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Welcome!

We are the Graph Exploration and Mining at Scale (GEMS) lab at the University of Michigan,
founded and led by Danai Koutra. Our team researches important data mining and machine
learning problems involving interconnected data: in other words, graphs or networks.

From airline flights to traffic routing to neuronal interactions in the brain, graphs are ubiquitous
in the real world. Their properties and complexities have long been studied in fields ranging
from mathematics to the social sciences. However, many pressing problems involving graph
data are still open. One well-known problem is scalability. With continual advances in data
generation and storage capabilities, the size of graph datasets has dramatically increased,
making scalable graph methods indispensable. Another is the changing nature of data. Real
graphs are almost always dynamic, evolving over time. Finally, many important problems in the
social and biological sciences involve analyzing not one but multiple networks.

So, what do we do?

The problems described above call for principled, practical, and highly scalable graph
mining methods, both theoretical and application-oriented. As such, our work connects to
fields like linear algebra, distributed systems, deep learning, and even neuroscience. Some of
our ongoing projects include:

o Algorithms for multi-network tasks, like matching nodes across networks
Learning low-dimensional representations of networks in metric spaces
Abstracting or “summarizing” a graph with a smaller network
Analyzing network models of the brain derived from fMRI scans
Distributed graph methods for iteratively solving linear systems
Network-theoretical user modeling for various data science applications

We're grateful for funding from Adobe, Amazon, the Army Research Lab, the Michigan
for Data Science (MIDAS), Microsoft Azure, the National Science Foundation (NSF), an

Interested?

If you’re interested in joining our group, send an email with your interests and CV to g

opportunities@umich.edu.
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Network Representation Learning: Goal

* Given a graph G

« Automatically learn a feature vector representation for network

objects (e.g., nodes, subgrap

NS)

M ces s



“Must read papers in Network Representation Learning”
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Heterogeneous Network Representation Learning
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s to automatically project objects, most commonly, ’ .
o n ra s - INACY  vanvintad feam Ricnra 1 af [ ot 21 2000K]1
€
Journal of Machine Learning Research 21 (2020) 1-73 Submitted 6/19; Revised 2/20; Published 3/20

PRE-PUBLICATION DRAFT OF A BOOK TO BE PUBLISHED B)
MORGAN & CLAYPOOL PUBLISHERS.
UNEDITED VERSION RELEASED WITH PERMISSION.

ALL RELEVANT COPYRIGHTS HELD BY THE AUTHOR AND
PUBLISHER EXTEND TO THIS PRE-PUBLICATION DRAFT. y ao a an

Representation Learning for Dynamic Graphs: A Survey

Seyed Mehran Kazemi MEHRAN.KAZEMI@QBOREALISAL.COM
Rishab Goel RISHAB.GOEL@BOREALISAL.COM

Jili Tz

Borealis AI, 810-6666 Saint Urbain, Montreal, QC, Canad
Citation: William L. Hamilton. (2020). Graph Representation Learning. I Iang ang oreats aint, Urbain, Montreal, Q anaca
Morgan and Claypool, forthcoming.

Kshitij Jain KSHITLJ. JAINQBOREALISAI.COM
Ivan Kobyzev IVAN.KOBYZEV@QBOREALISAL.COM
Akshay Sethi AKSHAY.SETHIQBOREALISAI.COM
M Peter Forsyth PETER.FORSYTH@QBOREALISAI.COM
GEMS LAB Pascal Poupart PASCAL.POUPART@BOREALISAL.COM
CSE O Borealis AI, 301-420 West Graham Way, Waterloo, ON, Canada




“Must read papers in Network Representation Learning”

& &

JOURNAL OF I4TgX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019

GRAPH REPRESENTATION LEARNING

A Comprehensive Survey on Graph Neural + many
Networks more

Zonghan Wu, Shirui Pan, Member, IEEE, Fengwen Chen, Guodong Long,
Chengqi Zhang, Senior Member, IEEE, Philip S. Yu, Fellow, IEEE

WIiLLIAM L. HAMILTON

Ar A1 orro

Heterogeneous Network Representation Learning
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This talk

