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How much has a network changed since yesterday? How different is the wiring of Bob’s brain (a left-handed male) and
Alice’s brain (a right-handed female), and how is it different? Graph similarity with given node correspondence, i.e. the de-
tection of changes in the connectivity of graphs, arises in numerous settings. In this work, we formally state the axioms and
desired properties of the graph similarity functions, and evaluate when state-of-the-art methods fail to detect crucial connec-
tivity changes in graphs. We propose DELTACON, a principled, intuitive, and scalable algorithm that assesses the similarity
between two graphs on the same nodes (e.g. employees of a company, customers of a mobile carrier). In conjunction, we
propose DELTACON-ATTR, a related approach which enables attribution of change or dissimilarity to responsible nodes and
edges. Experiments on various synthetic and real graphs showcase the advantages of our method over existing similarity
measures. Finally, we employ DELTACON and DELTACON-ATTR on real applications: (a) we classify people to groups of
high and low creativity based on their brain connectivity graphs, (b) do temporal anomaly detection in the who-emails-whom
Enron graph and find the top culprits for the changes in the temporal corporate email graph, and (c) recover pairs of test-retest
large brain scans (∼17M edges, up to 90M edges) for 21 subjects.
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1. INTRODUCTION
Graphs arise naturally in numerous situations; social, traffic, collaboration and computer networks,
images, protein-protein interaction networks, brain connectivity graphs and web graphs are only
a few examples. A problem that comes up often in all those settings is the following: how much
do two graphs or networks differ in terms of connectivity, and which are the main node and edge
culprits for the difference?
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(a) Connectome: neural network
of brain.

(b) Dendogram representing the hierarchical clustering of the DELTACON
similarities between the 114 connectomes.

(c) Brain graph of a subject with high
creativity index.

(d) Brain graph of a subject with low
creativity index.

Fig. 1: DELTACON-based clustering and classification shows that artistic brains seem to have different wiring
than the rest. (a) Brain network (connectome). Different colors correspond to each of the 70 cortical regions,
whose centers are depicted by vertices. Connections between the regions are shown by edges. (b) The connec-
tomes are classified in two big clusters by hierarchical clustering. The classification is based on the pairwise
DELTACON similarities between the 114 connectomes that we study. Elements in red correspond to mostly
high creativity score. (c)-(d) Visualization of brain graphs for subjects with high and low creativity index,
respectively. The low-CCI brain has fewer and lighter cross-hemisphere connections than the high-CCI brain.

Similarity or comparison of aligned graphs (i.e., with known node correspondence) is a core task
for sense-making: abnormal changes in network traffic may indicate a computer attack; differences
of big extent in a who-calls-whom graph may reveal a national celebration, or a telecommunica-
tion problem. Besides, network similarity can serve as a building block for the similarity-based
classification [Chen et al. 2009] of graphs, and give insights into transfer learning, as well as behav-
ioral patterns: is the Facebook message graph similar to the Facebook wall-to-wall graph? Tracking
changes in networks over time, spotting anomalies and detecting events is a research direction that
has attracted much interest [Caceres et al. 2011; Noble and Cook 2003; Wang et al. 2011; Wang
et al. 2014; Koutra et al. ; Koutra et al. 2015; Shah et al. 2015].

Long in the purview of researchers, graph similarity has been a well-studied problem and several
approaches have been proposed to solve variations of the problem. However, graph comparison
with node/edge attribution still remains an open problem, while, with the passage of time, the list
of requirements increases: the exponential growth of graphs, both in number and size, calls for
methods that are not only accurate, but also scalable to graphs with billions of nodes.

In this paper, we address three main problems: How to compare two networks efficiently, how to
evaluate the degree of their similarity and how to identify the culprit nodes/edges responsible for
the differences. Our main contributions are the following:
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(1) Axioms/Properties: We formalize the axioms and properties that a similarity measure must con-
form to.

(2) Algorithm: We propose DELTACON for measuring connectivity differences between two graphs,
and show that it is: (a) principled, conforming to all the axioms presented in Section 2, (b)
intuitive, giving similarity scores that agree with common sense and can be easily explained, and
(c) scalable, able to handle large-scale graphs. We also introduce DELTACON-ATTR for change
attribution between graphs.

(3) Experiments: we report experiments on synthetic and real datasets, and compare our similarity
measure to six state-of-the-art methods that apply to our setting.

