
OPAvion: Mining and visualization in large graphs

Leman Akoglu∗, Duen Horng Chau∗, U Kang∗, Danai Koutra∗, Christos Faloutsos
School of Computer Science
Carnegie Mellon University

{lakoglu, dchau, ukang, danai, christos}@cs.cmu.edu

ABSTRACT
Given a large graph with millions or billions of nodes and
edges, like a who-follows-whom Twitter graph, how do we
scalably compute its statistics, summarize its patterns, spot
anomalies, visualize and make sense of it? We present
OPAvion, a graph mining system that provides a scal-
able, interactive workflow to accomplish these analysis tasks.
OPAvion consists of three modules: (1) The Summariza-
tion module (Pegasus) operates off-line on massive, disk-
resident graphs and computes graph statistics, like PageR-
ank scores, connected components, degree distribution, tri-
angles, etc.; (2) The Anomaly Detection module (OddBall)
uses graph statistics to mine patterns and spot anomalies,
such as nodes with many contacts but few interactions with
them (possibly telemarketers); (3) The Interactive Visual-
ization module (Apolo) lets users incrementally explore
the graph, starting with their chosen nodes or the flagged
anomalous nodes; then users can expand to the nodes’ vicini-
ties, label them into categories, and thus interactively navi-
gate the interesting parts of the graph.

In our demonstration, we invite our audience to interact
with OPAvion and try out its core capabilities on the Stack
Overflow Q&A graph that describes over 6 million ques-
tions and answers among 650K users.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Design, Experimentation, Algorithms

Keywords
cloud computing, anomaly detection, visualization

∗Authors in alphabetical order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Figure 1: System overview. OPAvion consists
of three modules: the Summarization module
(Pegasus) provides scalable storage and algorithms
to compute graph statistics; the Anomaly Detec-
tion module (OddBall) flags anomalous nodes whose
egonet features deviate from expected distributions;
the Visualization module (Apolo) allows the user to
visualize connections among anomalies, expand to
their vicinities, label them into categories, and in-
teractively explore the graph.

1. INTRODUCTION
We have entered the era of big data. Massive graphs mea-

sured in terabytes or even petabytes, having billions of nodes
and edges, are now common in numerous domains, such as
the link graph of the Web, the friendship graph of Facebook,
the customer-product graph of Netflix, eBay, etc. How to
gain insights into these data is the fundamental challenge.
How do we find patterns and anomalies in graphs at such
massive scale, and how do we visualize them?

We present OPAvion, a system that provides a scalable,
interactive workflow to help people accomplish these anal-
ysis tasks (see Figure 1). Its core capabilities and their
corresponding modules are:

• The Summarization module (Pegasus) provides mas-
sively scalable graph mining algorithms to compute es-
sential statistics for the whole graph, such as PageR-
ank, connected components, degree distribution, etc.
It also generates plots that summarize these statis-
tics, to reveal apparent deviations from the expected
graph’s properties (see Figure 2). Pegasus has been
tested to work efficiently on a huge graph with 1 billion
nodes and 6 billion edges [3].

• The Anomaly Detection module (OddBall) auto-
matically detects anomalous nodes in the graph—for



each node, OddBall extracts features from its egonet
(induced subgraph formed by the node and its neigh-
bors) and flags nodes whose feature distributions de-
viate from those of other nodes’. Example features
include: number of nodes, total edge weight, principal
eigenvalue, etc. These flagged nodes are great points
for analysis, as they are potentially new and significant
information (see Figure 3a for example anomalies).

• The Visualization module (Apolo) provides an in-
teractive visualization canvas for analysts to further
their investigation. For example, flagged anomalous
nodes can be transferred to the visualization to show
their connections (see Figure 3b). Different from most
graph visualization packages that visualize the full graph,
Apolo uses a built-in machine learning method called
Belief Propagation to guide the user to expand to
other relevant areas of the graph; the user specifies
nodes of interest as exemplars and Apolo suggests
nodes that are in their close proximity, and their in-
duced subgraphs, for further inspection.

