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A lot of work on network representation learning!

3https://github.com/thunlp/NRLPapers
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A lot of work on network representation learning!

5https://github.com/thunlp/NRLPapers

Most work preserves proximity 
between nodes

.

.

.
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Proximity                                   .
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[Henderson+. KDD ‘12]

Find nodes with similar roles all over 
the network

Find similar nodes in the same part of 
the network

Useful for role-based classification, 
transfer learning, …

[Ribeiro+ ‘17; Donnat+ ’18, ..]

Useful for link prediction, clustering, 
classification assuming homophily

[Perozzi+ ’14; Grover+ ’16; 
Tang+ ’15; …]

vs. Structural Similarity



What are roles?
• The ways in which nodes / entities / actors relate to each other
• “The behavior expected of a node occupying a specific position”  

[Homans ‘67]
² e.g., centers of stars
² members of cliques
² peripheral nodes

• Position or equivalence class: 
² collection of nodes with the same role

7[Lorrain & White ‘71] [Borgatti & Everett ’92] [Wasserman & Faust. ’94] [Henderson et al. KDD’12] 

Network Science Co-authorship Graph  
[Newman 2006] 

bridge 
cliquey 
periphery 
isolated 



Relevant Sociology Literature
• S.P. Borgatti and M.G. Everett. 1992. Notions of position in social network analysis. Sociological methodology22, 1 (1992)
• Stephen P Borgatti, Martin G Everett, and Jeffrey C Johnson. 2018. Analyzing social networks. Sage
• F. Lorrain and H.C. White. 1971. Structural equivalence of individuals in social networks. Journal of Mathematical Sociology
• S. Boorman, H.C. White: Social Structure from Multiple Networks: II. Role Structures. American Journal of Sociology, 81:1384-

1446, 1976.
• R.S. Burt: Positions in Networks. Social Forces, 55:93-122, 1976.
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Equivalence. Social Networks, 7:77-103, 1985.
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• R.A. Hanneman, M. Riddle: Introduction to Social Network Methods. University of California, Riverside, 2005.
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American Journal of Sociology, 81:730-780, 1976.
• D.R. White, K. Reitz: Graph and Semi-Group Homomorphism on Networks and Relations. Social Networks, 5:143-234, 1983.
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Sometimes structural similarity is more 
appropriate than proximity 

9

Alignment or matching Node classification

Graph comparison / 
classification

Role query

[Henderson+, RolX; KDD’12]

Anomaly detection

Transfer 
learning Identity resolution
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[KDD’19c]

[PKDD’19]

[KDD’19a; ICDM’19a]

[CIKM’18]
[KDD’19b]
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Anomaly detection

Transfer 
learning Identity resolution

From Community to Role-based Graph Embeddings
Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, 

Danai Koutra, John Boaz Lee 

https://arxiv.org/abs/1908.08572

https://arxiv.org/abs/1908.08572


This talk: Summarization in 
Network Representation Learning

• Summarization within a GCN for faster training,                                          
data denoising and interpretability [ACM KDD’19a]

• Embedding summarization for compression                                      
and on-the-fly computation [ACM KDD’19b; PKDD’19]
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This talk: Summarization in 
Network Representation Learning
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• Embedding summarization for compression                                      
and on-the-fly computation [ACM KDD’19b; PKDD’19]
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Interpretable NN-based Classification

• Given a set of networks
² each associated with a label

• Devise an efficient, interpretable, and
parsimonious model 
² that can accurately predict and
² explain each label

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] 13



Interpretable NN-based Classification

• Given a set of networks
² each associated with a label

• Devise an efficient, interpretable, and
parsimonious model 
² that can accurately predict and
² explain each label

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] 14

Subjects with 
fMRI brain graphs

phenotype

phenotype

https://github.com/GemsLab/GroupINN

https://github.com/GemsLab/


Related Work
• Linear models (PCA, ICA, matrix factorization)
+ Denoising
− Fail to capture non-linear interactions

• Neural-network models (different variants of GCN)
+ Able to model non-linear interactions
− Need many training samples
− Need many parameters
− Long time for training
− “Black” box