(4) Applications: We use DELTACON for real-world applications, such as temporal anomaly detec-
tion and clustering/classification. In Figure 1, DELTACON is used for clustering brain graphs
corresponding to 114 individuals; the two big clusters which differ in terms of connectivity cor-
respond to people with significantly different levels of creativity. More details are given in Sec. 6.

This paper is an extension of the conference paper [Koutra et al. 2013b]. There are several dif-
ferences from its earlier version: (i) we introduce the problem of attributing the detected difference
between two graphs to nodes and edges, and give two algorithms, DELTACON-ATTR for Node At-
tribution and DELTACON-ATTR for Edge Attribution, that build on top of our originally proposed
graph similarity method in order to find the culprit nodes and edges (Section 4); (ii) we give the
proofs of our lemmas and theorems, and discuss the mathematical details for the satisfiability of the
axioms and desired properties by DELTACON (Sections 3.1-3.3); (iii) we include experiments for
our attribution algorithm, DELTACON-ATTR, on small synthetic datasets, as well as on real, tem-
poral graphs, and report interesting findings (Section 5.2); (iv) we report more experiments for our
graph similarity method, DELTACON, on additional large-scale real networks, and include one more
application on large brain graphs spanning up to 90M edges (Sections 5-6); and (v) we provide a
more extensive survey of the related work (Section 7).

The paper is organized as follows: Section 2 presents the intuition behind our main method,
and the axioms and desired properties of a similarity measure; Sections 3 and 4 have the proposed
algorithms for similarity computation and node/edge attribution, as well as theoretical proofs for the
axioms and properties; experiments on synthetic and big real networks are in Section 5; Section 6
presents three real-world applications; the related work and the conclusions are in Sections 7 and 8,
respectively. Finally, Table I presents the major symbols we use in the paper and their definitions.

2. DELTACON: INTUITION
How can we find the similarity in connectivity between two graphs or, more formally, how can we solve the
following problem?

PROBLEM DEFINITION. [DELTACONnectivity]

Given. (a) two graphs, G1(V, E1) and G2(V, E2) with the same node set2, V , but different edge sets E1 and
E2, and (b) the node correspondence.

Find. a similarity score, sim(G1, G2) ∈ [0, 1], between the input graphs. Similarity score of value 0 means
totally different graphs, while 1 means identical graphs.

The obvious way to solve this problem is by measuring the overlap of their edges. Why does this often not
work in practice? Consider the following example. According to the overlap method, the pairs of barbell graphs
shown in Figure 3 of p. 16, (B10,mB10) and (B10,mmB10), have the same similarity score. But, clearly,
from the aspect of information flow, a missing edge from a clique (mB10) does not play as important role in
the graph connectivity as the missing “bridge” inmmB10. So, could we instead measure the differences in the
1-step away neighborhoods, 2-step away neighborhoods etc.? If yes, with what weight? It turns out (Intuition 1,
p. 5) that our method does exactly this in a principled way.

2If the graphs have different, but overlapping, node sets, V1 and V2, we assume that V = V1 ∪ V2, and the extra nodes are
treated as singletons.
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Table I: Symbols and Definitions. Bold capital letters: matrices, lowercase letters with arrows: vectors, plain
font: scalars.

Symbol Description

G graph
V, n set of nodes, number of nodes
E ,m set of edges, number of edges
sim(G1, G2) similarity between graphs G1 and G2

d(G1, G2) distance between graphs G1 and G2

I n× n identity matrix
A n× n adjacency matrix with elements aij
D n× n diagonal degree matrix, dii =

∑
j aij

L = D−A laplacian matrix
S n× n matrix of final scores with elements sij
S′ n× g reduced matrix of final scores

~ei n× 1 unit vector with 1 in the ith element
~s0k n× 1 vector of seed scores for group k
~si n× 1 vector of final affinity scores to node i

g number of groups (node partitions)
ε = 1/(1 + maxi (dii)) positive constant (< 1)

encoding the influence between neighbors

DC0, DC DELTACON0, DELTACON
VEO Vertex/Edge Overlap
GED Graph Edit Distance [Bunke et al. 2006]
SS Signature Similarity [Papadimitriou et al. 2008]
λ-D ADJ. λ-distance on the Adjacency A
λ-D LAP λ-distance on the Laplacian L
λ-D N.L. λ-distance on the normalized Laplacian L

2.1. Fundamental Concept
The first conceptual step of our proposed method is to compute the pairwise node affinities in the first graph,
and compare them with the ones in the second graph. For notational compactness, we store them in a n × n
similarity matrix3 S. The sij entry of the matrix indicates the influence node i has on node j. For example,
in a who-knows-whom network, if node i is, say, republican and if we assume homophily (i.e., neighbors are
similar), how likely is it that node j is also republican? Intuitively, node i has more influence/affinity to node j
if there are many, short, heavily weighted paths from node i to j.

