
Net-Ray: Visualizing and Mining Billion-Scale Graphs

U Kang1 Jay-Yoon Lee2 Danai Koutra2 Christos Faloutsos2

1 KAIST, Daejeon 305-701, Korea
ukang@cs.kaist.ac.kr

2 Carnegie Mellon University, Pittsburgh PA 15213, USA
{lee.jayyoon,danai,christos}@cs.cmu.edu

Abstract. How can we visualize billion-scale graphs? How to spot outliers in
such graphs quickly? Visualizing graphs is the most direct way of understand-
ing them; however, billion-scale graphs are very difficult to visualize since the
amount of information overflows the resolution of a typical screen.
In this paper we propose NET-RAY, an open-source package for visualization-
based mining on billion-scale graphs. NET-RAY visualizes graphs using the spy
plot (adjacency matrix patterns), distribution plot, and correlation plot which in-
volve careful node ordering and scaling. In addition, NET-RAY efficiently sum-
marizes scatter clusters of graphs in a way that finds outliers automatically, and
makes it easy to interpret them visually.
Extensive experiments show that NET-RAY handles very large graphs with bil-
lions of nodes and edges efficiently and effectively. Specifically, among the var-
ious datasets that we study, we visualize in multiple ways the YahooWeb graph
which spans 1.4 billion webpages and 6.6 billion links, and the Twitter who-
follows-whom graph, which consists of 62.5 million users and 1.8 billion edges.
We report interesting clusters and outliers spotted and summarized by NET-RAY.

1 Introduction

Applying algorithms to find patterns in the data is one way of understanding it, but “a
picture is worth a thousand words”. How can we visualize big graphs with billions of
nodes and edges? And, more importantly, how can we spot and plot outliers in such
graphs quickly? Big graphs are everywhere: the World Wide Web, social network, bi-
ological network, phone call network, and many more. Visual mining on big graphs
is a crucial tool for data miners to communicate with people outside: e.g., executives,
government officials, domain experts, etc. In the case of outlier detection, visualization
helps non-data miners understand the nature and seriousness of outliers.

In this paper, we propose NET-RAY, an open source package (available in http:
//kdd.kaist.ac.kr/netray) implemented on top of MAPREDUCE for visual
mining on big graphs. NET-RAY provides the following plots:

1. Spy plot (=adjacency matrix showing the nonzero patterns) of graphs, as shown in
Fig. 1(a) which visualizes the adjacency matrix of US Patent graph.

2. Distribution plot of graph features including in/out-degrees and triangles. For ex-
ample, see Fig. 1(b) for the distribution of triangles in YahooWeb graph.

3. Correlation plot of graph features including in-degree vs. out-degree, degree vs.
triangle, and degree vs. PageRank. For instance, Fig. 1(c) shows the correlation
plots between degree and Triangles of Twitter graph.

(a) Spyplot (b) Distribution plot (c) Correlation plot
of US Patent of YahooWeb of Twitter

from NET-RAY-SPY from NET-RAY-SCATTER from NET-RAY-SCATTER

Fig. 1: NET-RAY in action. (a) Spy plot (adjacency matrix pattern) of US Patent graph reveals
communities which are labeled as A1, A2, and A3. (b) Triangle distribution plot of YahooWeb
graph reveals adult sites which are pointed by other adult sites. (c) Degree vs. Triangle correlation
plot of Twitter graph reveals near-cliques (in the upper part of the plot), and anomalous nodes with
few triangles like tenki.jp (details in Section 4).

NET-RAY uses those plots for various graph mining tasks including finding com-
munities, discovering correlations, detecting anomalies, and visualization, as shown in
Fig. 1. NET-RAY tackles two challenges. First, real world Web-scale graphs contain
too much data, spanning Terabytes, for a standard single-machine plotting tools (e.g.
gnuplot) to process. Moreover, the amount of information is too much to show on a
standard screen with limited resolution, and thus careful reorganization and scaling of
data are required. Second, even after presenting the data on the screen, finding rep-
resentative outliers is difficult. NET-RAY solves the problem by distributed projection,
careful ordering and scaling, and efficient summarization of representative outliers. The
main contributions of this paper are the following:
1. Method. We propose NET-RAY, an open-source package for visualizing and min-

ing big graphs. NET-RAY includes two algorithms: NET-RAY-SPY and NET-RAY-
SCATTER. The former effectively visualizes adjacency matrices of graphs by care-
ful ordering of nodes, and scaling values and axes. The latter efficiently finds rep-
resentative outliers from big graphs.

