COLLEGE OF ENGINEERING
g oy A UG XV GEMS LAB

(Pocket-size)
Structural Embeddings in Large-scale Networks

Danal Koutra
Assistant Professor, CSE

DOOCN-XII: Network Representation Learning — May 28, 2019

[ e

UL Slides at: https:/bit.ly/2VVuS5B




iJior;g Zhu A Grae Abbott !M/eng Teng!

- GEMS Lab @ University of Michigan
Caleb Belth

A GEMS LAB
3rd y.
PhD May 2019

Welcome!

We are the Graph Exploration and Mining at Scale (GEMS) lab at the University of Michigan,
founded and led by Danai Koutra. Our team researches important data mining and machine March 2019
learning problems involving interconnected data: in other words, graphs or networks.

April 2019

From airline flights to traffic routing to neuronal interactions in the brain, graphs are ubiquitous

, . . ) . e ! January 2019
in the real world. Their properties and complexities have long been studied in fields ranging
from mathematics to the social sciences. However, many pressing problems involving graph
data are still open. One well-known problem is scalability. With continual advances in data
ol generation and storage capabilities, the size of graph datasets has dramatically increased, December 2018
making scalable graph methods indispensible. Another is the changing nature of data. Real
M a rI e n a D u d a graphs are almost always dynamic, evolving over time. Finally, many important problems in the

social and biological sciences involve analyzing not one but multiple networks. December 2018

So, what do we do? g

The problems described above call for principled, practical, and highly scalable graph
mining methods, both theoretical and application-oriented. As such, our work connects to August 2018
fields like linear algebra, distributed systems, deep learning, and even neuroscience. Some of

our ongoing projects include:
August 2018

Algorithms for multi-network tasks, like matching nodes across networks - M :
| icrosoft

Learning low-dimensional representations of networks in metric spaces

Abstracting or “summarizing” a graph with a smaller network hay2012 .. AZU re
Analyzing network models of the brain derived from fMRI scans

Distributed graph methods for iteratively solving linear systems May 2018

\ Network-theoretical user modeling for various data science applications amazon

’ - B We’re grateful for funding from Adobe, Amazon, the Army Research Lab, the Michigan Institute April 2018 -
M a rk H el m a n n & for Data Science (MIDAS), Microsoft Azure, the National Science Foundation (NSF), and Trove. YUJ u n Ya n




Representation Learning: Goal

* Given a graph G
« Automatically learn a feature vector representation for each node

M oo e



A lot of work on network representation learning!

Must-read papers on NRL/NE.

NRL: network representation learning. NE: network embedding.
Contributed by Cunchao Tu, Yuan Yao and Zhengyan Zhang.

We release OpenNE, an open source toolkit for NE/NRL. This repository
Representation Learning) training and testing framework. Currently, the
DeepWalk, LINE, node2vec, GraRep, TADW and GCN.

Survey papers:

. Representation Learning on Graphs: Methods and Applications. W
2017. paper

. Graph Embedding Techniques, Applications, and Performance: A

. A Comprehensive Survey of Graph Embedding: Problems, Technic
Zheng, Kevin Chen-Chuan Chang. 2017. paper

. Network Representation Learning: A Survey. Daokun Zhang, Jie Yii
. A Tutorial on Network Embeddings. Haochen Chen, Bryan Perozzi,

. Network Representation Learning: An Overview.(In Chinese) Cunc
2017. paper

. Relational inductive biases, deep learning, and graph networks. P
Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malino
Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Balle

. Bernoulli Embeddings for Graphs. Vinith Misra, Sumi

. Distance-aware DAG Embedding for Proximity Searc

. GraphGAN: Graph Representation Learning with Ge! 10
Wang, MIAO ZHAO, Weinan Zhang, Fuzheng Zhang, X

. HARP: Hierarchical Representation Learning for Net 109

. Representation Learning for Scale-free Networks. R 14

melo. AAAI 2018.

. Link Prediction via Subgraph Embedding-Based Convex Matrix Completion. Zhu Cao, Linlin Wang, Gerard De

. Generative Adversarial Network based Heterogeneous Bibliographic Network Representation for Personalized

Citation Recommendation. J. Han, Xiaoyan Cai, Libin Yang. AAAI 2018.

. DepthLGP: Learning Embeddings of Out-of-Sample 101.

Zhu. AAAI 2018. paper

. Structural Deep Embedding for Hyper-Networks. Ke 102.

paper
103.

. TIMERS: Error-Bounded SVD Restart on Dynamic N¢

Zhu. AAAI 2018. paper
104.

. Community Detection in Attributed Graphs: An Emb

Zhang. AAAI 2018.
105.

106.

107.
Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan Chang, M

8.