The second conceptual step is to measure the differences in the corresponding node affinity scores of the
two graphs and report the result as their similarity score.

2.2. How to measure node affinity?
Pagerank [Brin and Page 1998], personalized Random Walks with Restarts (RWR) [Haveliwala 2003], lazy
RWR [Aldous and Fill 2002], and the “electrical network analogy” technique [Doyle and Snell 1984] are
only a few of the methods that compute node affinities. We could have used Personalized RWR: [I − (1 −
c)AD−1]~si = c ~ei, where c is the probability of restarting the random walk from the initial node, ~ei the
starting (seed) indicator vector (all zeros except 1 at position i), and ~si the unknown Personalized Pagerank
column vector. Specifically, sij is the affinity of node j with respect to node i. For reasons that we explain next,
we chose to use a more recent and principled method, the so-called Fast Belief Propagation (FABP) [Koutra
et al. 2011], and specifically a simplified form of it given by:

[I + ε2D− εA]~si = ~ei (1)

3In reality, we don’t measure all the affinities (see Section 3.2 for an efficient approximation).
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where ~si = [si1, ...sin]T is the column vector of final similarity/influence scores starting from the ith node,
ε is a small constant capturing the influence between neighboring nodes, I is the identity matrix, A is the
adjacency matrix and D is the diagonal matrix with the degree of node i as the dii entry.

An equivalent, more compact notation, is to use a matrix form, and to stack all the ~si vectors (i = 1, . . . , n)
into the n× n matrix S. We can easily prove that

S = [sij ] = [I + ε2D− εA]−1 . (2)

Derivations and Equivalences. Before we give the reasons we use Belief Propagation in order to measure
node affinity, we provide the next observation which briefly explains the simplification in the FABP equation
that we used.

OBSERVATION 1. (From FABP to DELTACON- Sketch of Derivation) We start from the FABP [Koutra
et al. 2011], which is a fast approximation of the loopy BP algorithm, and is guaranteed to converge: [I+aD−
c′A]~s = ~s0,where ~s0 is the vector of prior scores, ~s is the vector of final scores (beliefs), a = 4h2

h/(1−4h2
h),

and c′ = 2hh/(1− 4h2
h) are small constants, and hh is a small constant that encodes the influence between

neighboring nodes. By (a) using the MacLaurin expansion for 1/(1−4h2
h) ≈ 1+4h2

h and omitting the terms
of power greater than 2, (b) setting ~s0 = ~ei and ~s = ~si, and (c) setting hh = ε/2, we obtain Equation 1, the
core formula of DELTACON.

Finally, for the reader who is familiar with RWR, we note that the version of FABP that we use is identical
to Personalized RWR under specific conditions, as shown in Theorem 1.

The FABP equation (Equation 1) can be written in a Personalized RWR-like form:

[I− (1− c′′)A∗D−1]~si = c′′ ~y,

where c′′ = 1− ε, ~y = A∗D
−1A−1 1

c′′~ei and A∗ = D(I + ε2D)−1D−1AD.

THEOREM 1.

PROOF. We begin from the derived FABP equation (Equation 1) and do simple linear algebra operations:
[I + ε2D− εA]~si = ~ei (×D−1 from the left)
[D−1 + ε2I− εD−1A]~si = D−1~ei (F = D−1 + ε2I)
[F− εD−1A]~si = D−1~ei (× F−1 from the left)
[I− εF−1D−1A]~si = F−1D−1~ei ( A∗ = F−1D−1AD)
[I− εA∗D−1]~si = (1− ε) (A∗D

−1A−1 1
1−ε~ei)

2.3. Why use Belief Propagation?
The reasons we choose BP and its fast approximation with Equation 2 are: (a) it is based on sound theoretical
background (maximum likelihood estimation on marginals), (b) it is fast (linear on the number of edges), and
(c) it agrees with intuition, taking into account not only direct neighbors, but also 2-, 3-, and k-step-away
neighbors, with decreasing weight. We elaborate on the last reason, next:

INTUITION 1.(Attenuating Neighboring Influence)
By temporarily ignoring the term ε2D in (2), we can expand the matrix inversion and approximate the n×n
matrix of pairwise affinities, S, as

S ≈ [I− εA]−1 ≈ I + εA + ε2A2 + . . . .