2. Scalability. NET-RAY scales linearly with the number of machines and the edges
in the graph.

3. Discovery. We employ NET-RAY to analyze large, real world data including the
YahooWeb with 6.6 billion edges and total size of 0.11TB, as well as a Twitter
graph with 1.8 billion edges and size of 24.2GB. We present interesting discoveries
including communities and anomalous nodes. To the best of our knowledge, NET-
RAY is the first work in visual mining for billion scale graphs.

The rest of the paper is organized typically: proposed methods in Sections 2 and 3,
discovery results in Section 4, related works in Section 5, and conclusion in Section 6.
Table 1 lists the symbols and their definitions used in this paper.
2 Proposed Method: Mining the Adjacency Matrix
Visualization of the adjacency matrix of a graph provides rich information about the
connectivity patterns between the nodes, and leads to the discovery of community struc-
tures. For small graphs, visualizing the adjacency matrix is tractable. However, visual-
izing the adjacency matrix of very large graphs poses several challenges. First, the size

Table 1: Table of symbols.

Symbol Definition Symbol Definition

n number of nodes in a graph m number of edges in a graph
x,y d-dimensional point s resolution (width, height) of

the target matrix
k number of clusters for NET-RAY-SCATTER N number of data points
cj d-dimensional centroid of Cj Cj jth cluster

of the adjacency matrix can easily go beyond the resolution of a typical screen. For
example, the adjacency matrix size of a 1 billion node graph becomes 1 billion by 1
billion; exactly visualizing the matrix requires 1 billion× 1 billion pixels which are too
many to be shown on a typical screen. We address the challenge by projecting the orig-
inal matrix into a small matrix which can be shown on a typical screen. For example,
the 1 billion by 1 billion matrix can be projected into a 1000 by 1000 matrix, where
an element of the small matrix is set to the number of nonzeros in the corresponding
submatrix of the big matrix. However, this projection poses the second challenge: the
small matrix will be almost full in most cases, as shown in Fig. 2 (a).

In this section, we describe our proposed NET-RAY-SPY method to address the two
challenges of mining the adjacency matrix; the first challenge of resolution is handled
in Section 2.1, and the second “full matrix” challenge is handled in Sections 2.2 and 2.3.

2.1 Projection
To handle the problem that the adjacency matrix is much larger than the screen, we
project the original adjacency matrix into a small matrix which can be easily shown in a
screen. In the following we assume a graph G with n nodes and m edges, and the target
matrix of size s by s (e.g. s = 1000).

Let (x, y) be an edge in the graph, where 1 ≤ x, y ≤ n. We project each edge by
mapping (x, y) to the element (dx · s

ne, dy ·
s
ne) in the target matrix. Note that both of

the mapped values (dx · sne and dy · sne) are in the range of [1, s].

2.2 Node Reordering
Projection (Section 2.1) successfully decreases the data size, but it has a drawback:
the target matrix becomes full in most cases, thereby giving a false impression that the
graph is a clique or a near-clique, as in Fig. 2 (a). Identifying the communities in the
graph becomes difficult in this case. To overcome this problem we propose to cluster
the nonzero elements in the adjacency matrix of the original graph.

Any edge clustering method (e.g. Metis [16], CrossAssociation [6], etc.) can be
plugged into NET-RAY-SPY. By default, NET-RAY-SPY uses SlashBurn [13] for clus-
tering the nonzeros in the adjacency matrix, since it provides the best performance in
terms of compression. SlashBurn reorders the nodes and assigns small node ids to high
degree nodes, and clusters the nonzero elements of the adjacency matrix into the left,
bottom, and diagonal area of the spy plot, thereby making huge empty areas in the spy
plot. For example, see Fig. 2 (b) where SlashBurn clusters the nonzero elements of the
adjacency matrix to show the connectivity patterns between the nodes.