AAAI 2018. paper code

2018. paper

. Social Rank Regulated Large-scale Network Embed: 111,

2018. paper

Integrative Network Embedding via Deep Joint Reconstruction. Di Jin, Meng Ge, Liang Yang, Dongxiao He,
Longbiao Wang, Weixiong Zhang. IJCAI 2018.

Scalable Multiplex Network Embedding. Hongming Zhang, Liwei Qiu, Lingling Yi, Yangqiu Song. IJCAI 2018. paper

Adversarially Regularized Graph Autoencoder for Graph Embedding. Shirui Pan, Ruiqi Hu, Guodong Long, Jing
Jiang, Lina Yao, Chengqi Zhang. 1JCAl 2018.

Dynamic Network Embedding : An Extended Approach for Skip-gram based Network Embedding. Lun Du, Yun
Wang, Guojie Song, Zhicong Lu, Junshan Wang. |IJCAI 2018.

Discrete Network Embedding. Xiaobo Shen, Shirui Pan, Weiwei Liu, Yew-Soon Ong, Quan-Sen Sun. |JCAI 2018.
Deep Attributed Network Embedding. Hongchang Gao, Heng Huang. IJCAI 2018.

Active Discriminative Network Representation Learning. Li Gao, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan, Yue
Hu. IJCAI 2018.

ANRL: Attributed Network Representation Learning via Deep Neural Networks. Zhen Zhang, Hongxia Yang, Jiajun
Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, Can Wang. IJCAI 2018.

. Feature Hashing for Network Representation Learning. Qixiang Wang, Shanfeng Wang, Maoguo Gong, Yue Wu.

IJCAI 2018.

. Constructing Narrative Event Evolutionary Graph for Script Event Prediction. Zhongyang Li, Xiao Ding, Ting Liu.

IJCAI 2018. paper code

Deep Inductive Network Representation Learning. Ryan A. Rossi, Rong Zhou, Nesreen K. Ahmed. WWW 2018.
paper

. A Unified Framework for Community Detection and Network Representation Learning. Cunchao Tu, Xiangkai

Zeng, Hao Wang, Zhengyan Zhang, Zhiyuan Liu, Maosong Sun, Bo Zhang, Leyu Lin. TKDE 2018. paper



https://github.com/thunlp/NRLPapers

A lot of work on network representation learning!
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DOOCN-XII: Network Representation Learning

THE w E B Dynamics On and Of Complex Networks 2019 -
CONFERENCE ‘

Frank Room of the UVM Davis Center 3" ’
University of Vermont, Burlington, Vermont, USA :
Tuesday, May 28th 2019 1:45pm-5:30pm

The Dynamics On and Of Complex Networks (DOOCN) workshop series, aims on exploring statistical
dynamics on and of complex networks. Dynamics on networks refers to the different types of processes
that take place on networks, like spreading, diffusion, and synchronization. Modeling such processes is
strongly affected by the topology and temporal variation of the network structure, i.e., by the dynamics of
networks. Recently, machine learning techniques have been used to model dynamics of massively large
Desm.pﬁ%} TUT( complex networks generated from big data, and the various functionalities resulting from the networks.

This motivates us to focus on “Network Representation Learning” as the significant topic of interest in
the 2019 edition.

The First International Workshop on Deep Learning on Graphs: Methods and
Applications (DLG’19)

August 5, 2019
Anchorage, Alaska, USA

bn Learning
on Graphs and Manifolds

ICLR 2019 Workshop

In Conjunction with the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

August 4-8, 2019 COvervIew > <Accepted Papers > C Schedule ) <Speakers )

Dena’ina Convention Center and William Egan Convention Center
Anchorage, Alaska, USA (Organizers ) ( Program Committee )

M KDD2019
CSE



https://github.com/thunlp/NRLPapers

A lot of work on network representation learning!
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Most work preserves proximity
between nodes

that take place on networks, like spreading, diffusion, and synchronization. Modeling such processes is

strongly affected by the topology and temporal variation of the network structure, i.e., by the dynamics of

networks. Recently, machine learning techniques have been used to model dynamics of massively large

Description TUT( complex networks generated from big data, and the various functionalities resulting from the networks.
G = This motivates us to focus on “Network Representation Learning” as the significant topic of interest in

. . the 2019 editionl- 1N L earn 1 n g
The First International Workshop on Deep Learning on Graphs: Methods and on Graphs and Manifolds

Applications (DLG’19)

August 5, 2019 ICLR 2019 Workshop
Anchorage, Alaska, USA

In Conjunction with the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

August 4-8, 2019 COverview > <Accepted Papers > C Schedule ) <Speakers )

Dena’ina Convention Center and William Egan Convention Center
Anchorage, Alaska, USA COrganizers > ( Program Committee )

M KDD2019



https://github.com/thunlp/NRLPapers

Proximity vs. Structural Similarity

=)

Find similar nodes in the same part of
the network

Useful for link prediction, clustering,
classification assuming homophily

[Grover+ ‘16; Perozzi+ '14, ...]
% GEMS LAB

Find nodes with similar roles all over
the network

Useful for role-based classification,
transfer learning, ...