Fast Parsimonious Interpretable
CNN (KDD’17), 

GraphCNN (NIPS’16) ✗ ✗ ✗

GCN (ICLR’17), 
DGCNN (AAAI’18)

✓ ✗ ✗

Diffpool (NIPS’18) ✓ ✗ inadequate

GroupINN (proposed) ✓ ✓ ✓

15



Related Work
• Linear models (PCA, ICA, matrix factorization)
+ Denoising
− Fail to capture non-linear interactions between ROIs

• Neural-network models (different variants of GCN)
+ Able to model non-linear interactions between ROIs
− Need many training samples
− Need many parameters
− Long time for training
− “Black” box

Fast Parsimonious Interpretable
CNN (KDD’17), 

GraphCNN (NIPS’16) ✗ ✗ ✗

GCN (ICLR’17), 
DGCNN (AAAI’18)

✓ ✗ ✗

Diffpool (NIPS’18) ✓ ✗ inadequate

GroupINN (proposed) ✓ ✓ ✓

Can we build an interpretable NN-based model
that is insensitive to noise, parsimonious and able

to capture nonlinearities in the prediction task?

16



GroupINN Architecture

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] 17https://github.com/GemsLab/GroupINN
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GroupINN Architecture

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] 19

Graph Summarization to 
• handle noisy data
• train from small samples 

of high-dim data
• support interpretability

https://github.com/GemsLab/GroupINN

https://github.com/GemsLab/


GroupINN Architecture

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] 20https://github.com/GemsLab/GroupINN
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GroupINN Architecture

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] 21https://github.com/GemsLab/GroupINN

https://github.com/GemsLab/


1. Node Grouping / Summarization Layer

• Recent findings have shown that
some nodes (ROIs) are most
related to the phenotype of interest
→ some edges are expected to be

more indicative

• Node grouping layer:
• “hides” the non-indicative 

edges into a supernode and 
• highlights the indicative edges

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19]

[Cohen+J Neurosci ’16] [Cole+ NeuroImage ’07]

22https://github.com/GemsLab/GroupINN
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• 𝐅: learnable common membership matrix 

1. Node Grouping / Summarization Layer

s1
s2 
s3 
s4 s5 

s6 
s7 
s8 s9  

s10  
s11

Real valued importance score 
of node 𝑖 in the prediction task

• Nonnegative
• Orthogonal (ideally)
• Nodes in supernode not

required to be similar / 
well-connected

Interpretability

𝐖% = 𝐅'𝐖𝐅Adj. of 
supergraph

23

Details



2. RWR-based Graph Conv Layer: Intuition
• Random walks: 

• useful tool to sample graph structure
• the RWR scores quantify the 

similarities of other nodes to the seed 
nodes

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] 24

• Design: The output 𝐘) of layer 𝑖 is:
𝐘) = 𝜎(c𝐖%𝐘)-.𝐐) + 𝐈)

For more structure, 
multiple 3𝐐 at diff. distances q1 q2 q3

https://github.com/GemsLab/GroupINN

https://github.com/GemsLab/


Q1. Comparison with NN-based methods

GroupINN models are up to 69× faster at training than all the baseline methods, 
while achieving same or higher accuracy in a variety of prediction tasks.

Emotion Gambling Social Working memory

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19]

w/o orthogonality [Ying, NeurIPS’ 18] [Kipf, ICLR’ 17][Wang, KDD’ 17]

25

thanks to the summarization layer

https://github.com/GemsLab/GroupINN

https://github.com/GemsLab/


Q2. Parsimony of GroupINN

GroupINN can use 15% or much fewer model parameters to 
achieve comparable or better performance of the baseline methods.

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19]

Less is better!

26

thanks to the summarization layer

https://github.com/GemsLab/GroupINN

https://github.com/GemsLab/


Q3. Interpretability

• GroupINN finds the most task-positive sub-networks.
• PCA and Diffpool are misled by strong noisy signals from mouth and hand motion. 