2.3 3-LOG Scaling
In addition to the node reordering, we handle the challenge of “full matrix” by scal-
ing the x and y axes, as well as the numerical value of each element into log scale.

(a) Reordering: No (b) Reordering: Yes (c) Reordering: Yes (d) Reordering: Yes
Log Scaling: No Log Scaling: No Log Scaling: 1-LOG Log Scaling: 3-LOG

Fig. 2: Effect of ordering and scaling in visualizing the adjacency matrix of Weibo-KDD graph.
(a,b): before applying NET-RAY-SPY. (c,d): after applying NET-RAY-SPY. The color bar in (c,d)
are in log scale of base 10. Note the node ordering and value/axis scaling provide rich information
on the connectivity and activity patterns of the adjacency matrix.

We describe our proposed methods: “1-LOG” (value) and “3-LOG” (value, x, and y)
scaling.

1-LOG: Value Scaling. In many real world adjacency matrices, the distribution of
the nonzero elements is skewed: i.e., some areas of the adjacency matrix are very dense,
while others are very sparse. For this reason, the simple linear scaling of the values loses
the information on the subtle differences of the small values. For example, in Fig. 2
(a,b), most of the elements are colored blue, since few elements have the largest values
(∼70000) and most others values are smaller than 10% of the largest value. The red dots
denoting the elements with the highest values are located near (0,0), but they are hardly
visible. To resolve the problem, we use the log-scaling on the values, which we call the
1-LOG method. 1-LOG method shows the skewed distributions more effectively; e.g.,
in Fig. 2(c) we see that the area near (0,0) is very dense (red dots). Note the numbers
along the color palette denote values raised to the power of 10 (e.g. 6 means 106).

3-LOG: Value and Axis Scaling. The nonzero pattern of the reordered adjacency
matrix is also skewed after node reordering: most of the elements are clustered around
the origin (0,0), two axes, and the diagonal line, thereby leaving many empty spaces
as shown in Fig. 2(c). To better utilize the empty space, we additionally use log-scale
for the two axes, and thus create the 3-LOG (value, x, and y) plot. For example, Fig. 2
(d) shows the 3-LOG plot of the Weibo-KDD graph (described in Section 4). Note the
active interactions between nodes in the range of 104 ∼ 105 (source) and nodes in the
range of 10 ∼ 104 (destination) are clearly visible.

Using log scale for the values requires carefully defining the bounding rectangle
in the log-space, so that the values are properly mapped into the screen. Let xmin and
xmax denote the minimum and the maximum values resp. in the x axis, after the log
scaling. The values ymin and ymax are defined similarly. Our idea is to map: (a) the
lower, left boundary point (xmin, ymin) to the center of the lower, left boundary pixel,
and (b) the upper, right boundary point (xmax, ymax) to the center of the upper, right
boundary pixel. Then remaining points (x, y) are mapped naturally to

(d(s− 1)
x− xmin

xmax − xmin
+

1

2
e, d(s− 1)

y − ymin

ymax − ymin
+

1

2
e). (1)

In very large graphs with billions of nodes and edges, the number of points easily
exceeds billions; thus, it takes long to compute the mapping. In Section 3.1 we describe
a distributed algorithm to compute the mapping.

3 Proposed Method: Mining the Scatter Cluster
In this section we describe NET-RAY-SCATTER, our proposed method for visualizing
and mining scatter plots including distribution and correlation plots. We first describe
the distributed projection method for visualizing very large scatter plots, and then the
summarization/outlier detection method.
3.1 Distributed Projection
Algorithm. For very large graphs with billions of nodes and edges, using a single
machine for projection using Equation (1) takes very long. To speed up the task, our
natural choice is to design a distributed algorithm for the task: specifically, we use
MAPREDUCE, a popular distributed data processing platform. We designed and imple-
mented a two-stage MAPREDUCE algorithm for the task. Given a set {(x, y)} of data
points, the first stage finds the minimum and the maximum of each dimension: xmin,
xmax, ymin, and ymax. The second stage uses the values xmin, xmax, ymin, and ymax,
computed from the first stage, to find the mapping given by Eq. (1). Note that the same
distributed algorithm can be used for digitizing the spy plot described in Sec. 2; in that
case, the first MAPREDUCE stage is omitted since the minimum and maximum values
are known a priori (log 1 and log n, resp.).