[Ribeiro+ ‘17; Donnat+ ‘18]



Sometimes structural similarity is more
appropriate than proximity

[ Alignment or matching 1 Node classification Anomaly detection’

Engineer :

’ gets
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CSE %,,)Z:GEMS LAB [Henderson+, RolX; KDD’12] 8



What we’ve found to be powerful...

« Histogram representations as a way to encode
neighborhood information (instead of RWR)
< Capture structural properties or features/attributes that generalize

 (Implicit) Matrix factorization instead of SGNS
<+ Removes randomness
<+ Speed / scalability

M [Qiu, Jiezhong, et al. "Network embedding as matrix factorization:
%%GEMS LAB e .
CSE © Unifying deepwalk, line, pte, and node2vec." WSDM ’18]



Talk Outline: Structural Embeddings for...

 Cross-network tasks [AcM CIKM’18] ;g,; — @ l
+ Node (role) classification [Acm KDD’19]

 Latent summarization [ACM KDD'19] @

Based on:

M. Heimann, H. Shen, T. Safavi, D. Koutra. REGAL: Representation Learning-based Graph Alignment. ACM CIKM’18.

D. Jin*, M. Heimann*, T. Safavi, M. Wang, W. Lee, L. Snider, D. Koutra. Smart Roles: Inferring Professional Roles in Email Networks. ACM KDD'19.

D. Jin, R. Rossi, E. Koh, S. Kim, A. Rao, D. Koutra. Latent Network Summarization. ACM KDD’19.

* Y. Liu, T. Safavi, A. Dighe, D. Koutra. Graph Summarization Methods and Applications: A Survey. ACM Computing Surveys 2018.

« D. Jin, M. Heimann, R. Rossi, D. Koutra. node2bits: Compact Time- and Attribute-aware Node Representations for User Stitching. Arxiv 1904.08572

* Y. Yan, J. Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, Danai Koutra. GroupINN: Grouping-based Interpretable Neural Network-based
Classification of Limited, Noisy Brain Data. ACM KDD’19.

% GEMS LAB 10



Task: Network Alignment

entity resolution (link user accounts) chemical compound comparison | protein-protein alignment
“«e _t o
é . o ¢
g9 -
.« e .
€2 é2 & ¢

optical
character

recognition
2 0 7 9

structure matching in DB

L ... and many
‘—‘ ﬂ .~ g more applications
M i‘z‘ﬁsﬁ’ T 11



Network Alignment

- Given: >=2 unweighted, undirected, potentially labeled graphs

- Find: the correspondence between their nodes
= Efficiently
= Using node embeddings

% GEMS a8 B [Heimann, Shen, Safavi, Koutra. CIKM ’18.]



Traditional vs. Proposed Approach

- Classic optimization (+ variants)
minp ||PAPT - B||¢

- Potential drawbacks
(-) Computationally expensive
+ e.g. O(n®) Hungarian algorithm
(-) 1-to-1 or hard mappings
(-) Require different formulation for
attributed graphs, different sizes

[Umeyama ‘88]; [Bayati+ ‘09]; [Koutra+ ICDM ‘13];

[Zhang+ ‘16] [Singh+ ‘08]; [Klau+ ‘09]; [Zhang+ ‘15];

[Heimann, Lee+ ‘18] ...

M oo e

- QOur idea: match nodes with similar
(learned) embeddings

- Challenges:
< Comparability of embeddings
across networks
<> Scalability

earned n
mbeddin

H H 3 E
| 3
E xNetMF @ Y, Emﬁﬁgﬁg”gg

ode Inferred (sparse)
ings alignment matrix M

- -

62 [ ] similarity
/ \/_\ | Y,

B [Heimann, Shen, Safavi, Koutra. CIKM 1]



REGAL: Graph Alignment Framework

Input Graphs

G, H

Hé&éd éH

G [1 |

2o\

for Compafa@(ﬂfétMF nodmtﬁﬁé@lguﬁg@ﬂarlty matrix [Qiu+’18]

Idea 2: implicit matrix factorization
(Nystrom low-rank) for scalability

% GEMS LAB é [Heimann, Shen, Safavi, Koutra. CIKM ’18.] 14



Step 1. Node Identity Extraction

Step 1: Comparable Node Identity

- Proximity to other nodes
+ Common for single-network tasks
+ Not comparable across networks

. Structural Identity
+ Used for transfer learning in graphs [Henderson+ *12]

. Attribute Information
+ Used for graph alignment [Zhang+ *16]

