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Representation Learning: Goal
• Given a graph G
• Automatically learn a feature vector representation for each node

3



A lot of work on network representation learning!

4https://github.com/thunlp/NRLPapers
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A lot of work on network representation learning!
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Most work preserves proximity 
between nodes

.

.

.

https://github.com/thunlp/NRLPapers


Proximity                                   .
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[Henderson+. KDD ‘12]

Find nodes with similar roles all over 
the network

Find similar nodes in the same part of 
the network

Useful for role-based classification, 
transfer learning, …

[Ribeiro+ ‘17; Donnat+ ‘18]

Useful for link prediction, clustering, 
classification assuming homophily

[Grover+ ‘16; Perozzi+ ’14, …]

vs. Structural Similarity



Sometimes structural similarity is more 
appropriate than proximity 
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Alignment or matching Node classification

Graph similarity / classification
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Roles vs. communities

[Henderson+, RolX; KDD’12]
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Anomaly detection



What we’ve found to be powerful…
• Histogram representations as a way to encode 

neighborhood information (instead of RWR)
² Capture structural properties or features/attributes that generalize

• (Implicit) Matrix factorization instead of SGNS
² Removes randomness 
² Speed / scalability

[Qiu, Jiezhong, et al. "Network embedding as matrix factorization:
Unifying deepwalk, line, pte, and node2vec." WSDM ’18]



Talk Outline: Structural Embeddings for…
• Cross-network tasks [ACM CIKM’18]

² Node (role) classification [ACM KDD’19]

• Latent summarization [ACM KDD’19]
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Based on:
• M. Heimann, H. Shen, T. Safavi, D. Koutra. REGAL: Representation Learning-based Graph Alignment. ACM CIKM’18.
• D. Jin*, M. Heimann*, T. Safavi, M. Wang, W. Lee, L. Snider, D. Koutra. Smart Roles: Inferring Professional Roles in Email Networks. ACM KDD’19.
• D. Jin, R. Rossi, E. Koh, S. Kim, A. Rao, D. Koutra. Latent Network Summarization. ACM KDD’19.
• Y. Liu, T. Safavi, A. Dighe, D. Koutra. Graph Summarization Methods and Applications: A Survey. ACM Computing Surveys 2018.
• D. Jin, M. Heimann, R. Rossi, D. Koutra. node2bits: Compact Time- and Attribute-aware Node Representations for User Stitching. Arxiv 1904.08572
• Y. Yan, J. Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, Danai Koutra. GroupINN: Grouping-based Interpretable Neural Network-based 

Classification of Limited, Noisy Brain Data. ACM KDD’19.



Task: Network Alignment

IR: synonym extraction

optical 
character 

recognition

wiki translation

entity resolution (link user accounts) chemical compound comparison protein-protein alignment

… and many 
more applications

structure matching in DB

?

link prediction &viral marketing
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Network Alignment
• Given: >=2 unweighted, undirected, potentially labeled graphs  
• Find: the correspondence between their nodes

§ Efficiently
§ Using node embeddings

[Heimann, Shen, Safavi, Koutra. CIKM ’18.] 12



• Our idea: match nodes with similar 
(learned) embeddings

• Challenges:
²Comparability of embeddings 

across networks
²Scalability

Traditional vs. Proposed Approach
• Classic optimization (+ variants)

minP ||PAPT - B||F

• Potential drawbacks 
(-) Computationally expensive

✧ e.g. O(n3) Hungarian algorithm
(-) 1-to-1 or hard mappings
(-) Require different formulation for 
attributed graphs, different sizes

[Heimann, Shen, Safavi, Koutra. CIKM ’18.]

[Umeyama ‘88]; [Bayati+ ‘09]; [Koutra+ ICDM ‘13]; 
[Zhang+ ‘16] [Singh+ ‘08]; [Klau+ ‘09]; [Zhang+ ‘15]; 
[Heimann, Lee+ ‘18] …

13



REGAL: Graph Alignment Framework

xNetMF node embeddingsxNetMF node embeddings
Most embedding methods effectively 
factorize a similarity matrix  [Qiu+’18]

Idea 2: implicit matrix factorization
(Nystrom low-rank) for scalability

Idea 1: capture structure + labels
for comparability

[Heimann, Shen, Safavi, Koutra. CIKM ’18.] 14



Step 1: Comparable Node Identity
• Proximity to other nodes

✧ Common for single-network tasks
✧ Not comparable across networks

• Structural Identity
✧ Used for transfer learning in graphs [Henderson+ ’12]