We will demonstrate how OPAvion tightly integrates
the above modules and combines their strengths to sup-
port the analysis workflow: (1) Run in offline mode, the
Summarization module (Pegasus) stores the full graph,
computes graph statistics and each node’s egonet features;
(2) The Anomaly Detection module (OddBall) retrieves
egonet features from Pegasus to perform real-time detec-
tion of anomalous nodes, and generates interactive plots that
rank and highlight them; (3) The user can choose among
those flagged nodes and instruct the Visualization module
(Apolo) to visualize them, to reveal non-trivial connections
among them (see Figure 3 for an example); the user can also
spatially arrange nodes, label them into categories, and ex-
pand to the nodes’ neighborhoods to incrementally explore
interesting parts of the graph.

Our audience will be invited to try out the core capabil-
ities of OPAvion on the Stack Overflow Q&A graph,
which describes over 6 million questions and answers among
650K users. In the graph, nodes are Stack Overflow
users, and a directed edge points from the user who asks a
question, to the user who answers it.

2. SYSTEM OVERVIEW
OPAvion consists of three modules: Summarization,

Anomaly Detection, and Visualization. The block-diagram
in Figure 1 shows how they work together in OPAvion.
The following subsections briefly describe how each module
works.

2.1 Summarization
How do we handle graphs with billions of nodes and edges,

which do not fit in memory? How to use parallelism for
such Tera- or Peta-scale graphs? Pegasus provides mas-
sively scalable graph mining algorithms to compute a care-
fully selected set of statistics for the whole graph, such as
diameter, PageRank, connected components, degree distri-
bution, triangles, etc. Pegasus is based on the observa-
tion that many graph mining operations are essentially re-
peated matrix-vector multiplications. Based on the observa-
tion, Pegasus implements a very important primitive called
GIM-V (Generalized Iterated Matrix-Vector multiplication)

which is a generalization of the plain matrix-vector multi-
plication. Moreover, Pegasus provides fast algorithms for
GIM-V in MapReduce, a distributed computing platform
for large data, achieving (a) good scale-up on the number
of available machines and edges, and (b) more than 9 times
faster performance over the non-optimized GIM-V.

Here is the list of the algorithms supported by Pegasus.
Structure Analysis. Pegasus extracts various features

in graphs, including degree, PageRank scores, personalized
PageRank scores, radius, diameter, and connected compo-
nents. The extracted features can be analyzed for finding
patterns and anomalies. For example, degree or connected
component distributions of real world graphs often follow a
power law as shown in Figure 2, and the deviations from
the power law line indicate an anomaly (e.g. spammers in
social networks, and a set of web pages replicated from a
template [3]).

Figure 2: Degree distribution in ‘Stack Overflow’
Q&A graph. Real world graphs often have power-
law degree distribution, as marked with the red line,
and the deviations from the power law line indi-
cate anomalies (e.g. replicated ‘robots’ in social net-
works).

Eigensolver. Given a graph, how can we compute near-
cliques, the count of triangles, and related graph properties?
All of them can be found quickly if we have the first few
eigenvalues and eigenvectors of the adjacency matrix of the
graph [4, 5]. Despite their importance, existing eigensolvers
do not scale well. Pegasus provides a scalable eigensolver
which can handle billion-scale, sparse matrices. An appli-
cation of the eigensolver is the triangle counting which can
be used to find interesting patterns. For example, the anal-
ysis of the number of participating triangles vs. the degree
ratio in real world social networks reveals a surprising pat-
tern: few nodes have the extremely high ratio, indicating
spamming or tightly connected suspicious accounts.

2.2 Anomaly Detection
The anomaly detection module OddBall [1] consists of

three main components: (1) feature extraction, (2) pattern
mining, and (3) anomaly detection. In the following we ex-
plain each component in detail.