[Yujun Yan, Jiong Zhu, et al. ACM KDD ’19]

[Cohen, et al. , J Neurosci 2016]; 
[Cole, et al. Neuron 2014]; 

[Davison, et al. PLOS Comp Bio 2015]

Acronyms of brain subnetworks. AN: auditory; CBLN: cerebellar; CON: cingulo-opercular; DAN: dorsal attention; FPN: frontoparietal; MRN: 
memory retrieval; SN: salience ; VAN: ventral attention ; VN: vision; SM.M: sensory/somatomotor mouth; SM.H: sensory/somatomotor hand

27

thanks to the summarization layer



This talk: Summarization in 
Network Representation Learning

• Summarization within a GCN for faster training,                                          
data denoising and interpretability [ACM KDD’19a]

• Embedding summarization for compression                                      
and on-the-fly computation [ACM KDD’19b; PKDD’19]

28



Embeddings are powerful, but 
can take up a lot of space!

• For 1B nodes and K=128 à 1TB to store the embeddings!
• Can we summarize them?

29[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Graph Summarization 
Survey

[Liu, Safavi, Dighe, Koutra. ACM Computing Surveys ’18.] 30



Latent Network Summarization
• Given: a graph G(V, E)

• Find: a compressed representation that captures the key structural 
information and is 
² independent of graph size (|V|, |E|), and
² capable of deriving node representations on the fly

31

Graph 
summari-

zation

Node
embeddings

[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Comparison to Related Work

32



Latent Network Summarization: Overview

33[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS
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Latent Network Summarization: Overview

34

1. Relational functions to 
aggregate nodewise structural 

features automatically

[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Latent Network Summarization: Overview

35

1. Relational functions to 
aggregate nodewise structural 

features automatically

2. Histogram-based 
heterogeneous 

contexts for nodes

[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Latent Network Summarization: Overview

3. Subspace vectors from which 
we can derive the embeddings

36

1. Relational functions to 
aggregate nodewise structural 

features automatically

2. Histogram-based
heterogeneous 

contexts for nodes

[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Space comparison

37

Multi-LENS requires 4-2152x less 
output storage space than the 

other embedding methods.

[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Link Prediction

38

The Multi-LENS node embeddings outperform all the baselines 
by 3.5−34.3% in AUC. 

[Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS

https://github.com/GemsLab/MultiLENS


Inductive Anomaly Detection
• Learn summary of Gt-1, apply to Gt

• Compute the distance between the embeddings at t-1 and t

308K hashtags 
2.6M edges 
May -- July 2014

0     10    20     30    40     50    60    70 
consecutive days

18K
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10K
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Gaza-Israel conflict Ebola virus outbreak  

https://github.com/GemsLab/MultiLENS[Di Jin, Rossi et al. ACM KDD’19]

https://github.com/GemsLab/MultiLENS


Can we summarize / compress the 
embeddings in a different way?

40



Temporal, Hash-based Node Embeddings

• Given: a time-evolving heterogeneous                                   
network G(V, E)

• Learn: a function χ: V→ {0,1}d
s.t. the derived d-dim embeddings
1) preserve similarities in interactions in G, 
2) are space-efficient, and 
3) accurately capture temporal information and the 

heterogeneity of the underlying network

41[Di Jin, Mark Heimann, et al. PKDD’19] https://github.com/GemsLab/node2bits

https://github.com/GemsLab/


Example: Find similarities in user interactions
• User stitching: 

² The task of identifying and matching various online 
references to the same user in real-world web services.

² Instance of entity resolution

42

Web device log data[Bhattacharya, I., Getoor, L. TKDD 2007], …

[Cohen, W.W., Richman, J., KDD 2012]
[Dasgupta, A. +, WSDM 2012]
[Saha Roy, R.,+ WWW’15]
[Kim, Kini, + WWW’17]



node2bits: Key ideas
• [R1] Graph heterogeneity

² General approach that aggregates rich features + node types

• [R2] Temporal dynamics
² Temporally valid walks to capture short- and long-term interactions
² Functionally similar nodes are represented by multiple features (structural sim)

• [R3] Efficient similarity comparison
² Use LSH to hash similar nodes (linear complexity)

• [R4] Low storage requirement
² Binary hashcode with fixed length

43[Di Jin, Mark Heimann, et al. PKDD’19] https://github.com/GemsLab/node2bits

https://github.com/GemsLab/


node2bits: Workflow

44[Di Jin, Mark Heimann, et al. PKDD’19] https://github.com/GemsLab/node2bits

https://github.com/GemsLab/


Q1: Supervised Identity stitching 

45

short term long term

[Di Jin, Mark Heimann, et al. PKDD’19] https://github.com/GemsLab/node2bits

Dynamic + static variants of node2bits outperform baselines by up to 
5.2% in AUC and 4.9% in F1 score. Short-term tactic performs better.

https://github.com/GemsLab/


Q2: Output storage efficiency

46[Di Jin, Mark Heimann, et al. PKDD’19] https://github.com/GemsLab/node2bits

node2bits uses 63-339× less space than the baselines, 
while achieving comparable or better stitching performance.