• Attribute Information
✧ Used for graph alignment [Zhang+ ’16]

Use node-ID invariant quantities 
for cross-network comparison

[Henderson, Keith, et al. "Rolx: structural role extraction & mining in large graphs." KDD 2012]
[Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." KDD 2016]



Step 1: Structural Identity Intuition

• Requirement: comparability
• Solution: Capture degrees of neighbors

✧ Typical Assumption: aligning nodes have similar degrees

✧ Used in structural node representation learning (struc2vec)

[Koutra, Tong, Lubensky. "Big-align: Fast bipartite graph alignment." ICDM ‘13]
[Ribeiro, Saverese, Figueiredo. "struc2vec: Learning node representations from structural identity." KDD ‘17] 

[Koutra, Vogelstein, Faloutsos. "Deltacon: A principled massive-graph similarity function." SDM ‘13]



Step 1: Node Identity Extraction
• Requirement: comparability
• Solution: Degree histograms of 

the k-hop neighbors
² Naive approach: jth entry is  # 

neighbors with degree j
² Robust & compact approach: 

logarithmic binning

K = 2 hops, discount 𝛿 = 0.5, no logarithmic binning

Neighbor degree distributions 
at 

1-hop & 2-hop distances

Combined distributions 
across hops

combine 
across K 

hops

discount 
distant 
hops

[Heimann, Shen, Safavi, Koutra. CIKM ’18.] 17



Step 2: Node Similarity Representation

[Qiu, et al. "Network embedding as matrix factorization:
Unifying deepwalk, line, pte, and node2vec." WSDM ’18]

• Requirement: scalability
²Avoid expensive RW

• Solution: matrix factorization
²Most embedding methods effectively factorize a similarity matrix  [Qiu+’18]
²Cross-network similarity matrix S from node identities (+ attributes) 

Suv = 
structural distance attribute distance

f: attribute vectors

[Heimann, Shen, Safavi, Koutra. CIKM ’18.]



• Requirement: scalability
²Avoid expensive RW

• Solution: implicit matrix factorization 
²Based on the Nystrom low-rank approximation

Step 2: Node Similarity Representation

[Qiu, et al. "Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec." WSDM ’18]
[Drineas and Mahoney. “On the Nyström method for approximating a Gram matrix for improved kernel-based learning.” JMLR ’05]
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Step 2: Contrast to Typical Approach

+ Exact factorization of Nystrom low-rank 
approximation
+ Decomposition known 
+ O(np) similarities needed, for p landmarks

- Approximate factorization 
of exact similarity matrix
- Decomposition learned
- O(n2) similarities + time for 
full factorization

[Heimann, Shen, Safavi, Koutra. CIKM ’18.] 20
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Step 3: Fast Embedding Matching

• Given: structural embeddings of nodes in G1 and G2

• Find: the node correspondence

• Requirement: scalability
²avoid computing all pairwise node embedding comparisons

• Solution: use a k-d tree to find top-α most similar embeddings
✧ Can find “soft” or “hard” alignments

Simple greedy approach, but works 
well with comparable features

[Heimann, Shen, Safavi, Koutra. CIKM ’18.] 22



Experiments: Baselines & Setup
• Baselines: Classic, spectral and optimization-based alignment methods

²NetAlign, FINAL, IsoRank, Klau
• Our embedding-based methods

²REGAL
²REGAL-node2vec (node2vec + k-d tree)
²REGAL-struc2vec (struc2vec + k-d tree)

• Setup: Align graphs with adj matrices A and B = PAPT + noise
A B + structural and attribute noise

with probability ps and pa

[Bayati+"Algorithms for large, sparse network alignment problems." ICDM ‘09]        [Zhang+ "Final: Fast attributed network alignment." KDD ‘16]  
[Singh, Rohit, et al. "Global alignment of multiple protein interaction networks with application to functional orthology detection." PNAS ‘08] 
[Klau, Gunnar W. "A new graph-based method for pairwise global network alignment." BMC bioinformatics 10.1 2009. 23

https://github.com/GemsLab/REGAL

https://github.com/GemsLab/REGAL


Non-attributed Graphs

• REGAL variants are 
more accurate than 
traditional alignment 
methods.
• Structural embeddings 

outperform the 
proximity-based ones.

• REGAL is up to 22-31× faster than 
other representation-learning-
based alignment methods.