As we said, our method captures the differences in the 1-step, 2-step, 3-step etc. neighborhoods in a weighted
way; differences in long paths have a smaller effect on the computation of the similarity measure than differ-
ences in short paths. Recall that ε < 1, and that Ak has information about the k-step paths. Notice that this is
just the intuition behind our method; we do not use this simplified formula to find matrix S.

2.4. Which properties should a similarity measure satisfy?
Let G1(V, E1) and G2(V, E2) be two graphs, and sim(G1, G2) ∈ [0, 1] denote their similarity score. Then,
we want the similarity measure to obey the following axioms:

• A1. Identity property: sim(G1, G1) = 1
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• A2. Symmetric property: sim(G1, G2) = sim(G2, G1)

• A3. Zero property: sim(G1, G2) → 0 for n → ∞, where G1 is the complete graph (Kn), and G2 is the
empty graph (i.e., the edge sets are complementary).

Moreover, the measure must be:

(a) intuitive. It should satisfy the following desired properties:

P1. [Edge Importance] For unweighted graphs, changes that create disconnected components should be
penalized more than changes that maintain the connectivity properties of the graphs.

P2. [Edge-“Submodularity”] For unweighted graphs, a specific change is more important in a graph with
few edges than in a much denser, but equally sized graph.

P3. [Weight Awareness] In weighted graphs, the bigger the weight of the removed edge is, the greater the
impact on the similarity measure should be.

In Section 3.3, we formalize the properties and discuss their satisfiability by our proposed similar-
ity measure theoretically. Moreover, in Section 5 we introduce and discuss about an additional, informal,
property:
IP. [Focus Awareness] “Random” changes in graphs are less important than “targeted” changes of the same
extent.

(b) scalable. The huge size of the generated graphs, as well as their abundance require a similarity measure
that is computed fast and handles graphs with billions of nodes.

3. DELTACON: DETAILS
Now that we have described the high level ideas behind our method, we move on to the details.

3.1. Algorithm Description
Let the graphs we compare beG1(V, E1) andG2(V, E2). If the graphs have different node sets, say V1 and V2,
we assume that V = V1 ∪ V2, where some nodes are disconnected.

As mentioned before, the main idea behind our proposed similarity algorithm is to compare the node affini-
ties in the given graphs. The steps of our similarity method are:

Step 1. By Equation 2, we compute for each graph the n × n matrix of pairwise node affinity scores (S1

and S2 for graphs G1 and G2 respectively).

Step 2. Among the various distance and similarity measures (e.g., Euclidean distance (ED), cosine similar-
ity, correlation) found in the literature, we use the root Euclidean distance (ROOTED, a.k.a. Matusita distance4)

d = ROOTED(S1,S2) =

√√√√ n∑
i=1

n∑
j=1

(
√
s1,ij −

√
s2,ij)2. (3)

We use the ROOTED distance for the following reasons:
(1) it is very similar to the Euclidean distance (ED), the only difference being the square root of the pairwise

similarities (sij),

(2) it usually gives better results, because it “boosts” the node affinities5 and, therefore, detects even small
changes in the graphs (other distance measures, including ED, suffer from high similarity scores no matter
how much the graphs differ), and

(3) satisfies the desired properties P1-P3, as well as the informal property IP . As discussed in Section 3.3, at
least P1 is not satisfied by the ED.

4Using pth root instead of square root gives consistent results (for small values of p). Without loss of generality, we use the
Matusita distance, which corresponds to p = 2.
5The node affinities are in [0, 1], so the square root makes them bigger.
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Step 3. For interpretability, we convert the distance (d) to a similarity measure (sim) via the formula
sim = 1

1+d
. The result is bounded to the interval [0,1], as opposed to being unbounded [0,∞). Notice that the

distance-to-similarity transformation does not change the ranking of results in a nearest-neighbor query.
The straightforward algorithm, DELTACON0 (Algorithm 1), is to compute all the n2 affinity scores of matrix

S by simply using Equation 2. We can do the inversion using the Power Method or any other efficient method.