 80
 100
 120
 140
 160
 180
 200
 220
 240

35GB 60GB 85GB 116GB

R
un

 T
im

e
in

 S
ec

on
ds

Edge Size

Net-Ray

(a) Running time vs. edges (b) Running time vs. machines

Fig. 3: Scalability of
NET-RAY on YahooWeb
graph. (a) NET-RAY scales
linearly with the edges.
(b) NET-RAY with 5 and
20 machines is 137×
and 246× faster than the
single-machine counterpart,
resp.

Scalability. Fig. 3 shows the scalability of NET-RAY-SCATTER on the YahooWeb
graph listed in Table 2. The Hadoop-based implementation was run on the OCC-Y
Hadoop cluster described in Section 4, while the single-machine implementation on a
machine with two dual-core Intel Xeon 3GHz CPUs and 4GB memory. Fig. 3(a) shows
the running time vs. file size, where the number of reducer machines is fixed to 5. We see
that the running time scales linearly on the edges size. Fig. 3(b) presents the running
time comparison between a single-machine implementation and NET-RAY-SCATTER
on Hadoop. Note that NET-RAY-SCATTER with 5 and 20 machines is 137× and 246×
faster than the single-machine counterpart, resp. The running time with 20 machines is
1.8× (not 4×) faster than with 5 machines, due to overhead of running Hadoop jobs.

3.2 Summarization and Mining
The projected scatter plot still has many points: for example, the 1000 by 1000 scatter
plot has at maximum 1 million points. Among these points, how can we automatically
determine the representative points and outliers? We formally define the problem.

Problem 1. Given N points x1, ...,xN , find k representative points including top out-
liers (outlier score of a point xj is the distance from xj to its nearest neighbor). �

The choice of the representative points depends heavily on how we want to summa-
rize the data. We list the desired properties of our summarization.

(a) Original plot (b) k-means (c) k-medoids (d) NET-RAY-SCATTER

annotation annotation annotation
Fig. 4: Comparison of k-means, k-medoids and NET-RAY-SCATTER for spotting outliers in the
out-degree distribution plot of YahooWeb graph. We use k = 42, following the choice of the
parameter described in Section 3.3. Green circles denote the centroids of clusters containing
more than 2 points. Red circles denote the centroids of singleton clusters. Notice that NET-RAY-
SCATTER spots the two outstanding spikes of our interests, while k-means and k-medoids fail to
detect them.

– P1: Pick from Input. The output of the summarization should be a subset of the
input data points, since we want to give representative examples of the data.

– P2: Outlier Detection. The output of the summarization should contain outliers or
extreme points so that we can use it for anomaly detection.

– P3: Scalability. The method should be fast and scalable.
Our proposed NET-RAY-SCATTER method uses the following main ideas: 1) use

a clustering algorithm to compute k clusters where k is carefully chosen (details in
Section 3.3), 2) use the center points of the k clusters as the summaries, and 3) use
singleton clusters (having 1 point in their clusters) as the outliers. The main question is,
which clustering algorithm should we use to satisfy the three desired properties?

Our answer is to use the k-center [10] algorithm. Given a setX = {x1,x2, . . . ,xN}
of N points, the k-center chooses a set of k points from X as cluster centers, c1, . . . , ck
to minimize the objective function maxj maxx∈Cj

||x− cj ||, where || · || denotes L1 or
L2 norm. The effect of the max() term is that an outlier, far from the rest of the points, is
better to form a singleton cluster; otherwise the maximum distance between the points
in the same cluster increases dramatically. Using the k-center for the summarization
satisfies all the desired properties P1, P2, and P3. P1 is satisfied since only the subset
of the input data points are chosen. P2 is satisfied since both singleton clusters (from
outliers) and non-singleton clusters (from normal points) are spotted. Furthermore, P3
is satisfied since the greedy version of the k-center algorithm [10] runs in O(kN) time.
Note that other algorithms like k-means and k-medoids do not satisfy all the properties:
it can be shown that k-means violates P1 and P2, and k-medoids violates P2.