I. Feature extraction. The first step is to extract fea-
tures from a given graph that would characterize the nodes.
We choose to study the local neighborhood, that is the
‘egonet’, features of each node. More formally, an egonet is



Figure 3: (a) Illustration of Egonet Density Power Law on the ‘Stack Overflow’ Q&A graph. Edge count Ei
versus node count Ni (log-log scales); red line is the least squares fit on the median values (dark blue circles)
of each bin; dashed black and blue lines have slopes 1 and 2 respectively, corresponding to stars and cliques.
The top anomalies deviating from the fit are marked with triangles. (b): Screenshot of the visualization
module working with the anomaly detection module, showing a “star” (Sameer, at its center, is a red triangle
flagged on the left plot), and a “near-clique” (blue triangles). Nodes are Stack Overflow users and a directed
edge points from a user who asks a question, to another user who answers it. Node size is proportional to
node’s in-degree. Here, user Sameer (the star’s center) is a maven who has answered a lot of questions (high
in-degree) from other users, but he has never interacted with the other mavens in the near-clique who have
both asked and answered numerous questions.

defined as the induced subgraph that contains the node itself
(ego), its neighbors, as well as all the connections between
them. Next, we extract several features from the egonets,
for example, number of nodes, number of triangles, total
weight, eigenvalue, etc. As we extract a dozen of features
from all the egonets in the graph, feature extraction be-
comes computationally the most expensive step, especially
for peta-scale graphs. Thanks to the Pegasus module in-
troduced in §2.1, the heavy-lifting of this component is effi-
ciently handled through Hadoop.

II. Pattern mining. In order to understand how the
majority of the ‘normal’ neighborhoods look like (and spot
the major deviations, if any), we search for patterns and
laws that capture normal behavior. Several of the features
we extract from the egonets are inherently correlated. One
example is the number of nodes Ni and edges Ei in egonet
i: Ei is equal to the number of neighbors (=Ni − 1) for a
perfect star-neighborhood, and is about N2

i for a clique-like
neighborhood, and thus capture the density of the egonets.

We find that for real graphs the following Egonet Den-
sity Power Law holds: Ei ∝ Nα

i , 1 ≤ α ≤ 2. In other
words, in log-log scales Ei and Ni follow a linear correlation
with slope α. Fig. 3 illustrates this observation, for the ex-
ample dataset ‘Stack Overflow’ Q&A graph, in which nodes
represent the users and edges to their question answering in-
teractions. Plots show Ei versus Ni for every egonet (green
points); the larger dark blue circles are the median values
for each bucket of points after applying logarithmic binning
on the x-axis [1]; the red line is the least squares(LS) fit
on the median points (regression on median points together
with high influence point elimination ensures a more robust

LS fit to our data). The plots also show a dashed blue line
of slope 2, that corresponds to cliques, and a black dashed
line of slope 1, that corresponds to stars. We notice that the
majority of egonets look like neither cliques nor stars, but
somewhere inbetween (e.g. exponent α=1.4 for the example
graph in Figure 3). The axes are in log-log scales.

OddBall looks for patterns across many feature pairs
and their distributions and yields a ‘collection’ of patterns.
Therefore, OddBall generates a different ranking of the
nodes by anomalousness score for each of these patterns. As
a result, it can help anomaly characterization; the particu-
lar set of patterns a node violates explains what ‘type’ of
anomaly that node belongs to.

III. Anomaly detection. Finally, we exploit the ob-
served patterns in anomaly detection since anomalous nodes
would behave away from the normal pattern. Let us define
the y-value of a node i as yi and similarly, let xi denote
the x-value of node i for a particular feature pair f(x, y).
Given the power law equation y = Cxα for f(x, y), we define

the anomaly score of node i to be score(i) =
max(yi,Cx

α
i )

min(yi,Cx
α
i )
∗

log(|yi−Cxαi |+ 1), which intuitively captures the “distance
to fitting line”. The score for a point whose yi is equal to its
fit Cxαi is 0 and increases for points with larger deviance.