. Generalizing GNNs beyond homophily jandv20) ;‘3\3):
=~

* Node embeddings: beyond proximity [ACM TKDD’20 +]
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This talk
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Based on the following paper

https://arxiv.org/abs/2006.11468

Generalizing Graph Neural Networks Beyond
g% Homophily

Yujun Yan Lingxiao Zhao % &

University of Michigan ' University of Michigan Carnegie Mellon University
jiongzhu@umich.edu yujunyan@umich.edu lingxial@andrew.cmu.edu

Mark Heimann Leman Akoglu Danai Koutra
University of Michigan arnegie Mellon University University of Michigan
heimannQumich. eg pglu@andrew.cmu.edu dkoutraQumich.edu

Abstract

We investigate the representation power of graph neural networks in the semi-
supervised node classification task under heterophily or low homophily, i.e., in
networks where connected nodes may have different class labels and dissimilar
features. Most existing GNNs fail to generalize to this setting, and are even
outperformed by models that ignore the graph structure (e.g., multilayer percep-
trons). Motivated by this limitation, we identify a set of key designs—ego- and
neighbor-embedding separation, higher-order neighborhoods, and combination of
intermediate representations—that boost learning from the graph structure under
heterophily, and combine them into a new graph convolutional neural network,
H5GCN. Going beyond the traditional benchmarks with strong homophily, our
empirical analysis on synthetic and real networks shows that, thanks to the identi-
fied designs, HoGCN has consistently strong performance across the full spectrum
of low-to-high homophily, unlike competitive prior models without them.
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Semi-supervised Node Classification

Features

n

* Given a graph G with adjacency matrix A "J
node feature matrix X

a few labeled nodes (e.g., red/blue)

 Find the class label of each of

the remaining nodes.

M oo e




Graph Neural Networks

GCN [Kipf+ ICLR17]
g1
! Feature Vectors X /
Last L tput H(¢-D
Normalized _ 25 eV Ol
Adjacency A T7X
Matrix 4 Feature
X Transformation
= _ Matrix
Output I W)

H®
Classification Result
Z=f(XA) = softmax(fl ReLU(/AlXW(O)) W(l))

% GEMS LAB  [Block Diagram: Abu-El-Haija ICML’18]



Many architectures improving upon GCN

Using different aggregators
<+ GraphSAGE

Adding an edge-level attention mechanism

<+ GAT
+ AGNN
* Aggregating beyond immediate neighborhood
<+ MixHop
+ GDC However, most existing GNN
+ Geom-GCN . models are effective on graphs
. with strong homophily.

% GEMS LAB  [“Must-read papers on GNN” - https://github.com/thunlp/GNNPapers] 11



Homophily and Heterophily

- ~ Homophily -

“Birds of a feather flock together”
Most of linked nodes are similar

« Social Networks (wrt. political beliefs, age)
» Citation Networks (wrt. research area)

Zachary’s Karate club

\_

~

J

% GEMS LAB  [Newman Networks18, Newman 04, Shervashidze+ JMLR12, Lee+ arXiv18]

Largely

overlooked

-  Heterophily -

“Opposites Attract”
Most of linked nodes are different

* Friend network (e.g., talkative / silent friends)
* Protein structures (wrt. amino acid types)
« E-commerce (wrt. fraudsters / accomplices)

Honest Users

Accomplices

-

\

12



Measuring Homophily / Heterophily

« Edge homophily ratio h: fraction of intra-class edges (i.e., total
edges which link nodes with the same class)

_ | {u,v): (uV) €E Ay, =Y} |

h
=
Strong Strong
Heterophily Homophily
h=20 h h=1

% GEMS LAB 13



M ces s

Our Contributions

Reveal current limitations of GNNs in heterophily
settings

dentify key design choices that boost learning in
neterophily, without trading off accuracy in
nomopnhily

Conduct an extensive empirical evaluation

14



Revisiting GCN & Homophily Assumption A

GCN [Kipf+ ICLR17] e Under homophily

g1

! Feature Vectors X /
(-1
Normalized I8 Last Layer Output H
Adjacency A4 THX
Matrix A Feature
X { Transformation
Matrix