ALGORITHM 1: DELTACON0

INPUT: edge files of G1(V, E1) and G2(V, E2), i.e., A1 and A2

// V = V1 ∪ V2, if V1 and V2 are the graphs’ node sets
S1 = [I + ε2D1 − εA1]−1 // s1,ij : affinity/influence of
S2 = [I + ε2D2 − εA2]−1 //node i to node j in G1

d(G1, G2) =ROOTED (S1,S2)
return sim(G1, G2) = 1

1+d(G1,G2)

3.2. Speeding up: DELTACON

DELTACON0 satisfies all the properties in Section 2, but it is quadratic (n2 affinity scores sij are computed by
using the power method for the inversion of a sparse matrix) and thus not scalable. We present a faster, linear
algorithm, DELTACON (Algorithm 2), which approximates DELTACON0 and differs in the first step. We still
want each node to become a seed exactly once in order to find the affinities of the rest of the nodes to it; but,
here, we have multiple seeds at once, instead of having one seed at a time. The idea is to randomly divide our
node-set into g groups, and compute the affinity score of each node i to group k, thus requiring only n × g
scores, which are stored in the n× g matrix S′ (g � n). Intuitively, instead of using the n× n affinity matrix
S, we add up the scores of the columns that correspond to the nodes of a group, and obtain the n × g matrix
S′ (g � n). The score s′ik is the affinity of node i to the kth group of nodes (k = 1, . . . , g). The following
lemma gives the complexity of computing the node-group affinities.

The time complexity of computing the reduced affinity matrix, S′, is linear on the number of edges.

LEMMA 1.

PROOF. We can compute the n × g “skinny” matrix S′ quickly, by solving [I + ε2D − εA]S′ =
[~s01 . . . ~s0g], where ~s0k =

∑
i∈groupk

~ei is the membership n × 1 vector for group k (all 0s, except 1s
for members of the group). Solving this system is equivalent to solving for each group g the linear system
[I + ε2D − εA]S′ = ~s0g . The latter can be solved –using the Power Method [Koutra et al. 2011]– in time
linear on the number of non-zeros of the matrix εA − ε2D, which is equivalent to the number of edges, m,
of the input graph G. Thus, the g linear systems require O(g ·m) time, which is still linear on the number of
edges for a small constant g. It is worth noting that the g linear systems can be solved in parallel, since there
are no dependencies, and then the overall time is simply O(m).

Thus, we compute g final scores per node, which denote its affinity to every group of seeds, instead of every
seed node that we had in Equation 2. With careful implementation, DELTACON is linear on the number of edges
and groups g. As we show in Section 5.3, it takes ∼ 160sec, on commodity hardware, for a 1.6-million-node
graph. Once we have the reduced affinity matrices S′1 and S′2 of the two graphs, we use the ROOTED, to find
the similarity between the n× g matrices of final scores, where g � n. The pseudocode of the DELTACON is
given in Algorithm 2.

In an attempt to see how our random node partitioning algorithm in the first step fares with respect to more
principled partitioning techniques, we used METIS [Karypis and Kumar 1995]. Essentially, such an approach
finds the influence of coherent subgraphs to the rest of the nodes in the graph – instead of the influence of
randomly chosen nodes to the latter. We found that the METIS-based variant of our similarity method gave
intuitive results for most small, synthetic graphs, but not for the real graphs. This is probably related to the lack
of good edge-cuts on sparse real graphs, and also the fact that changes within a group manifest less when a
group consists of the nodes belonging to a single community than randomly assigned nodes.