NET-RAY-SCATTER is shown in Algorithm 1. NET-RAY-SCATTER first projects
the input data using Equation (1). Then it applies the k-center algorithm with k =

√
N ,

where N is the number of data points, as we will describe in Sec. 3.3. Finally, it picks
the singleton clusters as outliers, and non-singleton cluster centroids as normal points.

As an example of the outlier detection capability of NET-RAY-SCATTER, see Fig. 4
(d) whose red circles denote singleton clusters. Note that the red circles include the two
outliers pointed by red arrows. Moreover, the 5 red circled points are exactly the points
with top 5 outlier scores (distance from a point to its nearest neighbor), showing the
effectiveness of NET-RAY-SCATTER. The effect of outliers in k-center was previously
discussed in Charikar et al. [7]; however, the focus on the work is to perform ‘robust’

Algorithm 1: NET-RAY-SCATTER for summarization and outlier detection
Input: Set X = {x1,x2, . . . ,xN} of data points.
Output: Set Y of outliers, and SetR of regular representative points from X .
1: Z ← project the input data using Equation (1);
2: k ←

√
N ;

3: C ← k-center on Z;
4: Y ← singleton clusters from C;
5: R ← non-singleton clusters’ centroids from C;
6: return Y,R;

clustering by ignoring outliers when building normal clusters for small k. In contrast,
NET-RAY-SCATTER uses sufficiently large k (details in Section 3.3) so that the outliers,
which form their own clusters, are detected automatically.

3.3 Discussion
Parameter Choice. How to choose the parameter k for NET-RAY-SCATTER? Obvi-
ously, k should be greater or equal to the number of outliers that we want to find. The
question is, how many outliers do we want to find? Our main target for using NET-RAY-
SCATTER is to detect anomalous spikes in distribution or correlation plots. To detect the
spike, we fix a value v in an axis (e.g., fix x coordinate), and investigate the set Y of
points having the value v in the axis. If a point y in Y deviates significantly from the
rest of the points in Y , then y is treated as an outlier. Based on this motivation, we
choose k as the number of distinct coordinates in either of the axes. Assuming uniform
distribution of the points, the parameter is given by k =

√
N .

Complexity. Our method is scalable. Specifically:

Lemma 1. NET-RAY-SCATTER runs in O(N1.5) time. �

Proof. (Sketch) The summarization step takes O(kN) time with k =
√
N .

4 Discoveries
We present discovery results to answer the following questions.

Q1 What connectivity patterns and communities does NET-RAY-SPY reveal on real
world graphs?

Q2 What patterns and anomalies does NET-RAY-SCATTER detect in the distribution
plots of real world graphs?

Q3 What patterns and outliers does NET-RAY-SCATTER find in the correlation plots
of real world graphs?

We use the graph data listed in Table 2, and for each graph we extract and analyze
the following information:

– Spy plot (original, 1-LOG and 3-LOG)
– Distribution plot (in-degree, out-degree, and triangle)
– Correlation plot (in vs. out-degree, degree vs. triangle, and degree vs. PageRank)

The features (degree, PageRank, and triangles [14]) of the graphs are extracted using
the Pegasus graph mining package [15]. NET-RAY is run on the OCC-Y Hadoop cluster,
run by Open Cloud Consortium [1], with total 928 cores and 1 Petabyte disk.