<+
Output I W)

H®
Classification Result

X2

X1
Z = f(X, A) = softmax (4 ReLU(Axw©) w®) AX = weighted_avg (B8l = (%) =
Xy X

In homophily cases, the GCN aggregator will




When GCN meets Heterophily... A

GCN [Kipf+ ICLR17] e Under heterophily

H(l—l)

! Feature Vectors X /
Last L Output H¢-D
Normalized ast Layer Lutpu

Adjacency |4 =X
Feature

Matrix ,
X Transformation
Matrix

<
Output I W

H®
Classification Result . BB
Z = f(X,A) = Softmax(fl ReLU(le W(O)) W(l)) AX = weighted_avg (B8l &0 (%) = 22
X4 X7

In heterophily cases, the GCN aggregator will
% Gems LAB  [Block Diagram: Abu-El-Haija ICML'18] blur the features, making them indistinguishable.




Heterophily: Empirical Study Setup

 Synthetic graphs: /?,,9/
+~ Control the edge homophily ratio h u@:-----0
+ Modified preferential attachment model  degree of v

* P[new node u links to existing node v] « h;; - d,,
f dst node class
N\ H H =

edge homophily
ratio h

a4

| & J: class of u & v

(0))]

(0))]
Clasls“ SIS 020 0.40 0.40

Compatibility $
Matrix g "l 040 020 0.40

(-

S

(0))]

L I 040 040 0.20

<~ Node feature vectors sampled from real graphs (e.g., Cora)

% GEMS Lae  [Karimi et al. Scientific Reports ‘18] [Abu-El-Haija et al. ICML'19] 17



Heterophily: Empirical Study A

mGCN mGAT mGCN-Cheby mGraphSAGE m=MixHop =MLP

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Homophily (h=0.7) CORA

[Kipf & Welling. ICLR’17] [VeliCkovi¢ et al. ICLR’18] [Defferrard et al. NeurlPS’16] [Hamilton et al. NeurlPS’17]
[Abu-El-Haija et al. ICML19]

% GEMs s B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020] 18



90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Heterophily: Empirical Study

mGCN mGAT mGCN-Cheby mGraphSAGE m=MixHop =MLP

Homophily (h=0.7) CORA Heterophily (h=0.1)

Under heterophily, Multilayer Perceptron (MLP), which is graph
agnostic, performs better than GNN variants.

M Seemsue B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020]

19



Our Goal:

ldentify key designs that boost learning in heterophily,
without trading off accuracy in homophily.

% GEMS e B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020] 20
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D1: Ego- & Neighbor-embedding Separation =

In heterophily settings, by definition, P
® neighbors may have different
features and classes. A
® ) .
om & o ol o oF
: ® O ®
¢ . o ‘ r(3k) ® r{k) ‘
1
o o e 9
12 (k)
rg() . — ® I's ‘ o
° ° o ®
k+1
%D — AGGR({@ r %+ = COMBINE(" , AGGR({@)))
1 1

% GEMS 8 B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020] 21



D1: Theoretical Justification

RR%Q
jnil

Goal. Compare generalization ability of two GCN layer formulations:

AXW and (A + )XW (without separation).

Theorem 1. In heterophily settings, a GCN layer formulated
as (A + DXW, which does not separate ego- and neighbor-
embeddings, misclassifies under a less amount of deviation
|6| and therefore generalizes less than a AXW layer.

Sketch of Proof

1
1
1
1
1
1
1
1
1
1

h=0.1

1
1
1
1
1
1
1
1
i 7
6

1. Derive closed form solutions for W under certain conditions (e.g., same h).
2. Add / remove 6 neighbors with class labels different than the ego-class.