Real-valued 
vs. binary 

embeddings

https://github.com/GemsLab/


Summarizing Large Networks: Overview
“ranged star” attack

Domain-specific 
Summaries             

[ICDM’17,
KDD’19]

Structural
Summaries

Latent
Summaries

Query-on-the-edge + Rule-based 
Summaries

Interactive
Summaries

[SDM’14, 
KDD’15, 

Dat Bull Eng’17, 
SNAM’18, 

SDM’19, …]

[VLDB’15, Informatics’17]

[KDD’19]

[ICDM’19]

Survey: 
[CSUR’18]

47



Beyond Summarization

48

[Mark Heimann, Haoming Shen, 
Tara Safavi, Danai Koutra. 

ACM CIKM’18]

Structural embeddings for 
network alignment

When is it useful to learn over higher-
order networks, and when is it not? 

[Caleb Belth, Fahad Kamran, 
Donna Tjandra, Danai Koutra. 

IEEE/ACM ASONAM’19]



Take-away messages: Summarization in 
Network Representation Learning

• Structural embeddings are less studied, but are 
more appropriate than proximity-based ones in several tasks

• Summarization within a GCN can help with faster training,                                          
data denoising and interpretability [ACM KDD’19a]

• Embedding summarization can achieve compression and on-the-fly                      
computation of representations [ACM KDD’19b; PKDD’19]

• Histograms are powerful at capturing the graph                                    
structure [ACM CIKM’18; ACM KDD’19b,c; ECML/PKDD’19; IEEE ICDM’19]
² flexible, versatile (heterogeneity, attributes, directionality, weights…), 
² less information loss

49

Graph 
summari-
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Talk based on the following papers
• Mark Heimann, Haoming Shen, Tara Safavi, Danai Koutra. REGAL: Representation Learning-based 

Graph Alignment. ACM CIKM’18.
• Y. Liu, T. Safavi, A. Dighe, D. Koutra. Graph Summarization Methods and Applications: A Survey. ACM 

Computing Surveys 2018.
• YujunYan, J. Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, Danai Koutra. GroupINN: Grouping-

based Interpretable Neural Network-based Classification of Limited, Noisy Brain Data. ACM KDD’19a.
• Di Jin, R. Rossi, Eunyee Koh, Sungchul Kim, Anup. Rao, Danai Koutra. Latent Network Summarization: 

Bridging Network Embedding and Summarization. ACM KDD’19b.
• D. Jin*, Mark Heimann*, Tara Safavi, Mengdi Wang, Wei Lee, Lindsay Snider, Danai Koutra. Smart 

Roles: Inferring Professional Roles in Email Networks. ACM KDD’19c.
• D. Jin, Mark Heimann, Ryan Rossi, Danai Koutra. node2bits: Compact Time- and Attribute-aware Node 

Representations for User Stitching. ECML/PKDD’19.
• Caleb Belth, Fahad Kamran, Donna Tjandra, Danai Koutra. When to Remember Where You Came from: 

Node Representation Learning in Higher-order Networks. IEEE/ACM ASONAM 2019.
• Tara Safavi, Caleb Belth, Lukas Faber, Davide Mottin, Emmanuel Müller, Danai Koutra. Personalized 

Knowledge Graph Summarization: From the Cloud to Your Pocket. IEEE ICDM 2019.
• Mark Heimann, Tara Safavi, Danai Koutra. Distribution of Node Embeddings as Multiresolution 

Features for Graphs. IEEE ICDM 2019.
• Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, John Boaz Lee. From 

Community to Role-based Graph Embeddings. Arxiv 2019.
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Thank you!
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