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Marlena Duda Welcome!

June 2019
We are the Graph Exploration and Mining at Scale (GEMS) lab at the University of Michigan,
founded and led by Danai Koutra. Our team researches important data mining and machine

May 2019
learning problems involving interconnected data: in other words, graphs or networks.

From airline flights to traffic routing to neuronal interactions in the brain, graphs are ubiquitous May 2019
in the real world. Their properties and complexities have long been studied in fields ranging

from mathematics to the social sciences. However, many pressing problems involving graph

data are still open. One well-known problem is scalability. With continual advances in data April 2019
generation and storage capabilities, the size of graph datasets has dramatically increased,
making scalable graph methods indispensible. Another is the changing nature of data. Real

graphs are almost always dynamic, evolving over time. Finally, many important problems in the

March 2019

\ = social and biological sciences involve analyzing not one but multiple networks.

Mark He|mann k N January 2019
| e So, what do we do?

The problems described above call for principled, practical, and highly scalable graph December 2018
mining methods, both theoretical and application-oriented. As such, our work ¢

fields like linear algebra, distributed systems, deep learning, and even neuroscie

our ongoing projects include:

' . Z= o Algorithms for multi-network tasks, like matching odes across networks
' R - ¢ Learning low-dimensional representations of networRyg metric spaces
e Abstracting or “summarizing” a graph with a smaller netwd
Analyzing network models of the brain derived from fMRI scans
A

Distributed graph methods for iteratively solving linear systems
o Network-theoretical user modeling for various data science applications

Puja Trivedi YUJUI”I Yan ) JlongZhu % 1 1 We’re grateful for funding from Adobe, Amazon, the Army Research Lab, the Mic
- 4 o

for Data Science (MIDAS), Microsoft Azure, the National Science Foundation (NSF?’

‘ Interested?
4 \ If you’re interested in joining our group, send an email with your interests and C
kz’ opportunities@umich.edu.
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/
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A lot of work on network representation learning!

Must-read papers on NRL/NE.

NRL: network representation learning. NE: network embedding.
Contributed by Cunchao Tu, Yuan Yao and Zhengyan Zhang.

We release OpenNE, an open source toolkit for NE/NRL. This repository
Representation Learning) training and testing framework. Currently, the
DeepWalk, LINE, node2vec, GraRep, TADW and GCN.

Survey papers:

. Representation Learning on Graphs: Methods and Applications. W
2017. paper

. Graph Embedding Techniques, Applications, and Performance: A

. A Comprehensive Survey of Graph Embedding: Problems, Technic
Zheng, Kevin Chen-Chuan Chang. 2017. paper

. Network Representation Learning: A Survey. Daokun Zhang, Jie Yii
. A Tutorial on Network Embeddings. Haochen Chen, Bryan Perozzi,

. Network Representation Learning: An Overview.(In Chinese) Cunc
2017. paper

. Relational inductive biases, deep learning, and graph networks. P
Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malino
Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Balle

. Bernoulli Embeddings for Graphs. Vinith Misra, Sumi

. Distance-aware DAG Embedding for Proximity Searc

. GraphGAN: Graph Representation Learning with Ge! 10
Wang, MIAO ZHAO, Weinan Zhang, Fuzheng Zhang, X

. HARP: Hierarchical Representation Learning for Net 109

. Representation Learning for Scale-free Networks. R 14

melo. AAAI 2018.

. Link Prediction via Subgraph Embedding-Based Convex Matrix Completion. Zhu Cao, Linlin Wang, Gerard De

. Generative Adversarial Network based Heterogeneous Bibliographic Network Representation for Personalized

Citation Recommendation. J. Han, Xiaoyan Cai, Libin Yang. AAAI 2018.

. DepthLGP: Learning Embeddings of Out-of-Sample 101.

Zhu. AAAI 2018. paper

. Structural Deep Embedding for Hyper-Networks. Ke 102.

paper
103.

. TIMERS: Error-Bounded SVD Restart on Dynamic N¢

Zhu. AAAI 2018. paper
104.

. Community Detection in Attributed Graphs: An Emb

Zhang. AAAI 2018.
105.

106.

107.
Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan Chang, M

8.

AAAI 2018. paper code

2018. paper

. Social Rank Regulated Large-scale Network Embed: 111,

2018. paper

Integrative Network Embedding via Deep Joint Reconstruction. Di Jin, Meng Ge, Liang Yang, Dongxiao He,
Longbiao Wang, Weixiong Zhang. IJCAI 2018.