3. Compare the absolute amount of deviation |8| needed for each
formulation to misclassity.

Reminder: 2-layer GCN

softmax (121 ReLU (AXW(O)) W(l))

A: adjacency matrix
X: node feature matrix
W: learnable weight matrix
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D2: Higher-order Neighborhoods

In heterophily settings, in expectation,
) higher-order neighborhoods may be
homophily-dominant. o o
® L 4
(k) ®
r's (k)
(k) r (k)
o . ol off
o o o
(k) (k)
uy c He —em °
:
® ®
rg‘) ® . ‘
(k) (k)
® 3 O ®
o o
® o

r Y — COMBINE(" , AGGR({@®))) r*Y — COMBINE(" , AGGR({@}), AGGR({®}))

% GEMS LAB [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020] 23




D3: Combination of Intermediate Representations 2=

In heterophily settings, collecting
° e /nformation with different locality leads o
to more accurate models. o
o ¥
ol H om ol ©H om ol b of
o ® o
Je ° ® Je ° ® e
o[ » o[ » » e B em
® 119 ® o[l off
(0) (1)
" e . " em . e
® ® ® ® ® o
. lteration O lteration 1 lteration K )

g
r(mab — coMBINE(D IR, ..., B,

% GEMS LAB [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020] [Xu, Li, et al. ICML ‘18]



Overview of Designs

* Design D1 models (at each layer) A
< the ego- and neighbor-representations distinctly

« Design D2 leverages (at each layer)

< representations of neighbors at different distances distinctly
« Design D3 leverages (at the final layer)

< the learned ego-representations at previous layers distinctly y

M Seemsue B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020]

[001

AN

> H,GCN

25



Overview of Designs

* Design D1 models (at each layer)
< the ego- and neighbor-representations distinctly

« Design D2 leverages (at each layer)

< representations of neighbors at different distances distinctly

« Design D3 leverages (at the final layer)

< the learned ego-representations at previous layers distinctly y

Existing works have used some subsets of
these designs, but not in heterophily
settings, and do not provide in-depth

M ¥ aems Las theoretical and empirical evaluations.

AN

[001

> H,GCN

Method D1 D2 D3
GCN [12] X X X
GAT [31] X X X
GCN-Cheby [5] X v X
GraphSAGE [8] v X X
MixHop [1] X v X




Results on Synthetic Benchmarks &
syn-CORA

=

O
©

O
o

—— H2GCN-2
—o— H2GCN-1

Test Accuracy

GCN-Cheby
—— GraphSAGE
—e— MixHop
—— GCN

GAT
--e- MLP

0
Strong
heterophily

M eemsue B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020]



Results on Synthetic Benchmarks %

syn-products

=

o
©

—— H2GCN-2
-+ H2GCN-1

o

o
o
©

GCN-Cheby
—e— GraphSAGE
—— GCN
--e- MLP

o
\l
o
o

—— H2GCN-2
—o— H2GCN-1

o

o))
o
\l

GCN-Cheby
—— GraphSAGE
—— MixHop
—— GCN

i GAT
0.3 e MLP

P
&)
©
| -
>
&)
&)
<
—
&
l_

Test Accuracy

o
&

o

N
o
o))

0 : : : 0.8 1
Strong Strong
heterophily homophily

H,GCN has the best trend overall, outperforming the baseline models in
most heterophily settings, while tying with other models in homophily.

% %Gsms LAB é [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020] [Hu, Fey, et al. OGB ‘20]



Significance of Designs D1-D3 i

syn-products

H2GCN-2

No Round-0 [
No Round-1 [
No Round-2 [
Only Round-2 [R2]

—*= H2GCN-1 [SO] H2GCN-1

Only N1 [S1]

Test Accuracy

—— w/0 No(V) [NO]
—— N1 + N2 [NSO] | w/o Ni(v) [N1]
Only N1 [NS1] ' w/o N2(v) [N2]

Test Accuracy

>
(@]
®©
-
>
(@]
(@]
<
ra)
O
[t

KO]
K1]
K2]

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
h h h

Design D1: Design D2: Design D3:
embedding separation Higher-order neighborhoods Intermediate representations

Separating the The H,GCN variants that incorporate the designs D1-
embeddings leads to D3 significantly outperform the other variants,
+40% acc for heterophily. especially for low homophily settings.

