, actual edges of G between A, and A4, . . . .
« costwith (w,v) = 1 + |my - Al

« cost without (u,v) = |4yl

* choose minimum, decides whether (u,v) in S

Reconstructing the graph from R

- for all superedges (u,v) € S insert all pairs m,,,
- for all +ve corrections +(a, b), insert (a, b)

- for all -ve corrections —(a, b), delete (a, b)

B [Naviakha et al. '08]



Cost of merging supernodes u and v
into single supernode w
« recall: cost of a superedge (u, x):
C(u' x) = min{lnvx - Avxl + 1’ |Avx|}
* ¢, = sum of costs of all its edges = X, c(u, x)

° S(u' 17) - (Cu T ¢y - Cw)/(Cu + Cv)

Main idea:
recursive bottom-up merging of supernodes
* ifs(u,v) > 0, mergingu and v
reduces the cost
« normalize the cost: remove bias
towards high degree nodes

« creating supernodes is key: superedges
and corrections can be computed later

B [Navlakha et al. ’08]

c, =5 c, =4

cw = 6 (3 edges, 3 corrections)

s(u,v) = 3/9

10



Greedy

Cost reduction: 11 to 6

Recall s(u,v) = (¢, + ¢, -c¢c,)/(cy +¢cy) b/C'C)

ol od
GREEDY algorithm / °
« startwithS =G ef
« at every step, pick pair with max s(.) value, merge g
- if no pair has positive s(.) value, stop C = {+(h.d), +(a,e)}

T
) }o\. bc o:) bc o:)

< ) od %o od “o\Od
./A>/§'e~ / /.e - //'e
h g\.//fo h'g\'//fo gh' T

C = {+(h,d)}

s(b,c)=.5 s(g,h)=3/7
[ ¢, = 2; €.=2; Cpe=2 ] [ cg = 3: ch=4: =4 ] s(e,f)=1/3
[Ce = 2; Cf=1: Cef:Z ]

B [Navlakha et al. '08] 717



Randomized

GREEDY iS

* needs to find the pair with (globally) max s(.) value
« processes all pair of nodes at a distance of 2-hops
* every merge changes costs of all pairs with N,

Main idea: light-weight randomized procedure

* instead of choosing the globally best pair,
(randomly) choose node u

* merge the best pair containing u

B [Navlakha et al. '08] 12



Randomized

RANDOMIZED algorithm

unfinished set U = VG

at every step, randomly
pick a node u from U

find that node v with
max s(u, v) value

If s(u,v) > 0 then

<~ merge u and v into w
<~ putwinU

else remove u from U
repeat till U is not empty

B [Naviakha et al. '08]

o) .\.

“o// : od
L=
==

Picked e; s(e,f)=3/5
[ ce = 3. ¢4=2; c=3 ]

C = {+(a,e)}

13



ORIGINAL —=—
GREEDY -~ Reduces the cost

RANDOMIZED -
up to 40%

Cost of GREEDY 20%
lower than RANDOMIZED

GREEDY —=—
RANDOMIZED ---x--

RANDOMIZED is 60%
faster than GREEDY

B (Naviakha et al. '08] 14



Approximate Representation R,

. . x = {doe:fog}
Approximate representation |

* recreating exactlyis not always necessary

¢ reasonable approximation enough to compute -
communities, anomalous traffic patterns, etc.

* use approximation to get further reduction C = {-(a,d), -(a,f)}

Generic Neighbor Query d e f

« given node v, find its neighbors N, € G
« Apx-nbr set N’, estimates N,, with e-accuracy

+  bounded error: a b
error(v) = [N,\Ny| + [N,\N'y| < €[Ny
* number of neighbors added or deleted is at For e = .5, we can remove
most e-fraction of the true neighbors one correction of a
Intuition for computing R, C{ e f
« deleting correction (a,d) adds error for a and d !
« from exact representation R, remove (maximum) \
corrections s.t. e-error guarantees still hold . .