Scalable Multiplex Network Embedding. Hongming Zhang, Liwei Qiu, Lingling Yi, Yangqiu Song. IJCAI 2018. paper

Adversarially Regularized Graph Autoencoder for Graph Embedding. Shirui Pan, Ruiqi Hu, Guodong Long, Jing
Jiang, Lina Yao, Chengqi Zhang. 1JCAl 2018.

Dynamic Network Embedding : An Extended Approach for Skip-gram based Network Embedding. Lun Du, Yun
Wang, Guojie Song, Zhicong Lu, Junshan Wang. |IJCAI 2018.

Discrete Network Embedding. Xiaobo Shen, Shirui Pan, Weiwei Liu, Yew-Soon Ong, Quan-Sen Sun. |JCAI 2018.
Deep Attributed Network Embedding. Hongchang Gao, Heng Huang. IJCAI 2018.

Active Discriminative Network Representation Learning. Li Gao, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan, Yue
Hu. IJCAI 2018.

ANRL: Attributed Network Representation Learning via Deep Neural Networks. Zhen Zhang, Hongxia Yang, Jiajun
Bu, Sheng Zhou, Pinggang Yu, Jianwei Zhang, Martin Ester, Can Wang. IJCAI 2018.

. Feature Hashing for Network Representation Learning. Qixiang Wang, Shanfeng Wang, Maoguo Gong, Yue Wu.

IJCAI 2018.

. Constructing Narrative Event Evolutionary Graph for Script Event Prediction. Zhongyang Li, Xiao Ding, Ting Liu.

IJCAI 2018. paper code

Deep Inductive Network Representation Learning. Ryan A. Rossi, Rong Zhou, Nesreen K. Ahmed. WWW 2018.
paper

. A Unified Framework for Community Detection and Network Representation Learning. Cunchao Tu, Xiangkai

Zeng, Hao Wang, Zhengyan Zhang, Zhiyuan Liu, Maosong Sun, Bo Zhang, Leyu Lin. TKDE 2018. paper



https://github.com/thunlp/NRLPapers

A lot of work on network representation learning!
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DOOCN-XII: Network Representation Learning

THE w E B Dynamics On and Of Complex Networks 2019 -
CONFERENCE ‘

Frank Room of the UVM Davis Center 3" ’
University of Vermont, Burlington, Vermont, USA :
Tuesday, May 28th 2019 1:45pm-5:30pm

The Dynamics On and Of Complex Networks (DOOCN) workshop series, aims on exploring statistical
dynamics on and of complex networks. Dynamics on networks refers to the different types of processes
that take place on networks, like spreading, diffusion, and synchronization. Modeling such processes is
strongly affected by the topology and temporal variation of the network structure, i.e., by the dynamics of
networks. Recently, machine learning techniques have been used to model dynamics of massively large
Desm.pﬁ%} TUT( complex networks generated from big data, and the various functionalities resulting from the networks.

This motivates us to focus on “Network Representation Learning” as the significant topic of interest in
the 2019 edition.

The First International Workshop on Deep Learning on Graphs: Methods and
Applications (DLG’19)

August 5, 2019
Anchorage, Alaska, USA

bn Learning
on Graphs and Manifolds

ICLR 2019 Workshop

In Conjunction with the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

August 4-8, 2019 COvervIew > <Accepted Papers > C Schedule ) <Speakers )

Dena’ina Convention Center and William Egan Convention Center
Anchorage, Alaska, USA (Organizers ) ( Program Committee )

M KDD2019
CSE



https://github.com/thunlp/NRLPapers

A lot of work on network representation learning!

DM VWorkshop-on™ i
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Most work preserves proximity
between nodes

that take place on networks, like spreading, diffusion, and synchronization. Modeling such processes is

strongly affected by the topology and temporal variation of the network structure, i.e., by the dynamics of

networks. Recently, machine learning techniques have been used to model dynamics of massively large

Description TUT( complex networks generated from big data, and the various functionalities resulting from the networks.
G = This motivates us to focus on “Network Representation Learning” as the significant topic of interest in

. . the 2019 editionl- 1N L earn 1 n g
The First International Workshop on Deep Learning on Graphs: Methods and on Graphs and Manifolds

Applications (DLG’19)

August 5, 2019 ICLR 2019 Workshop
Anchorage, Alaska, USA

In Conjunction with the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

August 4-8, 2019 COverview > <Accepted Papers > C Schedule ) <Speakers )

Dena’ina Convention Center and William Egan Convention Center
Anchorage, Alaska, USA COrganizers > ( Program Committee )

M KDD2019



https://github.com/thunlp/NRLPapers

Proximity vs. Structural Similarity

=)

Find similar nodes in the same part of
the network

Useful for link prediction, clustering,
classification assuming homophily

[Perozzi+ ’14; Grover+ ’16;
% GEMS g Tang+ ’15; ...]