M eemsue B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020]



Hom. ratio 1
#Nodes |V|
#Edges |£]|
#Classes |)/|

H>GCN-1
H>GCN-2
GraphSAGE
GCN-Cheby

MixHop

GCN
GAT*
GEOM-GCN*

MLP

Texas
0.11
183
295
5

Results on Real Benchmarks

Wisconsin
0.21
251
466

5

Actor
0.22
7,600
26,752
5

Squirrel
0.22
5,201
198,493
5

Chameleon
0.23
2,277
31,421
5

Cornell
0.3
183
280

5

Cora Full
0.57
19,793
63,421
70

Citeseer Pubmed
0.74 0.8
3,327 19,717
4,676 44,327
7 3

Strong heterophily

M eemsue B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020]

Strong homophily



Hom. ratio h

#Nodes |V|
#Edges |£]|

#Classes ||

H>GCN-1
H>GCN-2

GraphSAGE
GCN-Cheby
MixHop

GCN
GAT*

GEOM-GCN*

MLP

Texas
0.11
183
295
5

83.24+7.07
80.00+6.77
82.70+5.87
78.65+5.76
74.59+8.94

59.464+5.25
H8.38
67.57

81.08+5.41

Results on Real

Wisconsin
0.21
251
466

5

84.31+3.70
83.14+4.26
81.76+5.55
77.45+4.83
71.96+3.70

59.80+6.99
49.41
64.12

84.12+2.69

Actor
0.22
7,600
26,752
5

34.31+1.31
34.49+1.63
34.37+1.30
33.80+0.83
25.43+1.93

30.09+1.00
28.45
31.63

35.53+1.23

Squirrel
0.22
5,201
198,493
5

28.98+1.97
32.33+1.94
41.05+1.08
40.86+1.49
29.08+3.76

36.68+1.65
30.03
38.14

29.29+1.40

Chameleon

0.23
2,277
31,421
5

52.96+2.09
58.38+1.76
58.71+2.30
63.38+1.37
46.10+4.71

60.2642.42
42.93
60.90

46.51+2.53

Cornell
0.3
183
280

5

78.11+6.68
79.46+4.80
75.95+5.17
71.35+9.89
67.84+9.40

57.03+4.67
54.32
60.81

80.81+6.91

Cora Full
0.57
19,793
63,421
70

67.49+0.78
68.58+0.34
65.80+0.59
67.14+0.58
58.77+0.60

67.81+0.50
N/A
N/A

58.53+0.46

Benchmarks

Citeseer
0.74
3,327
4,676
7

76.72+1.50
76.67+1.39
75.61+1.57
76.25+1.76
70.75+2.95

76.41+1.63
74.32
77.99

72.36+2.01

Pubmed
0.8
19,717
44,327
3

88.50+0.64
88.34+0.68
88.01+0.77
88.08+0.52
80.75+2.29

87.30+0.68
R7.62
90.05

86.63+0.38

Cora
0.81
2,708
5,278
6

86.34+1.56
87.67+1.42
86.60+1.82
86.86+0.96
83.10+2.03

87.24+1.24
86.37
85.27

74.61+1.97

+ H,GCN variants have consistently strong performance across the full spectrum.
« Other models that use some of the designs D1-D3 (e.g., GraphSAGE, GCN-
Cheby) also perform significantly better than models that lack these designs.

M eemsue B [Jiong Zhu, Yujun Yan, et al. arxiv: 2006.11468, 2020]




This talk

* Generalizing GNNs [Arxiv’20]

* Node embeddings: beyond proximity (oM kp020+1 (e) (@)
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A lot of work on network representation learning!