Use node-ID invariant quantities
= for cross-network comparison

M [Henderson, Keith, et al. "Rolx: structural role extraction & mining in large graphs." KDD 2012]
CSE GEMS LAB [Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." KDD 2016]



Step 1. Node Identity Extraction

Step 1: Structural ldentity Intuition

- Requirement: comparability
- Solution: Capture degrees of neighbors

+ Typical Assumption: aligning nodes have similar degrees

+ Used in structural node representation learning (struc2vec)

[Koutra, Tong, Lubensky. "Big-align: Fast bipartite graph alignment." ICDM ‘13]
M [Ribeiro, Saverese, Figueiredo. "struc2vec: Learning node representations from structural identity." KDD ‘17]
CSE GEMS LAB [Koutra, Vogelstein, Faloutsos. "Deltacon: A principled massive-graph similarity function." SDM ‘13]



Step 1: Node ldentity Extraction

Requirement: comparabillity

- Solution: Degree histograms of
the k-hop neighbors

< Naive approach: jth entry is #
neighbors with degree j

<+ Robust & compact approach:
logarithmic binning

d, = szgl ok=1dk

combine discount
across K distant
hops hops

K = 2 hops, discount &= 0.5, no logarithmic binning

% GEMS a8 B [Heimann, Shen, Safavi, Koutra. CIKM ’18.] 17



Step 2: Node Similarity Representation

- Requirement: scalability

<> Avoid expensive RW

- Solution: matrix factorization
< Most embedding methods effectively factorize a similarity matrix [Qiu+’18]
<> Cross-network similarity matrix S from node identities (+ attributes)

S, = sim(u,v) = exp [—¥s - [[du — dv”% — Ya - dist(fy, f)]

structural distance attribute distance
f: attribute vectors

M : , : [Qiu, et al. "Network embedding as matrix factorization:
CSE GEMS Las B [Heimann, Shen, Safavi, Koutra. CIKM 18 ] Unifying deepwalk, line, pte, and node2vec." WSDM ’18]



Step 2: Node Similarity Representation

- Requirement: scalability

<> Avoid expensive RW
- Solution: implicit matrix factorization

Step 2. Efficient Similarity-based Representation

<- Based on the Nystrom low-rank approximation i

Similarity Computation

AXE.

TeEOREM 3.1. Given graphs G1(Vy, &1) and Go(Va, E2) withnxn
joint combined structural and attribute-based similarity matrix S ~
YZT, its node embedding matrixY can be approximated as

Y = cux!/?,

where C is the n X p matrix of similarities between the n nodes and p
randomly chosen landmark nodes, and W' = UZVT is the full rank

singular value decomposition of the pseudoinverse of the small p X p
landmark-to-landmark similarity matrix W.

[Qiu, et al. "Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec." WSDM ’18]
[Drineas and Mahoney. “On the Nystrom method for approximating a Gram matrix for improved kernel-based learning.” JMLR ’05]

% GEMS LAB 19



Step 2: Contrast to Typical Approach

Typical Approach

requires computation of S, Y, ZT

«D>» — ] —>

Ilé

S=1
l

- Approximate factorization
of exact similarity matrix

- Decomposition learned

- O(n?) similarities + time for
full factorization

% %%%GEMS LAB é [Heimann, Shen, Safavi, Koutra. CIKM ’18.]



icient Similarity-based Representatio

xNetMF: Proposed Fast Approximation Typical Approach

skips the computation of matricesS and Z T requires Compufaf/bn of S, Y, ZT
4—/’) —
S i I
+ Exact factorization of Nystrom low-rank - Approximate factorization
approximation of exact similarity matrix
+ Decomposition known - Decomposition learned

+ O(np) similarities needed, for p landmarks - O(n?) similarities + time for
full factorization

% GEMS LAB é [Heimann, Shen, Safavi, Koutra. CIKM ’18.] 21



Step 3: Fast Embedding Matching

- Qiven: structural embeddings of nodes in G4 and G,
Find: the node correspondence

Requirement: scalability

<-avoid computing all pairwise hode embedding comparisons

- Solution: use a k-d tree to find top-a most similar embeddings
+ Can find “soft” or “hard” alignments

Simple greedy approach, but works
well with comparable features

% GEMS a8 B [Heimann, Shen, Safavi, Koutra. CIKM ’18.] 22



Experiments: Baselines & Setup

- Baselines: Classic, spectral and optimization-based alignment methods
<> NetAlign, FINAL, IsoRank, Klau

« Our embedding-based methods

< REGAL
< REGAL-node2vec (node2vec + k-d tree)
< REGAL-struc2vec (struc2vec + k-d tree)

@ https://github.com/GemslLab/REGAL

- Setup: Align graphs with adj matrices A and B = PAPT + noise

+ structural and attribute noise
with probability p, and p,

[Bayati+"Algorithms for large, sparse network alignment problems." ICDM ‘09] [Zhang+ "Final: Fast attributed network alignment." KDD ‘16]
[Singh, Rohit, et al. "Global alignment of multiple protein interaction networks with application to functional orthology detection." PNAS ‘08] 98
[Klau, Gunnar W. "A new graph-based method for pairwise global network alignment." BMC bioinformatics 10.1 20009.


https://github.com/GemsLab/REGAL

Non-attributed Graphs

% REGAL O o NetAlign % Klau o o REGAL-struc2vec
=0 FINAL IsoRank +—$ REGAL-node2vec

 REGAL variants are
more accurate than
traditional alignment
methods.