Find nodes with similar roles all over
the network

Useful for role-based classification,
transfer learning, ...

[Ribeiro+ ‘“17; Donnat+ ’18, ..]



What are roles?

The ways in which nodes / entities / actors relate to each other

* “The behavior expected of a node occupying a specific position”
[Homans ‘67]

™ R o =_- ol = @ bridge

+ e.d., centers of stars 2 % 2P . ‘ ® cluey
= ‘ perip ery

<~ members of cliques = \ y  Adsolated

< peripheral nodes

 Position or equivalence class: IR R L

%%ﬁ@{g%%ewo%% IHL QO A QOO LB
. . ﬁzﬁ‘“W#E#Mﬁﬁﬁﬁ%&%&%ﬁ@%@%ﬁﬁw
+ collection of nodes with the same role [Ekaaaiaainais: AARA vt

Network Science Co-authorship Graph
[Newman 2006]

CSE %%%GEMS LAB  [Lorrain & White ‘71] [Borgatti & Everett '92] [Wasserman & Faust. ’94] [Henderson et al. KDD’12]



Relevant Sociology Literature

S.P. Borgatti and M.G. Everett. 1992. Notions of position in social network analysis. Sociological methodology22, 1 (1992)
Stephen P Borgatti, Martin G Everett, and Jeffrey C Johnson. 2018. Analyzing social networks. Sage

F. Lorrain and H.C. White. 1971. Structural equivalence of individuals in social networks. Journal of Mathematical Sociology

S. Boorman, H.C. White: Social Structure from Multiple Networks: Il. Role Structures. American Journal of Sociology, 81:1384-
1446, 1976.

R.S. Burt: Positions in Networks. Social Forces, 55:93-122, 1976.
M.G. Everett, S. P. Borgatti: Regular Equivalence: General Theory. Journal of Mathematical Sociology, 19(1):29-52, 1994.

K. Faust, A.K. Romney: Does Structure Find Structure? A critique of Burt's Use of Distance as a Measure of Structural
Equivalence. Social Networks, 7:77-103, 1985.

K. Faust, S. Wasserman: Blockmodels: Interpretation and Evaluation. Social Networks, 14:5-61. 1992.
R.A. Hanneman, M. Riddle: Introduction to Social Network Methods. University of California, Riverside, 2005.
L.D. Sailer: Structural Equivalence: Meaning and Definition, Computation, and Applications. Social Networks, 1:73-90, 1978.

M.K. Sparrow: A Linear Algorithm for Computing Automorphic Equivalence Classes: The Numerical Signatures Approach. Social
Networks, 15:151-170, 1993.

S. Wasserman, K. Faust: Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.

H.C. White, S. A. Boorman, R. L. Breiger: Social Structure from Multiple Networks |. Blockmodels of Roles and Positions.
American Journal of Sociology, 81:730-780, 1976.

D.R. White, K. Reitz: Graph and Semi-Group Homomorphism on Networks and Relations. Social Networks, 5:143-234, 1983.

% GEMS LAB 8



Sometimes structural similarity is more

appropriate than proximity

.-

Graph comparison /

Alignment or matching [CIKM'18]

Transfer
learning

\

classification [KDD’19a; ICDM’192]

J

M e

Node classification
[KDD’19¢]

Engineer

Anomaly detection
[KDD’19b]

[PKDD’19]
|dentity resolution

[Henderson+, RolX; KDD’12] 9



Sometimes structural similarity is more
appropriate than proximity

Alignment or matching Node classification Anomaly detection

:

From Community to Role-based Graph Embeddings

Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed,
Danal Koutra, John Boaz Lee

XV | 1 5s://arxiv.org/abs/1908.08572

Graph comparison / Y Ot
classification KL e

% %GEMS LAB


https://arxiv.org/abs/1908.08572

This talk: Summarization in
Network Representation Learning

« Summarization within a GCN for faster training,
data denoising and interpretability [ACM KDD’194]

 Embedding summarization for compression . E>@
and on-the-fly computation [ACM KDD’19b; PKDD’19]

% GEMS LAB 11



This talk: Summarization in
Network Representation Learning

« Summarization within a GCN for faster training,
data denoising and interpretability [ACM KDD’194]

for compression - T}
and on-the-fly computation

% GEMS LAB 12



Interpretable NN-based Classification

 Given a set of networks
< each associated with a label

* Devise an efficient, interpretable, and
parsimonious model

< that can accurately predict and
<+ explain each label

% GEMS s B3 [Yujun Yan, Jiong Zhu, et al. ACM KDD ’19]