DM VWorkshop-on™ i

. > Ll

Most work preserves proximity
between nodes

that take place on networks, like spreading, diffusion, and synchronization. Modeling such processes is

strongly affected by the topology and temporal variation of the network structure, i.e., by the dynamics of

networks. Recently, machine learning techniques have been used to model dynamics of massively large

Description TUT( complex networks generated from big data, and the various functionalities resulting from the networks.
G = This motivates us to focus on “Network Representation Learning” as the significant topic of interest in

. . the 2019 editionl- 1N L earn 1 n g
The First International Workshop on Deep Learning on Graphs: Methods and on Graphs and Manifolds

Applications (DLG’19)

August 5, 2019 ICLR 2019 Workshop
Anchorage, Alaska, USA

In Conjunction with the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

August 4-8, 2019 COverview > <Accepted Papers > C Schedule ) <Speakers )

Dena’ina Convention Center and William Egan Convention Center
Anchorage, Alaska, USA COrganizers > ( Program Committee )

M KDD2019



https://github.com/thunlp/NRLPapers

Proximity vs. Structural Similarity

=)

Find similar nodes in the same part of
the network (communities)

Useful for link prediction, clustering,
classification assuming homophily

[Perozzi+ ’14; Grover+ ’16;
% GEMS ng Tang+ ’15; ...]

Find nodes with similar roles all over
the network

Useful for role-based classification,
transfer learning, ...

[Ribeiro+ ‘“17; Donnat+ ’18, ..]
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What are roles?

The ways in which nodes / entities /

actors relate to each other 8 o brigge
* “The behavior expected of a node _ * §p'qlpthydy

occupying a specific position”

[Homans ‘67]

+ e.g., centers of stars

<~ members of cliques

ﬁ"‘%
mvvvvvvvvvvww
‘v‘vvvvvvvvWWWWWVW‘vvvvvvWWWWVM‘WVWWWMMM

Network Science Co-authorship Graph
[Newman 2006]

» Equivalence class: collection of
nodes with the same role

CSE GEMS LAB  [Lorrain & White ‘71] [Borgatti & Everett ’92] [Wasserman & Faust. ’94] [Henderson et al. KDD’12] 35



Relevant Sociology Literature

- S.P. Borgatti and M.G. Everett. 1992. Notions of position in social network analysis. Sociological methodology22, 1 (1992)
- Stephen P Borgatti, Martin G Everett, and Jeffrey C Johnson. 2018. Analyzing social networks. Sage

 F Lorrain and H.C. White. 1971. Structural equivalence of individuals in social networks. Journal of Mathematical Sociology

« S. Boorman, H.C. White: Social Structure from Multiple Networks: Il. Role Structures. American Journal of Sociology, 81:1384-
1446, 1976.

 R.S. Burt: Positions in Networks. Social Forces, 55:93-122, 1976.
M.G. Everett, S. P. Borgatti: Regular Equivalence: General Theory. Journal of Mathematical Sociology, 19(1):29-52, 1994.

K. Faust, A.K. Romney: Does Structure Find Structure? A critique of Burt's Use of Distance as a Measure of Structural
Equivalence. Social Networks, 7:77-103, 1985.

K. Faust, S. Wasserman: Blockmodels: Interpretation and Evaluation. Social Networks, 14:5-61. 1992.
R.A. Hanneman, M. Riddle: Introduction to Social Network Methods. University of California, Riverside, 2005.
- L.D. Sailer: Structural Equivalence: Meaning and Definition, Computation, and Applications. Social Networks, 1:73-90, 1978.

 M.K. Sparrow: A Linear Algorithm for Computing Automorphic Equivalence Classes: The Numerical Signatures Approach.
Social Networks, 15:151-170, 1993.

« S. Wasserman, K. Faust: Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.

« H.C. White, S. A. Boorman, R. L. Breiger: Social Structure from Multiple Networks |. Blockmodels of Roles and Positions.
American Journal of Sociology, 81:730-780, 1976.