» Structural embeddings

5 outperform the

: 0.1 0.2 Noisoél:‘;eveli o.4 0.5 0. ) Noisoéofevel 0.04 ) "0.01 0.02 Noisoéol3eve| 0.04 0.05 prOXImIty_based OneS
(a) Arxiv (198 110 edges) (b) PPI (76 584 edges) (c) Arenas Email (5451 edges)

Accuracy
Accuracy
Accuracy

Dataset Arxiv PPI Arenas

« REGAL is up to 22-31x faster than FINAL 4182 (180)  62.88(32.20)  3.82 (1.41)
other representatlon_learn|ng_ NetAlign 149.62 (282.03) 22.44 (0.61) 1.89 (0.07)

. IsoRank 17.04 (6.22)  6.14(1.33) 0.73 (0.05)

based alignment methods. Klau 1291.00 (373)  476.54 (8.98) 43.04 (0.80)

 Avoids the expense of RW REGAL-node2vec  709.04 (20.98)  139.56 (1.54) 15.05 (0.23)

REGAL-struc2vec 1975.37 (223.22) 441.35 (13.21)  74.07 (0.95)

REGAL 86.80 (11.23)  18.27 (2.12)  2.32(0.31)
% %Z}\kGEMS LAB




+—$ REGAL +—$ REGAL
o—0 FINAL

o—6 FINAL

o
(o)

o
o

Accuracy
Accuracy
Accuracy

o
>

o
(N}

0.1 0.2 . ' 0.1 0.2 . ' 0.1 0.
Noise level Noise level Noise level

1 synthetic binary attribute 5 synthetic binary attributes 1 real attribute (29 values)

B REGAL
 REGAL outperforms FINAL without extensive, [ FINAL

reliable attribute information.

« REGAL is significantly faster than FINAL,
especially with more attribute information.

% %Z}\kGEMS LAB

Runtime

1:2 1:29

3:2 5:2
Number of attribute values



Experiments: Scalability

ErdGs-Renyi
random graphs

- Dominant factors: O(n p) node
similarities, forming
overall embeddings.

total embed
k hop degrees

> o representation - REGAL is subquadratic in
alignment practice.

—
o
|

"2
©
c
o
@)
o
V]
=
Q
£
=
(@)
=
C
C
-
o

—
o
e

—_
-
|
[V

104
Number of nodes

‘ Code: https://qgithub.com/GemslLab/REGAL

% %Z;GEMS LAB B [Heimann, Shen, Safavi, Koutra. CIKM ’18.]


https://github.com/GemsLab/REGAL

Extension to weighted, directed graphs

Analyze incoming & outgoing
neighborhoods separately

v = By B

+ Concatenate incoming/outgoing histograms by, = [bf;, by]

+ “Weighted” histograms: capture a node’s contribution to another
node’s structural identity

M eemsue (Q) B [DiJin, Mark Heimann, Tara Safavi et al. ACM KDD'19] 27



Predicting professional roles in email networks

DeepWalk  node2vec DNGR | EMBER-U EMBER-D EMBER-W  EMBER

Trove-318 76 .56 .6¢ .66 ) ) . 7563 . .8045*
Trove-183 .76 . . .56 . . . ( .63¢ 76 7838 ) 8241
Trove-141 .6 .55¢ . ( ) y T1¢ ) .73¢ .62 . 7 72! .7309 .6¢ .7568*

Trove-98 .66 . .63 687 . 61 .64¢ .532¢ . .6 5857 .633: 6911
Trove-19 5429 .6 .6: : : .595¢ .610: 608" : 6 7204 693 .7337*
Trove-2K .6 .521: .6 676¢ .6 ! .6345 .6745
Trove .5 6866 7141 712: .7162%
Enron .62 S51¢ . .6 . 738" 570" . 7347 : 7305

Professional Roles:
EMBER outperforms its unweighted/undirected « Officers (“C-Suite”

variants — importance of accounting for the employees)
volume + reciprocity in email exchanges. * Middle-level managers
 Workers

M eemsue (Q) B [DiJin, Mark Heimann, Tara Safavi et al. ACM KDD'19]



Fun fact

Comparing academic & industrial roles

« Academic email network with 3,078 users and 231,470 email exchanges
 Employee u at a university “maps” to employee v at organization X

< if argmin|| b, — b ||,
veX . .
Professors are similar to:
 CEOs of smaller companies
bigger | EEEEEENPYN 051 E¥5 (Trove-98 and Trove-19), and
size * more like managers in bigger companies
Trove-141- 0.17 ﬂ 0.15

(Trove-318 through Trove-141).