13



Interpretable NN-based Classification

Subjects with
. Given a set of networks = fMRI brain graphs

+~ each associated with a label —> phenotype b ol

* Devise an efficient,|interpretable, and
parsimonious model

< that can accurately predict and
+ explain each label ) phenotype

% GEMS LAB é [Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] https://qgithub.com/GemsLab/GroupINN 14



https://github.com/GemsLab/

Related Work

* Linear models (PCA, ICA, matrix factorization)

+ Denoising

— Fall to capture non-linear interactions

- Neural-network models (different variants of GCN)
+ Able to model non-linear interactions

— Need many training samples
— Need many parameters

— Long time for training

— “Black” box

M oo e

Fast Parsimonious | Interpretable
CNN (KDD’17),
GraphCNN (NIPS’16) X X X
GCN (ICLR’17), V4 X X
DGCNN (AAAI’18)
Diffpool (NIPS’18) V4 X inadequate
GroupINN (proposed) N4 V4 v
)




Related Work

+ Denoising

Can we build an interpretable NN-based model

| N that is insensitive to noise, parsimonious and able
. to capture nonlinearities in the prediction task?

oretable

. T e GraphCNN (NIPS’16)
— Long time for training GCN (ICLR17)

— “Black” box DGCNN (AAAI’'18)
Diffpool (NIPS’18)

GroupINN (proposed)

% %GEMS LAB 16
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https://github.com/GemsLab/

Positive A+
é Network g

Correlation

-based

Network
(with + &

weights)



https://github.com/GemsLab/

Correlation
-based
Network
(with + &

weights)

.

Node
Grouping
Layer

G

Positive g+
Network

Node
[ Grouping
Layer

Positive gs+
Supergraph

Graph Summarization to
* handle data
 train from

of high-dim data
* support



https://github.com/GemsLab/

-

RW-based

; Graph
Gt)uplng I Convoluti-
ayer onal Layer

Positive g+ Positive gs+ Positive
Network Supergraph Feature Matrix

Correlation

-based
( Nl(at]wogk Node RVé—ba?]ed
with + Groupin rap
weights) [ Layper J j> Convoluti-

onal Layer



https://github.com/GemsLab/

o

RW-based
. Graph
9 Gt)uplng [ Convoluti-
P ayer onal Layer
Positive G* Positive ~ gs+ Positive Fully
Network Supergraph Feature Matrix D] Predicted
—————————————————————————————————————————————————————————————————— Layer Label

T

Correlation

-based

( Nl(at]wogk Node RVé—ba?]ed
with + Groupin rap

weights) [ Layperg j> Convoluti- f\> Eﬁ

onal Layer L

2n x 1 Concatenated
Feature Vector

M cemsue B [Yujun Yan, Jiong Zhu, et al. ACM KDD '19]


https://github.com/GemsLab/

1. Node Grouping / Summarization Layer

— f * Recent findings have shown that
Grouping some nodes (ROIs) are most
related to the phenotype of interest
“_ — some edges are expected to be

Positive  go? more indicative

Supergraph

[Cohen+dJ Neurosci ’16] [Cole+ Neurolmage '07]

* Node grouping layer:
* “hides” the non-indicative

| Giouping edges Iinto a supernode and
. the

% GEMS a8 B3 [Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] https://github.com/GemsLab/GroupINN 22



https://github.com/GemsLab/

1. Node Grouping / Summarization Layer %

* F: learnable common membership matrix

Sq

M ces

Real valued importance score
of node i in the prediction task

Interpretabllity

* Nonnegative

* Orthogonal (ideally)

* Nodes in supernode not
required to be similar /
well-connected

Supergraph G*

S1Wi5Sst S5 Wag Sg
s Wigss
superg raph i



2. RWR-based Graph Conv Layer: Intuition

e Random walks:
“orapn | - useful tool to
e - the RWR scores quantify the
of other nodes to the seed

Positive Gs* Positive NoO d es

Supergraph Feature Matrix

» Design: The output Y; of layer i is:
Yi = 0(cW?Yi_1Q; + )

II Os

% GEMS a8 B3 [Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] https:/github.com/GemsLab/GroupINN 24

RW-based

Graph
Convoluti-
onal Layer

=)



https://github.com/GemsLab/

100 100 100 100
—~ 80 —~ 80 — 80/ —~ 80
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, NeurlPS’ 18] [Wang

L i
‘{7 \
2 %

Q1. Comparison with NN-based methods &8

, KDD’ 17] [Kipf, ICLR’ 17]

@ GroupINN @ GroupINN_nonortho #* Diffpool B CNN1 ) CNN2 W GCN

10%

10°

Training Time (sec)

Emotion

—
o
™

10%

Gambling

10°

Training Time (sec)

10°

10%

10°

Training Time (sec)

Social

108

10* 10° 10°

Training Time (sec)

Working memory

thanks to the summarization layer

GroupINN models are up to 69x faster at training than all the baseline methods,
while achieving same or higher accuracy in a variety of prediction tasks.