B [Naviakha et al. '08] 15



Computing approx. representation

S
Reducmg Size of corrections .<$
« correction graph H: o
for every correction (a,b) € C, add edge (a,b) to H / N
* removing (a, b) reduces size of C, but adds error of 1 to a and o—
b
« recall bounded error: error(v) = |[N’,\Ny| + [N, \N’,| < €|N,| C
* Implies we can remove up to b, = €|N,| edges incident on v +(a,b)
*  maximum cost reduction: remove subset M of E of +(.)
max size s. t. M has at most b, edges incident on v 0
Same as the b-matching problem
« find matching M c EG s.t. at most b, edges incidenton v € M l
- forall b, = 1, traditional matching problem C
* solvable in time 0(mn?) [Gabow-STOC-83] +(_)€
<+ (for graph with n nodes and m edges) 0

B [Naviakha et al. '08] 16



Computing approx. representation

Reducing size of summary

* removing superedge (a, b) is bulk removal
of all pair edges my,,

« However, each node in 4, and A, has
different b value

* ... does not map to clean matching-type problem

A GREEDY approach

* pick superedges by increasing |m,,| value

- delete (u,v) if that doesn’t violate e-bound for nodes in
A UA,

« ifthere is correction (a, b) for m,, in C, we cannot remove
(u, v); since removing (u, v) violates error bound for a or b

B [Naviakha et al. '08]
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APXMDL

Compute the R(S, C) for G

S C
Find C. A +(a,b)
. ” ° +(.)
+ compute H, withV, = C / =
. . . ./. i
 find maximum b-matching M for H;
C.=C—M

Find S, l

» pick superedges (u,v) in S without
correction in C, ascending in |m,, |

* remove (u,v) if that doesn't violate o Ce

. _— +
e-bound for any node in A, U A4, /0\\. ()

Apx-representation R, = (C,, S,) o ¢

B [Naviakha et al. '08] /8



GraSS: Graph Structure Summarization

Kristen LeFevre* Evimaria Terzi'

Original graph NQQQ_PQTT'O” 2 B
s — S N N 2 edges} /
1 2 | P i
k\\__,; P j,;_ E«i_ﬂ_ “\_1_ , P i_,{ {R ‘{2 edges
- iy - | amzEEE -_'_':_____"_-..h_;_;:__ _____ .- o -
e ~ 7 e VX TN TN / {4 5) “\
&Ej (..}_J \EE_S__J '~_,1\15§,/ K 'nf‘:u.h_d_l_ / \E,x’ I" " Edge} //
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1/3  1/3
1/3 1/3
0 1
10

B [Lefevre & Terzi "10]



Expected adjacency matrix

Example:

Queries
approximated
on summary

Expected degree of node #2:
2/3 +2/3+1/3 +1/3 =2

Other measures
* expected eigenvector centrality
» expected number of friangles™

expected value semantics

B [Lefevre & Terzi, *10] *[Riondato et al, ‘14] 2(0)




Minimize the
reconstruction error

A summary is good when the
expected adjacency matrix is
close to original adjacency
matrix

Define as
difference between the matrices

given an integer
find a k-partiton of the nodes
s.t. the corresponding summary
minimizes reconstruction error.

B [Lefevre & Terzi, *10]



Greedy algorithm

GREEDY agglomerative hierarchical clustering
1) put each vertex in a separate supernode;

2) until the number of supernodes is k

1) merge the two supernodes whose merging
minimizes the reconstruction error;

3) output the resulting k supernodes;