« D.R. White, K. Reitz: Graph and Semi-Group Homomorphism on Networks and Relations. Social Networks, 5:143-234, 1983.
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Sometimes structural similarity is more
appropriate than proximity

e

6686066
8068666

Graph comparison /

Alignment or matching [CIKM'18]

Transfer
learning

\

classification [KDD’19a; ICDM’192]

J

R

Node classification Anomaly detection
[KDD’19c] [KDD’19b]

Engineer

~
~
Ss

[PKDD’19]
Role query |dentity resolution

[Henderson+, RolX; KDD’12] 37/



Embedding-based Collective Network Mining

Distribution of node embeddings as
multiresolution features for
graph classification

Input Graphs Learned node Inferred (sparse) o
embeddings alignment matrix M
‘;@ w ® o RGM features
0 o ®
0
Embedding ()
B xNetMF

“based h=[o]i]i]z]z]o]

Structural embeddings for
network alignment

-} -

G, (Fig. 2) similarity

/\/_\H

[Mark Heimann, Tara Safavi,

é [Mark Heimann, Haoming Shen, Tara 8 é
Danai Koutra. |IEEE ICDM’19]

Safavi, Danai Koutra. ACM CIKM’18]

% GEMS LAB 38



Embedding-based Single Network Mining

Latent network summarization Sparse hash-based embeddings

* Find a compressed representation that « Learn a function x: V— {0,1}¢ s.t. the
captures the key structural information: derived d-dim embeddings o
+ independent of graph size (|V|, |E[), and < preserve similarities in interactions {5
< capable of deriving node representations < accurately capture temporal
on the fly information in the input heterogeneous 1.

network G(V, E)

Graph
summari-

*
: embeddings
zation

https://github.com/GemsLab/MultiLENS https://github.com/GemsLab/node2bits

% GEMS 8 B [Di Jin, Rossi et al. ACM KDD'19] =5 [Di Jin, Mark Heimann, et al. PKDD’19]


https://github.com/GemsLab/MultiLENS
https://github.com/GemsLab/

http://tinyurl.com/proximity-role-emb

On Proximity and Structural Role-based Embeddings in
Networks: Misconceptions, Techniques, and Applications

RYAN A. ROSSI, Adobe Research, USA

DI JIN, University of Michigan, USA

SUNGCHUL KIM, Adobe Research, USA

NESREEN K. AHMED, Intel Labs, USA

DANAI KOUTRA, University of Michigan, USA

JOHN BOAZ LEE, Worcester Polytechnic Institute, USA

Structural roles define sets of structurally similar nodes that are more similar to nodes inside the set than
outside, whereas communities define sets of nodes with more connections inside the set than outside. Roles
based on structural similarity and communities based on proximity are fundamentally different but important
complementary notions. Recently, the notion of structural roles has become increasingly important and has
gained a lot of attention due to the proliferation of work on learning representations (node/edge embeddings)
from graphs that preserve the notion of roles. Unfortunately, recent work has sometimes confused the notion
of structural roles and communities (based on proximity) leading to misleading or incorrect claims about the
capabilities of network embedding methods. As such, this paper seeks to clarify the misconceptions and key
differences between structural roles and communities, and formalize the general mechanisms (e.g., random
walks, feature diffusion) that give rise to community or role-based structural embeddings. We theoretically
prove that embedding methods based on these mechanisms result in either community or role-based structural
embeddings. These mechanisms are typically easy to identify and can help researchers quickly determine
whether a method preserves community or role-based embeddings. Furthermore, they also serve as a basis
for developing new and improved methods for community or role-based structural embeddings. Finally, we
analyze and discuss applications and data characteristics where community or role-based embeddings are
most anprovriate


http://tinyurl.com/proximity-role-emb

Mechanisms that lead to proximity- and
structural role-based embeddings

Embedding Type General Mechanism Examples of Methods

Spectral embedding [Chung 1997]
deepwalk [Perozzi et al. 2014]
node2vec [Grover and Leskovec 2016]
LINE [Tang et al. 2015]

GraRep [Cao et al. 2015]

ComE+ [Cavallari et al. 2019]

Random Walks (Sec. 4.1)
COMMUNITY-BASED
(Section 4)

GCN [Kipf and Welling 2017]
Feature Prop./Diffusion (Sec. 4.2) GraphSage [Hamilton et al. 2017]
MultiLENS [Jin et al. 2019c]

deepGL [Rossi et al. 2017]
Graphlets (Sec. 5.1) MCN [Lee et al. 2018b]
HONE [Rossi et al. 2018b]