% %Z;GEMS LAB % [Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] https://github.com/GemslLab/GroupINN


https://github.com/GemsLab/

Q2. Parsimony of GroupINN

Methods # parameters Normalized wrt GroupINN

CNN-1
CNN-2
GCN

Diffpool
GroupINN 2,892 1X

thanks to the summarization layer

GroupINN can use 15% or much fewer model parameters to
achieve comparable or better performance of the baseline methods.

% %Z;GEMS a8 B3 [Yujun Yan, Jiong Zhu, et al. ACM KDD ’19] https://github.com/GemsLab/GroupINN



https://github.com/GemsLab/

Q3. Interpretability

Acronyms of brain subnetworks. AN: auditory; CBLN: cerebellar; CONSCingulo=opercular; DANSdorsaliatiention; \FPN: frontoparietal; MRN:
memory retrieval; SNSsalience ; ; VN: vision; SM.M: sensory/somatomotor mouth; SM.H: sensory/somatomotor hand

Within subnetworks
GroupINN PCA Diffpool

Tasks

Working Memory FPN SN

Gambling VAN DAN FPN
Emotion SN CON VAN
Social FPN SN VAN

GroupINN finds the most task-positive sub-networks.

PCA and Diffpool are misled by strong noisy signals from mouth and hand motion.

thanks to the summarization layer
[Cohen, et al. , J Neurosci 2016];
[Cole, et al. Neuron 2014];
M Jeemsue By [Yujun Yan, Jiong Zhu, et al. AGM KDD "19]  [Davison, et al. PLOS Comp Bio 2015]



This talk: Summarization in
Network Representation Learning

for faster training,
data denoising and interpretability

 Embedding summarization for compression . [>§
and on-the-fly computation [ACM KDD’19b; PKDD’19]

% GEMS LAB 28



Embeddings are powerful, but
can take up a lot of space!

* For 1B nodes and K=128 - 1T1B to store the embeddings!
« Can we summarize them?

Multi-LENS [ ====- .

summaries ! '
{KA
| ]
Laten N
A etion| = 1]l mepa
summarization . | e
| H H N
| ]

% GEMSLAB é [Di Jin, Rossi et al. ACM KDD’19] https://github.com/GemsLab/MultiLENS 29



https://github.com/GemsLab/MultiLENS

Graph Summarization Methods and Applications: A Survey

YIKE LIU, TARA SAFAVI, ABHILASH DIGHE, and DANAI KOUTRA, University of Michigan,

Graph Summarization
Survey

ics of

nsupervised learning and clustering; + Cor

and Phrases: Graph mining, grap!

Graph Summarization
Applications

Network ) ) *Query Efficiency
type StatIC DynamIC oCOmpression

«Visualization
«Pattern Discovery
Plain *Influence Analysis

Open Problems

summary

original

Structure only Structure + labels Temporal structure il
: : : *Streaming / Related Research Areas:
« Grouping » Grouping « Grouping Incremental graph clustering,
« Compression « Compression « Compression Summarization partitioning, community
 Simplification * Influence * Influence - Automated Insight detection, sampling,
. Influence _ Extraction sparsification, sketches,
. ) Core techniques employed «Evaluation compression

% %GEMS LAB é[Liu, Safavi, Dighe, Koutra. ACM Computing Surveys ’18.]



Latent Network Summarization @

* Given: a graph G(V, E)

* Find: a compressed representation that captures the key structural
Information and is

+ independent of graph size (|V|, |E|), and
< capable of deriving node representations on the fly

Graph
summari-

* Node
: embeddings
zation

% GEMS s B [Di Jin, Rossi et al. ACM KDD’19]  https:/github.com/GemsLab/MultiLENS 31



https://github.com/GemsLab/MultiLENS

Comparison to Related Work

INPUT REPRESENTATIONS / OUTPUT METHOD

Hetero- Size = Node Proxim.
geneity indep. specific indep. Scalable Induc.