Trove-318 0.13 B 0.25

Trove-98 0.31 0.11
Trove-19 0.11 0.13

Officer Mgmt. Worker

M eemsue (Q) B [DiJin, Mark Heimann, Tara Safavi et al. ACM KDD'19] 29



Talk Outline: Structural Embeddings for...

 Cross-network tasks [AcM CIKM’18] ;g,; — @ l
+ Node (role) classification [Acm KDD’19]

»  Latent summarization [ACM KDD'19] @

Based on:

M. Heimann, H. Shen, T. Safavi, D. Koutra. REGAL: Representation Learning-based Graph Alignment. ACM CIKM’18.

D. Jin*, M. Heimann*, T. Safavi, M. Wang, W. Lee, L. Snider, D. Koutra. Smart Roles: Inferring Professional Roles in Email Networks. ACM KDD'19.

D. Jin, R. Rossi, E. Koh, S. Kim, A. Rao, D. Koutra. Latent Network Summarization. ACM KDD’19.

* Y. Liu, T. Safavi, A. Dighe, D. Koutra. Graph Summarization Methods and Applications: A Survey. ACM Computing Surveys 2018.

« D. Jin, M. Heimann, R. Rossi, D. Koutra. node2bits: Compact Time- and Attribute-aware Node Representations for User Stitching. Arxiv 1904.08572

* Y. Yan, J. Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, Danai Koutra. GroupINN: Grouping-based Interpretable Neural Network-based
Classification of Limited, Noisy Brain Data. ACM KDD’19.

% GEMS LAB 30



Embeddings are powerful, but
can take up a lot of space!

* For 1B nodes and K=128 - 1T1B to store the embeddings!
« Can we summarize them?

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



Graph Summarization Methods and Applications: A Survey

YIKE LIU, TARA SAFAVI, ABHILASH DIGHE, and DANAI KOUTRA, University of Michigan,

Graph Summarization
Survey

ics of

nsupervised learning and clustering; + Cor

and Phrases: Graph mining, grap!

Graph Summarization
Applications

Network ) ) *Query Efficiency
type StatIC DynamIC oCOmpression

«Visualization
«Pattern Discovery
Plain *Influence Analysis

Open Problems

summary

original

Structure only Structure + labels Temporal structure il
: : : *Streaming / Related Research Areas:
« Grouping » Grouping « Grouping Incremental graph clustering,
« Compression « Compression « Compression Summarization partitioning, community
 Simplification * Influence * Influence - Automated Insight detection, sampling,
. Influence _ Extraction sparsification, sketches,
. ) Core techniques employed «Evaluation compression

% %GEMS LAB é[Liu, Safavi, Dighe, Koutra. ACM Computing Surveys ’18.]



Latent Network Summarization @

« Given: a graph G(V, E)

* Find: a compressed representation that captures the key structural
information such that it is

+ independent of graph size (|V|, |E|), and
< capable of deriving node representations

Graph
summari-
zation

Node
embeddings

M - Xcemsus B [DiJin, Rossi et al. ACM KDD'19] -



Latent Network Summarization @

« Given: a graph G(V, E)

* Find: a compressed representation that captures the key structural
iInformation such that it is
+ independent of graph size (|V|, |E|), and
< capable of deriving node representations

* Desired Properties

<+ (P1) generality to handle arbitrary network Graph Node
: . summari- .
< (P2) high compression rate ation embeddings
+ (P3) natural support of inductive learning
<+ (P4) ability to on-the-fly derive node embeddings

CGEMS LAB [Di Jin, Rossi et al. ACM KDD’19] 34



Comparison to Related Work

INPUT REPRESENTATIONS / OUTPUT METHOD

Hetero- Size = Node Proxim.
geneity indep. specific indep. Scalable Induc.