Table 2: Order and size of networks.
Graph Nodes Edges File Size

YahooWeb 1,413,511,394 6,636,600,779 116 GB
Twitter 62,539,895 1,837,645,377 24.2 GB

Weibo-KDD 1,944,589 50,655,143 594 MB
US Patent 6,009,555 10,565,431 169 MB

WWW-Barabasi 325,729 1,497,134 20 MB

US Patent:
(a) Original graph (b) NET-RAY reordering (c) NET-RAY reordering

(1-LOG) (1-LOG) (3-LOG)

WWW-Barabasi:
(d) Original graph (e) NET-RAY reordering (f) NET-RAY reordering

(1-LOG) (1-LOG) (3-LOG)
Fig. 5: Spy plots of real world graphs, generated from NET-RAY-SPY. The spy plot of the US
Patent graph in (a) shows that patents tend to cite neither too old nor too new patents. (b) and
(e) show the ‘near-spoke’ structures (sparse sub-graph loosely connected to the rest of the graph)
which are labeled as A1, A2, and A3. (e) and (f) also show the ‘peripheral near-clique’ structures
(clique-like subgraphs loosely connected to the rest of the graph) which are labeled as ‘PN’.

4.1 Spy Plots
Spy plots generated from NET-RAY-SPY provide rich information on the connectivity
patterns and communities in graphs. Figs. 2 and 5 show spy plots of real world graphs.
We have the following observations.

Connectivity Patterns. The spy plot enables us to easily identify the connectivity
patterns in the graph. The high activity regions (yellow and red colors) of Figs. 2 (c,d),
and 5 (a,b,c) show the heavy interactions between the nodes. Especially, in Fig. 5 (a)
we observe that patents usually cite other patents which are neither too new nor too old:
for a fixed source id, the corresponding vertical line has a single mode distribution with
the maximum around the center.

Community Identification. Spy plots enable the identification of communities; es-
pecially we present sparse or dense subgraphs loosely connected to the rest of the graph.
Observation 1 (Near-Spokes) Reordering nodes by NET-RAY-SPY reveals “near-
spokes” (sparse sub-graph loosely connected to the rest of the graph). �

For example, see Fig. 5 (b,e) for the spy plots of US Patent and WWW-Barabasi.
The three squares A1, A2, and A3 show the adjacency matrices of the induced subgraphs
of the three near spokes.

Observation 2 (Peripheral Near-Cliques) 1-LOG and 3-LOG visualization of the
WWW-Barabasi graph by NET-RAY-SPY reveal “peripheral near-cliques” (clique-like
subgraphs loosely connected to the rest of the graph), marked as ‘PN’ in Fig. 5 (e,f). �

YahooWeb: (a) In-degree (b) Out-degree (c) Triangles

WWW-Barabasi: (d) In-degree (e) Out-degree (f) Triangles
Fig. 6: Distribution plots of real world graphs, generated from NET-RAY-SCATTER. First column:
in-degree distribution. Second column: out-degree distribution. Third column: triangle distribu-
tion. The red circles denote the singleton clusters. The green circles in (d-f) are the centroids of
the non-singleton clusters; we omitted green circles from (a-c) for clarity. The spikes in these
degree distributions often come from anomalous activities that need attention: e.g., (b) - a link
farm in the YahooWeb graph, and (d-f) - a group of nodes belonging to cliques (marked A, A’,
A*, and B) in WWW-Barabasi.

4.2 Distribution Plots

Distribution plots generated from NET-RAY-SCATTER provide abundant information
on the regularities that graphs nodes follow, as well as deviating patterns. Fig. 6 shows
the distributions of features in real world graphs. On the regularities, notice the power
law-like slopes in the distributions of degree and triangles of real world graphs. It im-
plies the formation of links and triangles are governed mostly by “rich-get-richer” pro-
cess [17]. Furthermore, the distribution plots depict some “spikes” that deviate signifi-
cantly from the fitting line of the majority of the nodes. We elaborate on the two types
of spikes: one in the degree and the other in the triangle distributions.

Spikes In Degree Distribution. The spikes in the degree distribution often come
from anomalous or special behaviors requiring attentions. The first observation is on
the spike of the degree distributions in WWW-Barabasi (Fig. 6 (d,e)).

Observation 3 (Anomalous Spike in WWW-Barabasi) Spikes in the in/out-degree dis-
tributions of WWW-Barabasi comes from cliques. �

The spikes are observed at A’ (in-degree 152, count 1192), B (in-degree 153, count
155), and A (out-degree 156, count 1353) of Fig. 6(d,e). It turns out that they form
cliques, as we see in Fig. 7. Also, A is a subset of A’. Finally, we note that the out-
degree distribution of the YahooWeb graph, shown in Fig. 6 (b), has a spike coming
from a link farm [12].