2.3 Interactive Visualization
The Apolo [2] module (see Figure 3b) provides an in-

teractive environment to visualize anomalous nodes flagged
by OddBall, and those nodes’ neighborhoods, revealing
connections that help the user understand why the flagged
nodes are indeed anomalous. Should the user want to see



more than the flagged nodes’ direct neighbors, he can in-
struct Apolo to incrementally expand to a larger neighbor-
hood. Typically, as for many other visualization software,
such expansions could pose a huge problem because thou-
sands of new nodes and edges could be brought up, clouding
the screen and overwhelming the user. Instead, Apolo uses
its built-in machine learning algorithm called Belief Prop-
agation (BP) to help the user find the most relevant areas
to visualize. The user specifies nodes of interest, such as
several flagged nodes as exemplars, and BP automatically
infers which other nodes may also be of interest to the user.
This way, all other nodes can be ranked by their relevance
relative to the exemplar nodes, allowing the user to add only
a few of the top-ranking nodes into the visualization.

BP is a message passing algorithm over link structure sim-
ilar to spreading activation, but is uniquely suitable for our
visualization purpose, because it simultaneously supports:
(1) multiple user-specified exemplars; (2) dividing exemplars
into any number of groups, which means each node has a rel-
evance score for each group; and (3) linear scalability with
the number of edges, allowing Apolo to generate real-time
suggestions.

3. DEMONSTRATION PLAN
In our demonstration, we will invite our audience to in-

teract with OPAvion and try out its core capabilities on
a large graph: the Stack Overflow Q&A graph, which
describes over 6 million questions and answers among 650K
users. In the graph, nodes are Stack Overflow users, and
a directed edge points from the user who asks a question, to
the user who answers it.

In preparation for the demo, the Summarization mod-
ule (Pegasus) pre-computes the statistics of the graph
(e.g., degree distribution, PageRank scores, radius, con-
nected components) and creates plots that show their distri-
butions. During the demo, the Anomaly Detection module
(OddBall), using the pre-computed graph statistics, de-
tects anomalous nodes in real time, and shows them in in-
teractive plots (e.g., Figure 3a). The user can mouse-over
the flagged nodes, and instruct OPAvion to show them in
the Visualization module (Apolo).

In the visualization, users can interact with and navigate
the graph, either from a node they like, or from the flagged
anomalies. The user can spatially arrange nodes, and ex-
pand their vicinities to reveal surprising connections among
the flagged anomalous nodes. For example, Figure 3b shows
two subgraphs that include nodes flagged in Figure 3a (as
blue and red triangles): a “star” subgraph with the user
Sameer at its center, and a “near-clique” subgraph (users in-
clude Massimo, Chopper3, etc.). Node size is proportional to
the node’s in-degree. The visualization reveals that Sameer
is a maven who has answered a lot of questions, having a
high in-degree, but never asked any questions; on the other
hand, the other mavens in the near-clique have a lot of dis-
cussion among themselves and never involve Sameer. It is an
great example that shows that two vastly different anoma-
lous subgraphs—star and near-clique—can actually be very
close in the full graph (in this case, Sameer is only two hops
away from the near-clique). The visualization helps with
this type of discovery.

We will invite our audience to try out OPAvion, turn
themselves into analysts, and make discoveries.

Acknowledgments
Research was sponsored by the Defense Threat Reduction
Agency under contract No. HDTRA1-10-1-0120, and by
the Army Research Laboratory under Cooperative Agree-
ment Number W911NF-09-2-0053. This work is also par-
tially supported by an IBM Faculty Award, a Google Fo-
cused Research Award, and a Yahoo Research Alliance Gift.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the Army Research Laboratory, the U.S. Government, or
other funding parties. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

4. REFERENCES
[1] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball:

Spotting anomalies in weighted graphs. In PAKDD,
2010.

[2] D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos.
Apolo: making sense of large network data by
combining rich user interaction and machine learning.
In Proceedings of the 2011 annual conference on
Human factors in computing systems, CHI ’11, pages
167–176, New York, NY, USA, 2011. ACM.

[3] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system - implementation and
observations. ICDM, 2009.

[4] B. A. Prakash, M. Seshadri, A. Sridharan,
S. Machiraju, and C. Faloutsos. Eigenspokes:
Surprising patterns and community structure in large
graphs. PAKDD, 2010.

[5] C. E. Tsourakakis, U. Kang, G. L. Miller, and
C. Faloutsos. Doulion: counting triangles in massive
graphs with a coin. In KDD, pages 837–846, 2009.