Aggregation [2]
Cosum [34]

AspEm [31]
metapath2vec [8]
n2vec [11], LINE [32]
struc2vec [26]
DNGR [6]
GraphSAGE [12]

MuLTI-LENS

v X
X X
v X
v X
X X
X X
X X
v X
v v

SIS SNSSNSSSNS N\ X%
NN >N X X %N X
S| S NNN XN
N[N X % % % X X X




L atent Network Summarization: Overview

Input graph G

% %Z;GEMS e B [Di Jin, Rossi et al. ACM KDD’19]  https://github.com/GemsLab/MultiLENS
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atent Network Summarlzatlon Overview

1. Relational functions to .
aggregate nodewise structural /=
features automatically

Object typeso . . O Multi-level Structure Extraction
Edge types Fr | L< dlameter(G)
I E Base fegture 1st level Lth level
./ matrix

\o"

Input graph G

% %Z)SGEMS e B [Di Jin, Rossi et al. ACM KDD’19]  https://github.com/GemsLab/MultiLENS



https://github.com/GemsLab/MultiLENS

L atent Network Summarization: Overview

to
aggregate nodewise structural
features automatically

ObjecttypesO @ @ O

Edge types —s --»

ik

Histogram-based
| oy ! | | heterogeneous
Input graph G LE N2 D S contexts for nodes

% %%%GEMS e B [Di Jin, Rossi et al. ACM KDD’19]  https://github.com/GemsLab/MultiLENS



https://github.com/GemsLab/MultiLENS

Latent Network Summarization: Overview

to
aggregate nodewise structural
features automatically

ObjecttypesO @ @ O

Edge types — --»

heterogeneous
for nodes

Latent network Fba -F’r

summaries : : .
Relational functions Low-rank latent graph summaries

Subspace vectors from which
we can derive the embeddings

M cemsue B [DiJin, Rossi et al. ACM KDD'19]  https://github.com/GemsLab/MUltiLENS 36
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Space comparison

Data SE LINE n2vec DW m2vec AspEm G2G

facebook 8.13x  8.48x 12.79x 12.84x 3.82x 8.50x 9.17x
yahoo 187.1x 180.0x 242.2x 231.0x 79.8x 197.4x 195.8x
dbpedia 710.0x 714.2x 996.4x 996.2x - 749.2x  743.6x
digg 608.2x 612.8x 848.9x 830.3x 259.9x 641.7x 635.2x
bibson. 1512.1x 1523.0x 2152.5x 2152.5x - 1595.8x -

i i Data #Nodes #Edges  #Node Types  Graph Type
MUltl'LENS reCIUII’eS 4'21 52X IeSS facebook 4039 88 234 unweighted
Out ut Stora e space than the yahoo-msg 100058 1057050 weighted

p g p dbpedia 495 936 921710 unweighted

other embedding methods. digg 283183 4742055 unweighted
bibsonomy 977914 3754828 weighted

% geems e B [Di Jin, Rossi et al. ACM KDD’19]  https://github.com/GemsLab/MultiLENS
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Data

facebook

yahoo-msg

dbpedia

digg

bibsonomy

% %%%GEMS e B [Di Jin, Rossi et al. ACM KDD’19]  https://github.com/GemsLab/MultiLENS

Metric

AUC
ACC
F1 macro

AUC
ACC
F1 macro

AUC
ACC
F1 macro

AUC
ACC
F1 macro

AUC
ACC
F1 macro

NA

0.6213
0.5545
0.5544

0.7189
0.2811
0.2343

0.6002
0.3998
0.2968

0.7199
0.2801
0.2660
0.7836

0.2164
0.2070

E

0.6717
0.5995
0.5716

0.5375
0.5224
0.5221

0.5211
0.5399
0.4539

0.6625
0.6512
0.6223

0.6694
0.6532
0.6064

Link Prediction

m2vec

0.7495
0.7051
0.7041

0.6708

0.6164
0.6145

O0T

0.9552
0.8891
0.8890

O0T

AspEm

0.5886
0.5628
0.5628

0.5587
0.5379
0.5377

0.6364
0.5869
0.5860

0.5644
0.5459
0.5459

0.6127
0.5790
0.5772

G2G

0.7968
0.7274
0.7273

0.6988
0.6564
0.6562

0.7384
0.6625
0.6613

0.8978

0.8492
0.8492

OOM

ML(L = 1)

0.8703
0.7920"
0.7920"

0.8443
0.7587"
0.7577"

0.9820"
0.9186
0.9186

0.9894*
0.9596"
0.9595*

0.9909*
0.9485"
0.9485"

The Multi-LENS node embeddings outperform all the baselines

by 3.5-34.3% in AUC.

ML(L = 2)

0.8709*
0.7904
0.7905

0.8446"
0.7587*
0.7577*

0.9809
0.9151
0.9150

0.9893
0.9590
0.9590

0.9909
0.9466
0.9466



https://github.com/GemsLab/MultiLENS

Inductive Anomaly Detection

* Learn summary of G,_{, apply to G;
« Compute the distance between the embeddings at t-1 and t

1 [ 2
[l L b gl
Yy R I P L
308K hashtags 2 14k N 11 LN flﬂ{ ! [
2.6M edges I l
May -- July 2014 g
10K

0O 10 20 30 40 50 60 70
consecutive days

% GEMS s B [Di Jin, Rossi et al. ACM KDD’19]  https:/github.com/GemsLab/MultiLENS
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Can we summarize / compress the
embeddings in a different way?