• Avoids the expense of RW



Attributed Graphs

1 synthetic binary attribute 5 synthetic binary attributes 1 real attribute (29 values)

16K edges

• REGAL outperforms FINAL without extensive, 
reliable attribute information. 

• REGAL is significantly faster than FINAL, 
especially with more attribute information.



Experiments: Scalability
Erdős-Renyi
random graphs

[Heimann, Shen, Safavi, Koutra. CIKM ’18.] 26

Code: https://github.com/GemsLab/REGAL

• Dominant factors: O(n p) node 
similarities, forming 
embeddings.

• REGAL is subquadratic in 
practice.

https://github.com/GemsLab/REGAL


Extension to weighted, directed graphs
• Analyze incoming & outgoing 

neighborhoods separately

✧ Concatenate incoming/outgoing histograms 

✧ “Weighted” histograms: capture a node’s contribution to another
node’s structural identity

combine 
across K 

hops

discount 
distant 
hops

27[Di Jin, Mark Heimann, Tara Safavi et al. ACM KDD’19]



Predicting professional roles in email networks

28

EMBER outperforms its unweighted/undirected 
variants → importance of accounting for the 

volume + reciprocity in email exchanges.

Professional Roles:
• Officers (“C-Suite” 

employees) 
• Middle-level managers
• Workers

[Di Jin, Mark Heimann, Tara Safavi et al. ACM KDD’19]



Comparing academic & industrial roles
• Academic email network with 3,078 users and 231,470 email exchanges
• Employee u at a university “maps” to employee v at organization X

² if argmin
(∈*

| 𝑏𝑢 − 𝑏𝑣 |2

29

Fun fact

bigger 
size

[Di Jin, Mark Heimann, Tara Safavi et al. ACM KDD’19]

Professors are similar to:
• CEOs of smaller companies 

(Trove-98 and Trove-19), and 
• more like managers in bigger companies 

(Trove-318 through Trove-141).



Talk Outline: Structural Embeddings for…
• Cross-network tasks [ACM CIKM’18]

² Node (role) classification [ACM KDD’19]

• Latent summarization [ACM KDD’19]
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Based on:
• M. Heimann, H. Shen, T. Safavi, D. Koutra. REGAL: Representation Learning-based Graph Alignment. ACM CIKM’18.
• D. Jin*, M. Heimann*, T. Safavi, M. Wang, W. Lee, L. Snider, D. Koutra. Smart Roles: Inferring Professional Roles in Email Networks. ACM KDD’19.
• D. Jin, R. Rossi, E. Koh, S. Kim, A. Rao, D. Koutra. Latent Network Summarization. ACM KDD’19.
• Y. Liu, T. Safavi, A. Dighe, D. Koutra. Graph Summarization Methods and Applications: A Survey. ACM Computing Surveys 2018.
• D. Jin, M. Heimann, R. Rossi, D. Koutra. node2bits: Compact Time- and Attribute-aware Node Representations for User Stitching. Arxiv 1904.08572
• Y. Yan, J. Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, Danai Koutra. GroupINN: Grouping-based Interpretable Neural Network-based 

Classification of Limited, Noisy Brain Data. ACM KDD’19.



Embeddings are powerful, but 
can take up a lot of space!

• For 1B nodes and K=128 à 1TB to store the embeddings!
• Can we summarize them?

31[Di Jin, Rossi et al. ACM KDD’19]



Graph Summarization 
Survey

[Liu, Safavi, Dighe, Koutra. ACM Computing Surveys ’18.] 32



Latent Network Summarization
• Given: a graph G(V, E)
• Find: a compressed representation that captures the key structural 

information such that it is 
² independent of graph size (|V|, |E|), and
² capable of deriving node representations

33

Graph 
summari-

zation

Node
embeddings

[Di Jin, Rossi et al. ACM KDD’19]



Latent Network Summarization
• Given: a graph G(V, E)
• Find: a compressed representation that captures the key structural 

information such that it is 
² independent of graph size (|V|, |E|), and
² capable of deriving node representations

• Desired Properties
² (P1) generality to handle arbitrary network
² (P2) high compression rate
² (P3) natural support of inductive learning
² (P4) ability to on-the-fly derive node embeddings

34

Graph 
summari-

zation

Node
embeddings

[Di Jin, Rossi et al. ACM KDD’19]



Comparison to Related Work

35



Latent Network Summarization: Overview

36

Method

[Di Jin, Rossi et al. ACM KDD’19]