Main limitations
* NO quality guarantees
> very slow

B [Lefevre & Terzi, '10] 22



Matteo Riondato

rionda @cs.stanford.ec david

can be stored in main n
hout the or
n. In this pap

plete weighted g
The superedge wei es between v
the corr

David Garcia-Soriano
Stanford Un (ahoo Labs, Barcelona,

ICDM’14

Graph Summarization with Quality Guarantees

Francesco Bonchi
Yahoo Labs, Barcelona, Spain
bonchi 1thoo-inc.com

The Gr gorithm presented in [1] follows a greedy heuris-
tic resembling an agglomerative hierarchical clustering using
Ward’s method [3] and as such can not ¢

the quality of the summary. In this paper instead, Dropose
efficient algorithms to compute summaries of guaranteed
quality (a constant factor from the optimal). This theoretical
property is also verified empirically: our algorithms build more
representative summaries and are much more efficient and

Graph Summarizati

it

ith Quali

scalable than GraSS in building those summaries.
By ex i B II. PROBLEM DEFINITION
geome clustering problems (i.e., Ak-m
develop th rsi polynomial-time appr
compute the be le summary of a gi

We consider an undirected graph & = (V. E') with |V| = n.
In the rest of the paper, the key concepts are defined fi
stand

Overcomes GraSS limitations
 fast algorithm with constant-factor approx. guarantee
* generalize reconstruction error to [,,-reconstruction error

e consider cut-norm error

e among contributions: practical use of extreme graph
theory, with cut-norm and algorithmic version of
Szemeredi's Regularity Lemma.

[Riondato et al, 14, DMKD] 23



ALGORITHM:

just cluster the rows of the adjacenc

= For /,-reconstruction error, perform /,-clustering of the rows of Ag (p = 1:
k-median, p = 2: k-means). If column i is in cluster j, then vertex i is in supernode V.

LEMMA: The summary obtained from the optimal /; (resp. /») clustering is a 8
(resp. 4) approximation of the optimal summary for the /; (resp. /») reconstruction
error.

Both k-means and k-median are NP-hard.:

There are constant factor approximation algorithms;
BOTTLENECK: computing all pairwise distance for the n rows of As is expensive
(like matrix multiplication);

SOLUTION: Use a sketch of the adjacency matrix with n rows and log n columns;
Incurs in additional constant error;

Even with the sketch, the approximation algorithms take time O(n?);
IDEA: select O(k) rows of the sketch adaptively, compute a clustering using them;

In the end, the algorithm runs in time O(m + nk) and obtains a constant-factor
approximation.



ALGORITHM:

just cluster the rows of the adjacenc

Algorithm 1: Graph summarization with /,-reconstruction error

Input : G = (V.E)with |V|=n, ke N, pe{l. 2}

Output: A O(1)-approximation to the best k-summary for G under the

( ,-reconstruction error

// Create the n x O(logn) sketch matrix (Indyk, 2006)

S < createSketch(Ag, O(log n), p)

// Select O(k) rows from the sketch (Aggarwal et al, 2009)
R < reduceClustInstance(As. S. k)

// Run the approximation algorithm by Mettu and Plaxton (2003) to
obtain a partition.
P < getApproxClustPartition(p. k. R.5S)

// Compute the densities for the summary

D < computeDensities (P, Ag)
return (7. D)

25



Influence-based
Summarization

Influence-based summarization methods aim to
discover a short representation of the influence
flow in large-scale graphs.

20



Sparsification-based method: SPINE

ldea: keep only edges that explain the information
propagation (“backbone” of influence network)

* j.e. that maximize the likelihood of observed data

log L(G) = z log L, (G)

a€EA

= z Z(log Py (v) + log Py (v)

a€EA VEV

P} at least one
node succeeds
to influence v
P, all nodes fail

* assuming the Independent Cascade model

* NO grouping

B [Mathioudakis et al., " 77.]