M ces



Temporal, Hash-based Node Embeddings

* Given: a time-evolving heterogeneous
network G(V, E)

« Learn: a function x: V — {0,1}¢
s.t. the derived d-dim embeddings O
1) preserve similarities in interactions in G, %% —
2) are space-efficient, and E>

3) accurately capture temporal information and the , +*:
. . Vo
heterogeneity of the underlying network K/

M leemsue B [Di Jin, Mark Heimann, et al. PKDD’19] https://github.com/Gemsl ab/node2bits
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Example: Find similarities in user interactions

» User stitching:

< The task of identifying and matching various online
references to the same user in real-world web services.

+ Instance of entity resolution s Sessions Sites

(cookie ids)

‘B Yo
o

[Cohen, W.W., Richman, J., KDD 2012] i 1

[Dasgupta, A. +, WSDM 2012] - 9 amazon
[Saha Roy, R.,+ WWW’15] . C

[Kim, Kini, + WWW’17]

[Bhattacharya, |., Getoor, L. TKDD 2007], ... Web device |Og data

CSE %%GEMS LAB



!

node2bits: Key ideas
[R1] Graph heterogeneity

<+ General approach that aggregates rich features + node types

AR )
[R2] Temporal dynamics (0 %‘l

+ Temporally valid walks to capture short- and long-term interactions S
<+ Functionally similar nodes are represented by multiple features (structural sim)

[R3] Efficient similarity comparison
<+ Use LSH to hash similar nodes (linear complexity)

» [R4] Low storage requirement .[>§

< Binary hashcode with fixed length

% GEMS LAB é [Di Jin, Mark Heimann, et al. PKDD’19] https://github.com/GemsLab/node2bits
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Attribute matrix

node2bits: Workflow

Sample R temporal random
walks per edge & define
node context (e.g., for a)

At=1 At =2

I< ] >I
Featu_re IA‘[’[ribu’[es Structural
matrix features

M leemsue B [Di Jin, Mark Heimann, et al. PKDD’19] https://

(—‘ Step 2 )—\

Create temporal context via
multi-dimensional features

fr At=1 At =2
/|00 G ao:
b 0 "
00/ ¢

.’
U

The node-ids in the contexts of
each node (e.g., a, b) are
replaced w. their feature values

L in the “tensor”

Aggregate the feature-based
context and hash it into
binary representations

A A A

g
b

fi £ - fir

Create feature histograms per
temporal distance At

¥ SimHash

O[o1 ..[101
b |

000 -..|001

ithub.com/GemslLab/node2bits
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Metric

AUC
ACC
F1

AUC
ACC
F1

AUC
ACC
F1

AUC
ACC
F1

Q1: Supervised Identity stitching

CN

0.7474
0.7174
0.7001

0.6217
0.6217
0.5585

0.6997
0.6997
0.6699

0.5970
0.5970
0.5189

SE

0.5828
0.5842
0.5728

0.5171
0.5152
0.3770

OO0T

LINE

0.6071
0.5842
0.5828

0.7878
0.7694
0.7683

0.7854
0.7132
0.7129

0.5000
0.6757
0.4032

DW

0.6306
0.6158
0.6158

0.7398
0.6971
0.6960

n2vec s2vec

0.6462
0.6158
0.6157

0.7445
0.7013
0.7003

OO0T

OOM OOM OOT

OOM OOM OOT

DNGR AspEm CTDNE| N2B-0

0.8025 0.5909
0.7263 0.5526
0.7263 0.5525

OOM

0.5344
0.5316
0.5315

0.5105
0.5088
0.5088

0.5374
0.5141
0.5141

0.5213
0.5103
0.5103

0.6987
0.6000
0.5964

0.6967
0.5915
0.5884

0.7707
0.6488
0.6398

OOM

0.7584
0.7211
0.7209

0.8185%
0.7982*
0.7958*

N2B-SH

0.7609
0.7268
0.7271

0.8230
0.7145
0.7088

0.8095*
0.8414*
0.8154*

0.8259*
0.7510%
0.7476*

0.7496
0.7959
0.7581

0.8214
0.7103
0.7067

0.7525
0.7975
0.7606

Dynamic + static variants of node2bits outperform baselines by up to
5.2% in AUC and 4.9% in F1 score. Short-term tactic performs better.

