
Network Similarity via Multiple Social Theories

Michele Berlingerio
IBM Research Dublin

Email: mberling@ie.ibm.com

Danai Koutra
Carnegie Mellon University
Email: danai@cs.cmu.edu

Tina Eliassi-Rad
Rutgers University

Email: eliassi@cs.rutgers.edu

Christos Faloutsos
Carnegie Mellon University
Email: christos@cs.cmu.edu

Abstract—Given a set of k networks, possibly with different
sizes and no overlaps in nodes or links, how can we quickly
assess similarity between them? Analogously, are there a set of
social theories which, when represented by a small number of
descriptive, numerical features, effectively serve as a “signature”
for the network? Having such signatures will enable a wealth
of graph mining and social network analysis tasks, including
clustering, outlier detection, visualization, etc. We propose a
novel, effective, and scalable method, called NETSIMILE, for
solving the above problem. Our approach has the following
desirable properties: (a) It is supported by a set of social
theories. (b) It gives similarity scores that are size-invariant.
(c) It is scalable, being linear on the number of links for
graph signature extraction. In extensive experiments on numerous
synthetic and real networks from disparate domains, NETSIMILE
outperforms baseline competitors. We also demonstrate how
our approach enables several mining tasks such as clustering,
visualization, discontinuity detection, network transfer learning,
and re-identification across networks.

I. INTRODUCTION & PROPOSED METHOD

We address the problem of network similarity. Specifically,
given a set of k networks of potentially different sizes and
without any assumptions on overlapping nodes or edges, how
can we efficiently provide a meaningful measure of structural
similarity (or distance)? For example, how structurally similar
are the ASONAM and ICWSM co-authorship networks? How
does their structural similarity compare with the similarity
between the ASONAM and WSDM co-authorship networks?
Such measures are extremely useful for numerous social
network analysis and graph mining tasks. One such task is
clustering: given a set of networks, find groups of similar ones;
conversely, find anomalies or discontinuities – i.e., networks
that stand out from the rest. Transfer learning is another
application. If networks G1 and G2 are similar, we can transfer
conclusions from one to the other to perform across-network
classification with better predictive accuracy.

When considering the problem of network structural simi-
larity, we need to make some choices. Should the comparison
be at the local (node) level, at the global (network) level,
or both? Should the comparison be based on the similarities
(or distances) of the adjacency matrices or similarities (or
distances) of structural features, or both? Should the approach
be interpretable or is a black-box approach okay? Must the
approach be scalable? Can the approach be readily extended
to accommodate non-structural features? Clearly, these choices
are not independent of each other. For example, comparisons
at the local level tend to be more interpretable and scalable.

We present an approach, NETSIMILE, that has the fol-
lowing seven characteristics. (1) It can compare networks at
the local (node and neighborhood) level. (2) It uses structural

features supported by social theories. (3) It is scalable. (4) It
is interpretable. (5) It is size-independent. (6) It can readily
be extended to accommodate global-level features and non-
structural features. (7) Its similarity values satisfy the Identity,
Symmetry, and Divergence properties.

The core of NETSIMILE is a careful extraction, aggrega-
tion, and evaluation of structural features from nodes and their
local neighborhoods. For every network G, NETSIMILE de-
rives a small number of numerical features, which incorporate
various social theories and capture the topology of the network
as moments of distributions over its local structural features.
Specifically, NETSIMILE extracts the following features for
every node: degree, clustering coefficient, average degree of
neighbors, average clustering coefficient of neighbors, number
of edges in ego-network, number of outgoing edges of ego-
network, and number of neighbors of ego-network. NETSIMILE
then applies these aggregator functions on each local feature
to generate the “signature” vector for a graph: median, mean,
standard deviation, skewness, and kurtosis. The similarity
score between two networks then is just the similarity of
their “signature” vectors. Once we have the similarity function,
we can do a wealth of interesting tasks, including clustering,
visualization, anomaly detection, etc.

NETSIMILE incorporates four social theories when ex-
tracting the “signature” vector of a network: Social Capital,
Structural Hole, Balance, and Social Exchange. These theories,
respectively, capture connectivity of nodes and their neigh-
borhoods, control of information flow, transitivity among the
nodes, and reciprocity among the nodes. We selected these
social theories because they are purely structural (as supposed
say homophily which relies on a non-structural characteristic).
Also, these theories can be applied to a wide range of networks
as opposed to just social networks.

Our empirical study includes experiments on more than
30 real-world networks and various synthetic networks gen-
erated by four different graph generators (namely, Erdös-
Rényi, Forest Fire, Watts-Strogatz, and Barabási Preferential
Attachment). We compare NETSIMILE with two baselines. The
first baseline, FSM, extracts frequent subgraphs from the given
graphs and performs pairwise comparison on the intersection
of the two sets of frequent patterns. The second baseline, EIG,
computes the k largest eigenvalues of each network’s adjacency
matrix and measures the distance between them.