Aggregation [2]
Cosum [34]

AspEm [31]
metapath2vec [8]
n2vec [11], LINE [32]
struc2vec [26]
DNGR [6]
GraphSAGE [12]

MuLTI-LENS

v X
X X
v X
v X
X X
X X
X X
v X
v v

SIS SNSSNSSSNS N\ X%
NN >N X X %N X
S| S NNN XN
N[N X % % % X X X




Method

L atent Network Summarization: Overview

Input graph G

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



Method

atent Network Summarlzatlon Overview

1. Relational functions to .
aggregate nodewise structural /=
features automatically

Object typeso . . O Multi-level Structure Extraction
Edge types Fr | L< dlameter(G)
I E Base fegture 1st level Lth level
./ matrix

\o"

Input graph G

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



Method

L atent Network Summarization: Overview

to
aggregate nodewise structural
features automatically

ObjecttypesO @ @ O

Edge types —s --»

ik

Histogram-based
| oy ! | | heterogeneous
Input graph G L Dol = DI s e contexts for nodes

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



Method

L atent Network Summarization: Overview

to
aggregate nodewise structural
features automatically

ObjecttypesO @ @ O

Edge types —s --»

’C‘O N
\‘/

~

heterogeneous
Input graph G for nodes
Latent network Fb) JT:T
summaries
Relational functions Low-rank latent graph summaries

Subspace vectors from which

we can derive the embeddings
M cemsue B [DiJin, Rossi et al. ACM KDD'19] 39




Method

Multi-LENS: Base functions

ongctpes O @ 0 O oo Siructurs Bxtractlon M - F.: base graph functions that
Ed et es / dlameter . .
getypes — operate on the adjacency matrix

\ /‘OXD Base fteature 1st level Lth level ’ e'g" Sum 2 on egOnetS
0/ ' | max * In-/out-/total degree

Heterogeneous context derivation

Input graph G

Latent network JT"b : JT"T ‘ FO) —
summaries e

Relational functions Low rank latent graph summaries

% %%%GEMS 8 B [Di Jin, Rossi et al. ACM KDD’19] [Rossi, Zhou+, WWW BigNet'19]



Method

Multi-LENS: Rel Fn Compositions

Multi-level Structure Extraction
L < diameter(G)

Objecttypes O @ @ O

Edge types — --»

Base feature|
matrix

Heterogeneous context derivation

1st level Lth level

Input graph G

Latent net\_lvork Fb) JTT ‘
summaries R

Relational functions

| | | \ |
Low-rank latent summarization

5 80 gl_g]

Low-rank latent graph summaries

% %%%GEMS LAB

[ compositions over a hode’s

neighborhood =

higher-order structural features
in the /~-hop neighborhoods

B [Di Jin, Rossi et al. ACM KDD’19] [Rossi, Zhou+, WWW BigNet'19)]



Method

Multi-LENS: Rel Fn Compositions

Objecttypes O @ @ O Multi-level Structure Extractic()in o . Structural |dent|ty Of node i
L < diameter

* via histograms
Base feature * log-scale for skewness

matrix

Edge types — --»

1st
feature 1st feature histogram

Input graph G

] ]
Low- rank Iatent summarlzatlon

s [ F (5 80 s (0]

Relational functions Low-rank latent graph summaries

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



Method

Multi-LENS: Rel Fn Compositions

ObjecttypesO) @ @ O Multi-level Structure Extraction
L < diameter(G)
Edge types — --»

Base feature
matrix

Input graph G

Latent net\_lvork Fb’ F,,,, ‘ 0) g (m‘

summaries : : :
Relational functions Low-rank latent graph summaries

« Histograms in different

contexts
* e.g., restricted on neighborhoods

of a specific node type

M ¥veemsuse B [DiJin, Rossi et al. ACM KDD'19]



Method

Multi-LENS: Summarization

objecttypesO) @ @ @ Multi-level Structure Extraction Node context at different neighborhoods

Edge types — --» E | -7:7“ i | | : H(l) — U(l)z(l)V(l)

Base feature

matrix Level-/ summarized representation

() _ \5@OyOT

= KW-dim subspace for node context

Input graph G

Latent network Level-£ node embeddings (not stored)
summaries Relational functions Low-rank latent graph summaries Y(f ) — U(f ) \ /2(5)

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



Method

Multi-LENS: Summarization

objecttypes O @ @ @ | Node context at different neighborhoods

Edge types — --» . T*T( ti'%,\}) . \( T(@’)_ ?/@)

Latent network
summaries

Relational functions Low-rank latent graph summaries

 Higher-order features based on graph structure; independent of IDs
— they generalize across networks

« Inductively learn node embeddings in unseen G’: y’(6) — H’(f)(S(f))T

M cemsue B [DiJin, Rossi et al. ACM KDD'19] “



Experiments

Space comparison

ML
(MB)

Data SE LINE n2vec DW m2vec AspEm G2G

tacebook 0.58
yahoo 0.62
dbpedia 0.81
digg 0.54
bibson. 0.75

i i Data #Nodes #Edges  #Node Types  Graph Type
MUltl'LENS reCIUII’eS 4'21 52X IeSS facebook 4039 88 234 unweighted
yahoo-msg 100058 1057050 weighted

output storage space than the dbpedia 495936 921710 unweighted
Other embedd|ng methods digg 283183 4742055 unweighted

bibsonomy 977914 3754828 weighted

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



* | Experiments

Link Prediction ;@‘)13@

Data Metric NA E ma2vec AspEm G2G ML(L=1) ML(L=2)