M eemsue B [DiJin, Mark Heimann, et al. PKDD’19] https://github.com/Gemslab/node2bits
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Q2: Output storage efficiency

Real-valued
VS. binary
embeddings

R

& ’

node2bits uses 63-339x less space than the baselines,
while achieving comparable or better stitching performance.

M eemsue B [DiJin, Mark Heimann, et al. PKDD’19] https://github.com/Gemslab/node2bits
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Summarizing Large Networks: Overview

“ranged star” attack

[CSUR’18]

summary of g

InterTediate Output
Summaries | Summaries ey || et

[ICDM’17,

[SDM’14, KDD™19]
KDD’15, \ omiite
* Dat Bull Eng’17, o N
— 2 e SNAM’18, f‘f‘g;@ﬁ
SDM’19, ...] =
Summaries S ST
[ICDM’19] -
™ Summaries

[KDD’19]

e




Beyond Summarization

Structural embeddings for When is it useful to learn over higher-
network alignment order networks, and when is it not?

Input Graphs Learned node Inferred (sparse)

6 ]

D A |
JB'.A l EH xNetMF 8 Embeddingg
) -

embeddings alignment matrix M Input:

Trajectories

J
Gz similarity

Standard Weighted
(k-d tree)

Network
Embedding (SWNE)

By [Mark Heimann, Haoming Shen, B [Caleb Belth, Fahad Kamran,
Tara Safavi, Danai Koutra. Donna Tjandra, Danai Koutra.

ACM CIKM’18] IEEE/ACM ASONAM’19]
% GEMS LAB 48



Take-away messages: Summarization in  /Greeh

summari-

Network Representation Learning zation

« Structural embeddings are less studied, but are
more appropriate than proximity-based ones in several tasks

« Summarization within a GCN can help with faster training,
data denoising and interpretability [ACM KDD’19a]

« Embedding summarization can achieve compression and on-the-fly .@@
computation of representations [ACM KDD’19b; PKDD’19]

« Histograms are powerful at capturing the graph
structure [ACM CIKM’18; ACM KDD’19b,c; ECML/PKDD’19; IEEE ICDM’19]

<+ flexible, versatile (heterogeneity, attributes, directionality, weights...),
+ less information loss

% GEMS LAB 49



Talk based on the following papers

« Mark Heimann, Haoming Shen, Tara Safavi, Danai Koutra. REGAL: Representation Learning-based
Graph Alignment. ACM CIKM’18.

* Y. Liu, T. Safavi, A. Dighe, D. Koutra. Graph Summarization Methods and Applications: A Survey. ACM
Computing Surveys 2018.

*- YujunYan, J. Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, Danai Koutra. GroupINN: Grouping-
based Interpretable Neural Network-based Classification of Limited, Noisy Brain Data. ACM KDD’19a.

*- Di Jin, R. Rossi, Eunyee Koh, Sungchul Kim, Anup. Rao, Danai Koutra. Latent Network Summarization:

Bridging Network Embedding and Summarization. ACM KDD’19b.
- D. Jin*, Mark Heimann*, Tara Safavi, Mengdi Wang, Wei Lee, Lindsay Snider, Danai Koutra. Smart

Roles: Inferring Professional Roles in Email Networks. ACM KDD’19c.

*- D. Jin, Mark Heimann, Ryan Rossi, Danai Koutra. node2bits: Compact Time- and Attribute-aware Node
Representations for User Stitching. ECML/PKDD’19.

» (Caleb Belth, Fahad Kamran, Donna Tjandra, Danai Koutra. \When to Remember Where You Came from:
Node Representation Learning in Higher-order Networks. IEEE/ACM ASONAM 2019.

« Tara Safavi, Caleb Belth, Lukas Faber, Davide Mottin, Emmanuel Muller, Danai Koutra. Personalized
Knowledge Graph Summarization: From the Cloud to Your Pocket. IEEE ICDM 2019.

* Mark Heimann, Tara Safavi, Danai Koutra. Distribution of Node Embeddings as Multiresolution
Features for Graphs. IEEE ICDM 2019.

Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K. Ahmed, Danai Koutra, John Boaz Lee. From
Community to Role-based Graph Embeddings. Arxiv 2019.

% GEMS LAB 50
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Caleb Belth |

The Power of Summarization in
Network Representation Learning

) /) wiki
/] . > (ST 2000

. [@]3 8 lode O\ Graph

$ O 1 cowrg B YO 1 oot B [

~ oy Cayern M onal Layer i

Thank you!
Questions?

‘‘‘‘‘‘‘

redictes
Label

http://danaikoutra.com

dkoutra@umich.edu
https://github.com/GemsLab/GroupINN

https://github.com/GemsLab/MultiLENS
https://github.com/GemslLab/node2bits
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