Our experiments provide answers to the following ques-
tions: How do the various methods compare w.r.t. their similar-
ity scores? Are their results intuitive (e.g., is a social network
more similar to another social network than to a technological
network)? How do they compare to null models? Are the
methods just measuring the sizes of the networks in their



comparisons? How scalable are the various methods?

Due to brevity, we have omitted a full description of
NETSIMILE and all of our experiments here. The reader can
find these in [1].

II. EXPERIMENTS

Figure 1 shows the NETSIMILE similarity scores between
various networks (described in [1]) and their rewired versions.
NETSIMILE similarity score (i.e. 1 minus the NETSIMILE
Scaled Canberra Distance) is in [0, 1], with 0 meaning no
similarity at all and 1 meaning identical graphs. We rewire
a graph by randomly reassigning a number of its edges. The
rewiring parameter, c ∈ [0, 1], determines the fraction of edges
rewired. Edges are reassigned in a way that preserves the
expected degree of each node in the graph. When c is 0, no
rewiring takes place (i.e., the original and rewired graphs are
identical) and as expected the NETSIMILE score is 1 between
them. When c is 1, the rewired graph is the least similar to the
original graph (because all the edges in the original graph have
been randomly reassigned). As expected, comparing an Erdös-
Rényi graph to its rewired version does not significantly change
the NETSIMILE score (see the line with the black circles in
Figure 1). However, for real-world graphs (like co-authorship
networks and autonomous systems networks) as the rewiring
parameter increases, the NETSIMILE score decreases.
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Fig. 1. NETSIMILE similarity scores for various graphs and their rewired
versions. As the rewiring parameter increases, the NETSIMILE similarity
score decreases in real-world networks (e.g., co-authorship networks from
arXiv, DBLP, and IMDB and technological networks from Oregon AS).
Unsurprisingly, increasing the rewiring parameter in an Erdös-Rényi graph
(black circles) does not have the same pattern.

NETSIMILE as a Measure of Node-Overlap. Given three
graphs GA, GB , and GC of the same domain (e.g., co-
authorship networks in SIGMOD, VLDB and ICDE), can we
use only their NETSIMILE’s “signature” vectors to gauge the
amount of node-overlap between them? Our hypothesis is
that if graph GA is more similar to graph GB than graph
GC , then GA will have more overlap in terms of nodes with
GB than GC . To test this hypothesis, we ran NETSIMILE
with Canberra Distance on our real networks. Figure 2(a)
depicts the scatterplot of NETSIMILE results on graphs within
each comparable group (i.e., arXiv, DBLP-C, DBLP-Y, IMDb,
Query Log, and Oregon AS graphs). The y-axis is the nor-
malized node overlap and is equal to |VGA

∩VGB
|√

|VGA
|×|VGB

|
. As the

figure shows the lower the NETSIMILE Canberra Distance,
the higher the normalized node intersection. This confirms our

hypothesis that NETSIMILE can be used to gauge node-overlap
between two graphs without node correspondence information.
Figure 2(b) shows the same scatter plot, but computed using
the EIG Canberra Distance approach. In this case, there is no
correlation between node overlap and the distance. Due to its
scalability issues, the FSM approach could not be computed
on all the networks in Figure 2.
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(a) NETSIMILE - canberra distance
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(b) EIG - canberra distance
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Fig. 2. [Ideal: lines with negative slope.] (a) NETSIMILE Canberra Distance
on DBLP, IMDb, Oregon and QueryLog. (b) EIG Canberra Distance on the
same networks. NETSIMILE is an effective measure for node overlap without
any node-correspondence information. The lower the NETSIMILE Canberra
Distance, the higher the normalized node intersection. This correlation does
not hold for EIG. The points in both plots are along the fitted lines. For
NETSIMILE (a), the root mean square (RMS) of residuals are 6.5E−2 for
DBLP-C, 2.6E−2 for DBLP-Y, 9.0E−3 for IMDb, 1.4E−2 for Oregon AS,
and 6.5E−2 for Query Log. For EIG (b), the RMS of residuals are 8.2E−2
for DBLP-C, 4.2E−2 for DBLP-Y, 1.3E−3 for IMDb, 1.2E−2 for Oregon
AS, and 6.7E−2 for Query Log.

III. CONTRIBUTIONS

The contributions of our work are as follows. (1) Novelty:
By using moments of distribution as aggregators, NETSIMILE
generates a single “signature” vector for each graph based on
the local and neighborhood features of its nodes. Our features
incorporate four social theories that are endogenous to the
network and are applicable to more than just social networks.
(2) Effectiveness: NETSIMILE produces similarity / distance
measures that are size-independent, intuitive, and interpretable.
The similarity values satisfy the identity, symmetry, and diver-
gence properties. (3) Scalability: The runtime complexity for
generating NETSIMILE’s “signature” vectors is linear on the
number of edges. (4) Applicability: NETSIMILE’s “signature”
vectors are useful in many social network analysis and graph
mining tasks.
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