27



Community-level Social Influence (CSI)

Goal: summarize information propagation and social
influence

Independent Cascade model to find influence
between communities (extension from nodes)

Output: Community = set of nodes that share a similar
iInfluence tendency over nodes in other communities

B [Mehmood et al., * 73] 28



Community-level Social Influence (CSI)

Algorithm:

* recursive application of
METIS for

« EM algorithm to learn

relationships
* merge two communities

(with same parent) --f y= \
<+ MDL or BIC to select ®®@®@‘@ ®®@®@@

the “best” cut

B [Mehmood et al., * 73] 29



CSl: Y! Memes, Flixster, Twitter

Community-to- 25t |
community FREEEE

Influence

Probabilities

Social Links §

« No correlation between influence and link probabilities.
« Even dense communities do not exhibit strong internal influence.

B [Mehmood et al., ' 73]



Pattern mining-based
Summarization

Pattern mining technigues aim to summarize
an input network via structural patterns.

(can also be combined with
grouping techniques and compression)

37



Using Frequent Patterns

Target:

* compress web gaphs

* Support community discovery
Main idea:

» Frequent pattern mining: patterns
are replaced with a virtual node

Algorithm:

« Phase 1: Clustering of similar
nodes (probabilistic sampling)

» Phase 2: Frequent pattern mining
by casting outlinks as an itemset

B [Buehrer and Chellapilla, ‘08

1,2,3,5,6,10,12,15
1,2,3,5

1,2,3,20

1,7,8,9

1,2,3,8
1,2,3,5,6,10,12,15
1,2,3,5,6,10,22,31
1,2,3,5,6,10,21,31,67

—, Edge

Count




Egocentric Abstraction

Main |deas:

* unsupervised approach that creates an abstract
representation of an ego-network

» edge filtering: based on frequent or rare patterns

k-Neighborhood Graph Semantic Modeling
Feature Extraction
Local and

LCR; o—®
LCR, >0« Relative
S— . —  Frequency

LCR; @<« e
. Computation Linear Combination

¥, > ° of Relations (LCRs)

h » / Abstraction Ranked LCRs
" ,‘//0 Measures Egocentric

»,_.‘ Abstracted ——

% 012 Graph ®

= o.( Construction

.:/
~. P
®
'\
e »

Heterogeneous ' Egocentric
Social Network Egocentric Information Abstraction Abstracted Graph

B [Lietal, 09] 33




Motif Simplification
Tailored detection algorithms for three moaotits:

« Fans
 Connectors

» Cligues

é [Dunne and Shneiderman, ‘ 73



Motif Simplification

Target: Visualization
* |less screen space and layout effort
* petter understanding

sssssssssssss

(b) 65% simplified

US Senate 2007 | | ostpedia wiki edits
co-voting network (bipartite network)

B [Dunne and Shneiderman, ‘ 73] 35



Main Underlying Idea: Minimum
Description Length

min L(V) + L(D|V) ~QOccam’s razor

simple and good
explanations

Option 1 Option 2
e

N Orh QOD»O» —




Using Grouping and Compression

Two-part representation
* Aggregated graph S.
+ Snode. COllection of original nodes
+ Spage- €dges between all node pairs in Sygqe

<+ to recreate the
original nodes

Original network ¢

Ay ={b,c} | A; = {a}
"19’ = {(], h’} A* = {d, €, f}

B [Navlakha et al., '09] 37



Using Grouping and Compression

Algorithmic ldeas:

* merge node groups when the MDL cost decreases

« Greedy: iteratively merge nodes
with highest MDL cost reduction

<+ only considers pairs of nodes
within 2-hops from each other

 Randomized:
randomly picks nodes
and merges it with its
best neighbor in 2-hop |

neighborhood .
Original network G

B [Naviakha et al., '09]

Ay ={b,c} | A; = {a}
Ay ={g,h} A ={d,e, [}

38



VoG: Vocabulary-based Summarization

T AR Given: a large unlabeled

1, e laguly : graph :

sl Find:  a succinct summary
g efficiently

‘ Find important
graph structures

[Koutra et al., SIAM SDM’14.] g B [Koutra et al., Stat. Anal. Data Min. J.’14.]