Spikes in Triangle Distribution. We also observe spikes in the triangle distribution
plots: A* in Fig. 6 (f) corresponds to a spike where all 45 nodes participate in 7239

(a) Spy plot of A’ in (b) Spy plot of B in
Fig. 6 (e) Fig. 6 (d)

Fig. 7: Spy plots of the members of the spikes
in distribution plots of Fig. 6(d,e). Many nodes
belong to cliques; such nodes have same de-
gree/triangle characteristics, and thus make
spikes in the degree and triangle distributions.

triangles. By investigating the data, we found that they form a clique, and they are
subset of A in Fig. 6(d).

Another spike occurs in the triangle distribution of YahooWeb graph in Fig. 6 (c).
The rightmost red circle contains 402 nodes having 12,420,590 triangles. Among the
402 nodes, 389 nodes have out-degrees 0 and in-degrees 81316; moreover, the incoming
edges for all these 389 nodes come from the same 81316 nodes. It turns out the 389
nodes are mostly adult sites, and the 81316 sites pointing to them are other adult sites
that aim at boosting the ranking of 389 nodes.

Observation 4 (Anomalous Spike in YahooWeb) The spike in the triangle distribution
of YahooWeb (Fig. 6 (c)) is due to a set of adult sites pointed by other adult sites. �

4.3 Correlation Plots
Correlation plots generated from NET-RAY-SCATTER provide opulent information on
the communities, anomalous nodes, and correlation between features of nodes. Fig. 8
shows the correlation plots using the node degrees, PageRank scores, and participating
triangles from real world graphs.

YahooWeb:
(a) In-degree vs. Out-degree (b) Degree vs. Triangles (c) Degree vs. PageRank

Twitter:
(d) In-degree vs. Out-degree (e) Degree vs. Triangles (f) Degree vs. PageRank

Fig. 8: Outliers in correlation plots give rich information on the structural patterns of graphs.
(Pattern 1) Nodes with many incoming edges, but little friendship among the in-neighbors have
few triangles, as shown in ‘movabletype.org’ of (b) and ‘tenki.jp’ of (e). (Pattern 2) On the
other hand there are many nodes belonging to near-cliques, as shown in the red line of (b) and
(e). (Pattern 3) If a node has high incoming edge vs. outgoing edge ratio, and some of the in-
neighbors have high PageRank, then the node has higher PageRank than other nodes with the
same degree, as shown in ‘careerxroad.com’ of (c), and ‘natenal.com’ of (f).

In and out-degrees. In Fig. 8 (a,d), popular nodes in graphs, like celebrities or
portal sites, tend to have high in-degrees and small out-degrees.

Degree and Triangles. In Fig. 8(b,e) star-like nodes, which have very sparsely con-
nected neighbors, are easily identified in the lower, right corner of the degree vs. triangle
plots. Spammers are identified in this scheme since, by their nature, they often have ran-
dom neighbors with very few triangles. Also near-clique communities are spotted in the
upper left corner since a node with degree d can have

(
d
2

)
∝ d2 triangles at most.

Degree and PageRank. In Fig. 8 (c,f), higher number of in-degree, rather than
total degree, is correlated with higher PageRank in general. However, it is possible to
boost PageRank with small number of in degrees by having an in-neighbor with a very
high PageRank. E.g, in Fig. 8 (c) a page in ‘careerxroad.com’ has degree 3 with high
PageRank since one of the in-neighbor has a very high PageRank.

5 Related Works
Although big graphs are ubiquitous, the existing visualization tools cannot handle effi-
ciently billions of nodes. We review works on graph visualization and outlier detection.

Graph Visualization. Apolo [8] is a graph tool for attention routing, that inter-
actively expands the vicinities of a few seed nodes. OPAvion [2], an anomaly detec-
tion system for large graphs consists of Pegasus (feature aggregation [15]), OddBall
(outlier detection [3]) and Apolo. Here, in an attempt to understand the underlying
patterns and detect outliers, we are interested in efficiently generating the spy and dis-
tribution/correlation plots of a graph, instead of plotting the graph itself. In [21], Shnei-
derman proposes simply scaled density plots to visualize scatter plots, and [4] presents
sampling-based techniques for datasets with several thousands of points. [9] proposes
an interactive graph visualization tool, but the focus is on only the adjacency matrix and
the scalability is limited.