AUC 0.6213 0.6717 0.7495 0.5886 0.7968 0.8703 0.8709*
facebook ACC  0.5545 0.5995 0.7051 0.5628 0.7274 0.7920* 0.7904
F1 macro  0.5544 0.5716 0.7041 0.5628 0.7273 0.7920* 0.7905

AUC 0.7189 0.5375 0.6708 0.5587 0.6988 0.8443 0.8446"
yahoo-msg ACC 0.2811  0.5224 0.6164  0.5379  0.6564 0.7587* 0.7587"*
F1 macro  0.2343 0.5221 0.6145 0.5377 0.6562 0.7577* 0.7577*

AUC 0.6002 0.5211 0.6364 0.7384 0.9820* 0.9809
dbpedia ACC 0.3998 0.5399 OoO0T 0.5869 0.6625 0.9186 0.9151
F1 macro 0.2968 0.4539 0.5860 0.6613 0.9186 0.9150

AUC 07199  0.6625 0.9552  0.5644  0.8978 0.9894* 0.9893
digg ACC  0.2801  0.6512 0.8891  0.5459  0.8492 0.9596* 0.9590
Flmacro 0.2660  0.6223 0.8890  0.5459  0.8492 0.9595* 0.9590

AUC 0.7836 0.6694 0.6127 0.9909* 0.9909
bibsonomy ACC 0.2164  0.6532 00T 0.5790 OOM 0.9485* 0.9466
F1 macro 0.2070 0.6064 0.5772 0.9485* 0.9466

The Multi-LENS node embeddings outperform all the baselines
by 3.5-34.3% in AUC.

M cemsue B [DiJin, Rossi et al. ACM KDD'19]



Experiments

Inductive Anomaly Detection

* Learn summary of G,_{, apply to G;
« Compute the distance between the embeddings at t-1 and t

308K hashtags, 2.6M edges
May -- July 2014

. 55 |
LBl b aall

£ 16K il
<1 PO S PO N
2 1 LT 1
- l ! I
8 12K
LI_ ()

10K center |

center + 30

O 10 20 30 40 50 60 70
consecutive days

% GEMS LAB 48



Experiments

Scalability of Multi-LENS

104) —— Multi-LENS E;?V?/SO}E:_nyi
—s— node2vec davg:1o
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102 103 104 10° 10° 107
Number of nodes

Multi-LENS is scalable to large graphs.

% %Z;GEMS e é [Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemslLab/MultiLENS


https://github.com/GemsLab/MultiLENS

M oo e

Can we capture
structural roles
with random walks?

50



Binary embeddings

|deas

Citeseer

- J

% GEMS LAB é [D| Jin, Mark HeimanrH_, arXiv:1 90408572] https://commons.wikimedia.org/wiki/File:Random walk 25000.gif


https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

GroupINN Architecture for Network

Classification

Node
Grouping
Layer

%

RW-based
Graph
Convoluti-
onal Layer
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O
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-based ‘ O @) OO E—
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M cemsue B [Yujun Yan, Jiong Zhu, et al. ACM KDD '19]

Positive

Feature Matrix

Positive A+
Network g
- Network eature Matrix
O

Fully
Connected
Layer

Predicted
Label

2n x 1 Concatenated
Feature Vector

bit.ly/2K87LTI



Take-away Messages

« Structural embeddings are less studied, but are appropriate /
necessary in several tasks

« Histograms are powerful in capturing the graph structure

+ flexible, versatile (heterogeneity, attributes, directionality, weights...),
less info loss

* Implicit matrix factorization allows for speed

« Summarization for greater space efficiency

Graph Node
< Global and local structures (graph summarization) summart- R embeddings .i>§

< Individual element encoding (node embeddings)

M oo e



@ Thank you! Questions? GEMS LAB

Structural Embeddings in Large—scale Networks

Multi-LENS |

Input: partially labeled network i O Middle Mgmt. summarles :
_ [0) Email-specific @ Workers () Unknown roles

Engineer embeddings
Latent
@ / summarization > | .
.8 s
| | EmEE

VP
CEO
‘ ' Director IT Support

Analyst Multi-class

@ iassifcation 2-dim embedding

Output: network with inferred roles space

https://aithub.com/GemsLab/REGAL @ https://github.com/GemsLab/MultiLENS
https://github.com/GemslLab/EMBER

http://danaikoutra.com
dkoutra@umich.edu
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http://danaikoutra.com/
https://github.com/GemsLab/MultiLENS
https://github.com/GemsLab/REGAL
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