Challenges

Challenge 1. What subgraphs to consider? | cwmie-
For n nodes = 2" possible subgraphs o A

ldea 1: Use a graph vocabularx
e. g N =858 Pg~10%¢ .I//%Jrap

- G ?\‘\(\'61 OBL\mtorY S
|

a 4 o * 7
s "
; 3 ‘_' 4 " g = )
N e g} i i res I ' - S
N d 154 . b -
‘a'- . h" ikt A A s N ~—— i

oopularit] be&‘rh@f’.‘ o= Sh@@@%p@@@@% DE{Qﬁ:E%
SWRAtRIYation déscription”. "~ . SaaEa.

B [Koutra et al., SIAM SDM'14.] g B [Koutra et al., Stat. Anal. Data Min. J.’14.]




Oy,

Minimum Graph Description %

Given: a graph G with adjacency matrix A

Find: model |/ s.1.
) = min{ L(V) + L(E) }

Adjacency Model Error E

A

v

<€ —>

B [Koutra et al., SIAM SDM'14.] g B [Koutra et al., Stat. Anal. Data Min. J.’14.]



Minimum Graph Description

Given: a graph G with adjacency matrix A

Find: model |V s.t.
min (G, = min{ L(V) + L(E) }

Adjacency
A
\ 4
<€ —>

B [Koutra et al., SIAM SDM'14.] g B [Koutra et al., Stat. Anal. Data Min. J.’14.]



VoG£ Sbidrap i EQAGon

Could use:
ANY (overlappfg) subgraph
extraction method




3" VoG: Summary Assembly

Should we show all structures?
No, MDL will decide!

Choose the structures that:

e encoding cost
minimize<  of the whole

graph

B [Koutra et al., SIAM SDM'14.] g B [Koutra et al., Stat. Anal. Data Min. J.’14.]



La,m) =" 9 3
structures

# of structures
per type

for each structure I
its encoding length shape connectivity

errors




i@& VoG Summary Assembly

()  Plain X Too many

(i) Top-k X Overlaps?

Savings = # bits as noise - # bits as structure
COMpression

gain

B [Koutra et al., SIAM SDM'14.] g B [Koutra et al., Stat. Anal. Data Min. J.’14.]



B [Koutra et al., SIAM SDM'14.] g

VoG Summary

e o aif g

P PP O B,

s,

L(G,M) .II .
@ >

# iteration

B [Koutra et al., Stat. Anal. Data Min. J.’14.]



ranked on importance
"Attention routing”

B (Koutra et al., SIAM SDM’14.] g B (Koutra et al., Stat. Anal. Data Min. J.’14.]



VoG Runtime

truntime‘}

{

)
o
c
o
O
@
n
c
=
o
£
I;
=
S
e

10°
number of edges

VoG is near-linear on # edges of the input graph.

B [Koutra et al., SIAM SDM*14.] g B [Koutra et al., Stat. Anal. Data Min. J.’14.]



VoG: Understanding Wiki

v '/} T
ol A\
#‘ Y > |
Q

: %! } Articlo RRRN Read | View source = View history |Search Q
o
NagV

WIKIPEDIA Kiev co-edited

The Free Encyclopedia From Wikipedi I\/l a p I_O\/e r

FlaB =
a Ot Coordinates: 0°27'00”N 30°31'24"E

v 2

Main page This article is about thaWital of Ukraine. For other uses, see Kiev (disambiguation). p

Contents & K Q

Featured content Kiev (/ki:ef, __-__t_:_y_/)m or \\\\\\ ainian: Kuie ['kijiw] (s listen); Russian: Kues [Kiiif]) is the cap’ \ gest city of
Current events Ukraine, located ir central part of the country on the Dnieper River. The popule’ iy 2013 was
Random article 2,847,200"] (i er estimated numbers have been cited in the press),!®! maki \le 8th largest city in
Donate to Wikipedia Europe

Wikimedia Shop

e Kiev is an ikpor‘tam industrial, scientific, educational, and cultural centre of Easter/fEurope. It is home to many high-
nieraction
Help tech industries, higher education institutions arks. The city has an extensive