Latent Network Summarization: Overview

37

1. Relational functions to 
aggregate nodewise structural 

features automatically

Method

[Di Jin, Rossi et al. ACM KDD’19]



Latent Network Summarization: Overview

38

1. Relational functions to 
aggregate nodewise structural 

features automatically

Method

2. Histogram-based 
heterogeneous 

contexts for nodes

[Di Jin, Rossi et al. ACM KDD’19]



Latent Network Summarization: Overview

3. Subspace vectors from which 
we can derive the embeddings

39

1. Relational functions to 
aggregate nodewise structural 

features automatically

2. Histogram-based
heterogeneous 

contexts for nodes

Method

[Di Jin, Rossi et al. ACM KDD’19]



Multi-LENS: Base functions

40

• Fb: base graph functions that 
operate on the adjacency matrix
• e.g., sum Σ on egonets
• In-/out-/total degree

[Rossi, Zhou+, WWW BigNet’19]

1 2 3F(0) =

Method

[Di Jin, Rossi et al. ACM KDD’19]



Multi-LENS: Rel Fn Compositions

41

• Recursively apply the relational 
operators
- max, min, sum, mean, 

variance, l1-dist, l2-dist
- Derive complex, non-linear 

features automatically
• l compositions over a node’s 

neighborhood = 
higher-order structural features 
in the l-hop neighborhoods

[Rossi, Zhou+, WWW BigNet’19]

max o max

Method

[Di Jin, Rossi et al. ACM KDD’19]



Multi-LENS: Rel Fn Compositions

42

• Structural identity of node i
• via histograms
• log-scale for skewness

Method

[Di Jin, Rossi et al. ACM KDD’19]



Multi-LENS: Rel Fn Compositions

43

• Structural identity of node i
• via histograms
• log-scale for skewness

• Node/edge types & directionality
• Histograms in different 

contexts
• e.g., restricted on neighborhoods 

of a specific node type

Method

[Di Jin, Rossi et al. ACM KDD’19]



Multi-LENS: Summarization

44

Level-l summarized representation

Level-l node embeddings (not stored)

= K(l)-dim subspace for node context

Node context at different neighborhoods

Method

[Di Jin, Rossi et al. ACM KDD’19]



Multi-LENS: Summarization

45

Level-l summarized representation

Level-l node embeddings (not stored)

= K(l)-dim subspace for node context

Node context at different neighborhoods

• Higher-order features based on graph structure; independent of IDs 
→ they generalize across networks

• Inductively learn node embeddings in unseen G’:

Method

[Di Jin, Rossi et al. ACM KDD’19]



Space comparison

46

Multi-LENS requires 4-2152x less 
output storage space than the 

other embedding methods.

Experiments

[Di Jin, Rossi et al. ACM KDD’19]



Link Prediction

47

The Multi-LENS node embeddings outperform all the baselines 
by 3.5−34.3% in AUC. 

Experiments

[Di Jin, Rossi et al. ACM KDD’19]



Inductive Anomaly Detection
• Learn summary of Gt-1, apply to Gt

• Compute the distance between the embeddings at t-1 and t

48

Experiments

308K hashtags, 2.6M edges 
May -- July 2014

0     10    20     30    40     50    60    70 
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Scalability of Multi-LENS
Experiments

Multi-LENS is scalable to large graphs.

Erdos-Renyi
networks; 
davg=10

[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Can we capture 
structural roles 

with random walks?

50



Binary embeddings

[Di Jin, Mark Heimann+, arXiv:1904.08572]

Ideas

https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif


GroupINN Architecture for Network 
Classification

52[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] bit.ly/2K87LTl



Take-away Messages
• Structural embeddings are less studied, but are appropriate / 

necessary in several tasks

• Histograms are powerful in capturing the graph structure
² flexible, versatile (heterogeneity, attributes, directionality, weights…), 

less info loss

• Implicit matrix factorization allows for speed 

• Summarization for greater space efficiency
² Global and local structures (graph summarization)
² Individual element encoding (node embeddings)

Graph 
summari-
zation

Node 
embeddings



Thank you! Questions? 

http://danaikoutra.com
dkoutra@umich.edu

Structural Embeddings in Large-scale Networks

https://github.com/GemsLab/MultiLENShttps://github.com/GemsLab/REGAL

https://github.com/GemsLab/EMBER

http://danaikoutra.com/
https://github.com/GemsLab/MultiLENS
https://github.com/GemsLab/REGAL
https://github.com/GemsLab/EMBER