ROLE-BASED role2vec [Ahmed et al. 2018]
(Section 5) Feature-based Walks (Sec. 5.2) node2bits [Jin et al. 2019a]
SimSum [Liu et al. 2018b, 2019]

rolX [Henderson et al. 2012]
Feature-based MF (Sec. 5.3) HERO [Ahmed et al. 2017b]
EMBER [Jin et al. 2019b]

M cemsue B [Rossi, DiJin, et al. ACM TKDD'20]



Empirical Study of

Role-based Embedding Methods

STRUCTURAL
Equivalence

Identical relationships to all other
nodes

AUTOMORPHIC
Equivalence

Structure-preserving mapping
between nodes

\ Y/

N
2

REGULAR
Equivalence

Equivalent relationships to

>

equivalent other nodes

ST ST
R O S D

i, R

Synthetic Datasets

= Air Traffic o0 Protein (5} Blog
[f] Facebook Email

Real Datasets

+& node2vec
+&> struc2vec
& xNetMF

> -& DRNE
& RiWalk

-Z> LINE
> GraphWave
%> role2vec
%> MultiLENS
%> SEGK

Structural Embedding
Methods
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Evaluatlon

% GEMS LAB [Mark Jin, Mark Heimann, Di Jin, Danai Koutra. KDD MLG’20]
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Coming Soon!

Python package for
structural role-based embeddings
+ evaluation routines

https://github.com/GemsLab

% GEMS 8 B [Mark Jin, Mark Heimann, Di Jin, Danai Koutra. KDD MLG’20]
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https://github.com/GemsLab

Take-away messages

« Leveraging distinct representations (at different levels) in GNNs can

help handle challenging heterophily settings [Arxiv ‘20] N \)\
<~ Many future directions to be explored ~ Y

<+ Need for larger, more diverse datasets with heterophily (OGB effort?)

« Structural embeddings are less studied, but are more appropriate than
proximity-based embeddings in several tasks [TKDD ’'20; MLG ’20; ...]

< Different embedding mechanisms give rise to communities and roles

< There are some misconceptions in the literature about the types of
equivalences that structural embeddings capture
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Talk based on the following papers

Mark Heimann, Haoming Shen, Tara Safavi, Danai Koutra. REGAL: Representation Learning-based
Graph Alignment. ACM CIKM’18.

Yujun Yan, J. Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, Danai Koutra. Group!NN: Grouping-
based Interpretable Neural Network-based Classification of Limited, Noisy Brain Data. ACM KDD’19a.

Di Jin, R. Rossi, Eunyee Koh, Sungchul Kim, Anup. Rao, Danai Koutra. Latent Network Summarization:
Bridging Network Embedding and Summarization. ACM KDD’19b.

D. Jin*, Mark Heimann*, Tara Safavi, Mengdi Wang, Wei Lee, Lindsay Snider, Danai Koutra. Smart
Roles: Inferring Professional Roles in Email Networks. ACM KDD’19c.

D. Jin, Mark Heimann, Ryan Rossi, Danai Koutra. node2bits: Compact Time- and Attribute-aware Node
Representations for User Stitching. ECML/PKDD’19.

Mark Heimann, Tara Safavi, Danai Koutra. Distribution of Node Embeddings as Multiresolution
Features for Graphs. IEEE ICDM 2019. [best student paper award]

Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, John Boaz Lee. On Proximity
and Structural Role-based Embeddings in Networks: Misconceptions, Techniques, and Applications.
ACM TKDD 2020.

Mark Jin, Mark Heimann, Di Jin, Danai Koutra. Understanding and Evaluating Structural Node
Embeddings. ACM KDD MLG workshop 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, Danai Koutra. Generalizing
Graph Neural Networks Beyond Homophily. arxiv.org/abs/2006.11468, 2020.
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Thank you!
Questions?

Danai Koutra
dkoutra@umich.edu

GEMS LAB

Caleb Belth Marlena Duda . | Mark Heimann & DiJin

Representation Learning
Beyond Homophily & Proximity

e Jiong Zhu kA

A DB55 S5 CH35

Puja Trivedi

Alican Blyiikgakir
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