About Wikipedia infrastructure and highly developed system U kral n ed v Metro.

gz:;::’g:::;'?' The city's name is said to derive from the n&iwessmenssmesssmegewess, founders (see Name, below). During
ot e its history, Kiev, one of the oldest cities in Eastern Europgs _ through several stages of great prominence and y
relative obscurity. The city probably existed as a comr \\, tre as early as the 5th century. A Slavic settlement on

Toovl:hat T the great trade route between Scandinavia and Ce Jple, Kiev was a tributary of the Khazars,® until seized by
Related changes the Varangians (Vikings) in the mid-Sth centurv ~arangian rule, the city became a capital of the Kievan Rus',
Upload file the first East Slavic state. Completely destroy 1g the Mongol invasion in 1240, the city lost most of its influence
Special pages for the centuries to come. It was a provincial.’a:pntal of marginal importance in the outskirts of the territories controlled
Permanent link by its powerful neighbours: first the Grand Duchy of Lithuania, followed by Poland and Russia.l'?

B [Koutra et al., SIAM SDM'14.] g B (Koutra et al., Stat. Anal. Data Min. J.’14.]



VoG: Understanding Wik

History
There leaders name was King Tongls

Kiev is one of the oldest and most important cities of Eastern Europe and has played a pivotal role in the development of the medieval East Slavic civilization as well as
in the modern Ukrainian nation.

Slavic settlement at the site of the present day city may have occurred as early as the sixth century AD (fifth century according to some researchers).:“‘] There are no
known historical records as to the founding dates of the city. The Kiev article in Encyclopedia Britannica states: "The village that became the modern city may have

been founded as early as the 6th century AD." The Columbia Encyclopedia in Kiev & states: "It probably existed as a commercial centre as early as the 5th cent."</ref>
With the exact time of city foundation being hard to determine, May 1982 was chosen to celebrate the city's 1,500th anniversary.

During the eighth and ninth centuries, Kiev was an outpost of the Khazar empire. Starting in the late ninth century or early tenth

century Kiev was ruled by the Varangian nobility and became the nucleus of the Rus' polity, whose Golden Age (eleventh to

early twelfth centuries) has from the nineteenth century become referred to as Kievan Rus'. In 968, the nomadic Pechenegs u u
attacked and then besieged the city.[5! In 1203 Kiev was captured and burned by Prince Rurik Rostislavich and his Kipchak S " B I a rt I te CO re 2 .
allies. In the 1230s the city was sieged and ravaged by different Russian princes several times. In 1240 the Mongol invasion of > p .
Rus led by Batu Khan completely destroyed Kiev,!®! an event that had a profound effect on the future of the city and the East

2 o o []
Slavic civilization. At the time of the Mongol destruction, Kiev was reputed as one of the largest cities in the world, with a p ; ' e d | 't W a r
population exceeding one hundred thousand.

B [Koutra et al., SIAM SDM'14.] g B (Koutra et al., Stat. Anal. Data Min. J.’14.]



Summarization as an evaluation
Metric for Clustering

» Extension of VoG [Liu et al.”16] to handle:

<~ overlapping edges (extra penalty) and
<+ multiple clustering methods

< clustering as a summarization tool
[ | SLASHBURNII6] | LOUVAIN[4] | SPECTRAL[IS] | METIS[17] | HYCOM[2] | BIGCLAM[30] | KCBC[24] |

s | v | x| x| x | v | v | v
Clusters

[Cliques || Many | Many | Mamy | Mamy | Some |  May |  Many |
Sars [ Many | Some | _ Some | Some | Mawy | _ Some |  Some

Bipartite Cores || Some | Few |  Many | Some | Some |  Few |  Few

Chains || Few | Few | Few | Few | Few | _ Few |  Few

Structures
Complexity | O(t(m +nlogn)) | O(nlogn) O(n?) Om-k) | OFE+IOER T 0@nt) | Om+n)
h
Power
Clustering Methods