Clusters and Outliers in Spaces. For outliers, see LOF [5], LOCI [19], and angle-
based methods [20]. For clustering, see methods like k-means in [11], k-harmonic
means [22], k-medoids [18], and k-centers [10].

In general, there is not much work on visualization of the spy and scatter plots of
features distributions and correlations for graphs with billions of nodes and edges.

6 Conclusion
In this paper, we tackle the problem of efficiently and effectively visualizing and mining
billion-scale graphs. Our major contributions include:

1. Method. We propose NET-RAY, a carefully designed algorithm for visualizing and
mining adjacency matrices and scatter plots from billion scale graphs.

2. Scalability. NET-RAY is linear on the number of machines and edges.
3. Discovery. We use NET-RAY to visualize large, real-world graphs and report inter-

esting discoveries and anomalies, including near spokes, near cliques, and spikes.

Interesting future research directions include visual mining of dynamic graphs and
complex high-dimensional data, like tensors.

Acknowledgments
Funding was provided by KAIST under project number G0413002. Funding was also provided
by the U.S. ARO and DARPA under Contract Number W911NF-11-C-0088, by DTRA under
contract No. HDTRA1-10-1-0120, by ARL under Cooperative Agreement Number W911NF-
09-2-0053, and by the National Science Foundation under Grants No. IIS-1217559. The views

and conclusions are those of the authors and should not be interpreted as representing the official
policies, of the U.S. Government, or other funding parties, and no official endorsement should be
inferred. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

References

1. http://opencloudconsortium.org.
2. L. Akoglu, D. H. Chau, U. Kang, D. Koutra, and C. Faloutsos. Opavion: mining and visual-

ization in large graphs. In SIGMOD, 2012.
3. L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted

graphs. In PAKDD, 2010.
4. E. Bertini and G. Santucci. By chance is not enough: Preserving relative density through non

uniform sampling. In Proceedings of the Information Visualisation, 2004.
5. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-based local

outliers. In SIGMOD, 2000.
6. D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-

associations. In KDD, 2004.
7. M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility location

problems with outliers. In SODA, 2001.
8. D. H. Chau, A. Kittur, J. I. Hong, and C. Faloutsos. Apolo: interactive large graph sense-

making by combining machine learning and visualization. In KDD, 2011.
9. N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J. Fekete. Zame: Interactive large-scale

graph visualization. In Visualization Symposium, 2008. PacificVIS ’08. IEEE Pacific, 2008.
10. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput.

Sci., 38:293–306, 1985.
11. J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers Inc., 3rd edition, 2011.
12. U. Kang, D. H. Chau, and C. Faloutsos. Mining large graphs: Algorithms, inference, and

discoveries. In ICDE, 2011.
13. U. Kang and C. Faloutsos. Beyond ‘caveman communities’: Hubs and spokes for graph

compression and mining. In ICDM, 2011.
14. U. Kang, B. Meeder, E. Papalexakis, and C. Faloutsos. Heigen: Spectral analysis for billion-

scale graphs. Knowledge and Data Engineering, IEEE Transactions on, 26(2):350–362,
February 2014.

15. U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system -
implementation and observations. ICDM, 2009.

16. G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix Or-
dering System, Version 4.0, 2009.

17. M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics,
(46):323–351, 2005.

18. R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In
VLDB, 1994.

19. S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detection
using the local correlation integral. In ICDE, 2003.

20. N. Pham and R. Pagh. A near-linear time approximation algorithm for angle-based outlier
detection in high-dimensional data. KDD, 2012.

21. B. Shneiderman. Extreme visualization: squeezing a billion records into a million pixels. In
SIGMOD, 2008.

22. B. Zhang, M. Hsu, and U. Dayal. K-harmonic means - a spatial clustering algorithm with
boosting. In TSDM, 2000.