— ClstermgMethods
| Daset | moay | Covwany | SeecTAL | METTS KCBC
Choc || 8% | 99% | 9% | 100% [ 100%

“AsOregon || 6% | 94% | 8% | 8% | 98% | 8% | 6%

(AS—Caida || 0% | 100% | 100% | 98% | 98% | 91% | 74% _
B [Liuetal., '16] 52




Summarization for Visualization

B(Liuetal, 16]

g oo
‘\‘»‘J ‘sﬂ

WIKIPEDIA

The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

C | @ Secure https:/en.wikipedia.org

& Not logged in Talk Contributions Create account Log in

Article Talk Read View source View history |Search Wikipedia Q

Chocolate

From Wikipedia, the free encyclopedia

For other uses, see Chocolate (disambiguation).

Chocolate «'/t[oklit, -kelit/ is a
typically sweet, usually brown food
preparation of Theobroma cacao
seeds, roasted and ground. It is
made in the form of a liquid, paste, or
in a block, or used as a flavoring

Chocolate

Condense [Liu et al.’16]
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MEGS

Similar in vein to VoG
* pased on MDL, assumes node order

e summarizes the instead of
only parts with well-identified structure

« does not allow overlapping supernodes

B [Goebl et al., '16]
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Attributed Graph Summarization

coupled
ummarization|

The vast majority of methods are
based on grouping

* nodes that are

T T input Graph Algorithmic Properties I

I

S-Node [Raghavan and Garcia-Molina 2003]
SNAP/k-SNAP [Tian et al. 2008]
CANAL [Zhang et al. 2010]
Probabilistic [Hassanlou et al. 2013]
Query-Pres. [Fan et al. 2012]

ZKP [Shoaran et al. 2013]
Randomized [Chen et al. 2009]
d-summaries [Song et al. 2016]
SUBDUE [Cook and Holder 1994]
AGSUMMARY [Wu et al. 2014]
LSH-based [Khan et al. 2014]
VEGAS [Shi et al. 2015]

Technique Objective

grouping supergraph query efficiency
grouping supergraph query efficiency
grouping supergraph patterns
grouping supergraph compression
grouping supergraph query efficiency
grouping supergraph privacy
grouping supergraph patterns
grouping supergraph query efficiency
compression supergraph patterns
compression supergraph compression
compression supergraph compression
influence supergraph influence

X X X Y %X x %X x < % | Undirect
LR Ux TS § < | Directed
x X x € € €\ %X X X X X x| Heterog.
XX CUXC XN KNS | Prm-free
SR U%x x xR X% X | Linear
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- Based on survey

https://dl.acm.org/citation.cfm?id=3186727

Graph Summarization Methods and Applications: A Survey

YIKE LIU, TARA SAFAVI, ABHILASH DIGHE, and DANAI KOUTRA, University of Michigan,
Ann Arbor

While advances in computing resources have made processing enormous amounts of data possible, human
ability to identify patterns in such data has not scaled accordingly. Efficient computational methods for con-
densing and simplifying data are thus becoming vital for extracting actionable insights. In particular, while
data summarization techniques have been studied extensively, only recently has summarizing interconnected
data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art
methods for summarizing graph data. We first broach the motivation behind and the challenges of graph sum-
marization. We then categorize summarization approaches by the type of graphs taken as input and further
organize each category by core methodology. Finally, we discuss applications of summarization on real-world
graphs and conclude by describing some open problems in the field.

CCS Concepts: « Mathematics of computing — Graph algorithms; « Information systems — Data
mining; Summarization; - Human-centered computing — Social network analysis; « Theory of com-
putation — Unsupervised learning and clustering; » Computing methodologies — Network science;

Additional Key Words and Phrases: Graph mining, graph summarization

ACM Reference format:

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summarization Methods and Applica-
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