Next we give the time complexity of DELTACON, as well as the relationship between the similarity scores
of DELTACON0 and DELTACON.
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ALGORITHM 2: DELTACON

INPUT: edge files of G1(V, E1) and G2(V, E2), i.e., A1 and A2, and
g (groups: # of node partitions)

{Vj}gj=1 = random partition(V, g) //g groups
// estimate affinity vector of nodes i = 1, . . . , n to group k
for k = 1→ g do
~s0k =

∑
i∈Vk

~ei

solve [I + ε2D1 − εA1]~s′1k = ~s0k
solve [I + ε2D2 − εA2]~s′2k = ~s0k

end for
S′1 = [~s′11 ~s

′
12 . . . ~s

′
1g]; S′2 = [~s′21 ~s

′
22 . . . ~s

′
2g]

// compare affinity matrices S′1 and S′2
d(G1, G2) =ROOTED (S′1,S

′
2)

return sim(G1, G2) = 1
1+d(G1,G2)

The time complexity of DELTACON, when applied in parallel to the input graphs, is linear on the
number of edges in the graphs, i.e., O(g ·max{m1,m2}).

LEMMA 2.

PROOF. By using the Power Method [Koutra et al. 2011], the complexity of solving Equation 1 is O(mi)
for each graph (i = 1, 2). The node partitioning needs O(n) time; the affinity algorithm is run g times in
each graph, and the similarity score is computed in O(gn) time. Therefore, the complexity of DELTACON
is O((g + 1)n + g(m1 + m2)), where g is a small constant. Unless the graphs are trees, |Ei| < n, so the
complexity of the algorithm reduces to O(g(m1 + m2)). Assuming that the affinity algorithm is run on the
graphs in parallel, since there is no dependency between the computations, DELTACON has complexity O(g ·
max{m1,m2}).

Before we give the relationship between the similarity scores computed by the two proposed methods, we
introduce a helpful lemma.

The affinity score of each node to a group (computed by DELTACON) is equal to the sum of the affin-
ity scores of the node to each one of the nodes in the group individually (computed by DELTACON0).

LEMMA 3.

PROOF. Let B = I+ ε2D− εA. Then DELTACON0 consists of solving for every node i ∈ V the equation
B~si = ~ei; DELTACON solves the equation B~s′k = ~s0k for all groups k ∈ (0, g], where ~s0k =

∑
i∈groupk

~ei.
Because of the linearity of matrix additions, it holds true that ~s′k =

∑
i∈groupk

~si, for all groups k.

DELTACON’s similarity score between any two graphs G1, G2 upper bounds the actual
DELTACON0’s similarity score, i.e., simDC0(G1, G2) ≤ simDC(G1, G2).

THEOREM 2.

PROOF. Intuitively, grouping nodes blurs the influence information and makes the nodes seem more similar
than originally.

More formally, let S1,S2 be the n × n final score matrices of G1 and G2 by applying DELTACON0,
and S′1,S

′
2 be the respective n × g final score matrices by applying DELTACON. We want to show that

DELTACON0’s distance

dDC0 =
√∑n

i=1

∑n
j=1(
√
s1,ij −

√
s2,ij)2

is greater than DELTACON’s distance
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dDC =

√∑g
k=1

∑n
i=1 (

√
s′1,ik −

√
s′2,ik)2

or, equivalently, that d2DC0
> d2DC . It is sufficient to show that for one group of DELTACON, the corresponding

summands in dDC are smaller than the summands in dDC0 which are related to the nodes that belong to the
group. By extracting the terms in the squared distances that refer to one group of DELTACON and its member
nodes in DELTACON0, and by applying Lemma 3, we obtain the following terms:

tDC0 =
∑n
i=1

∑
j∈group(

√
s1,ij −

√
s2,ij)

2

tDC =
∑n
i=1 (

√∑
j∈group s1,ij −

√∑
j∈group s2,ij)

2.

Next we concentrate again on a selection of summands (e.g., i = 1), we expand the squares and use the
Cauchy-Schwartz inequality to show that∑

j∈group
√
s1,ijs2,ij <

√∑
j∈group s1,ij

∑
j∈group s2,ij ,

or equivalently that tDC0 > tDC .

3.3. Properties of DELTACON

We have already presented in detail our scalable algorithm for graph similarity, and the only thing that remains
from a theoretic perspective is whether DELTACON satisfies the axioms and properties presented in Section 2.4.

A1. Identity Property: sim(G1, G1) = 1.
The affinity scores, S, are identical for the input graphs, because the two linear systems in Algorithm 1 are

exactly the same. Thus, the ROOTED distance d is 0, and the DELTACON similarity, sim = 1
1+d

, is equal to
1.

A2. Symmetric Property: sim(G1, G2) = sim(G2, G1).
Similarly, the equations that are used to compute sim(G1, G2) and sim(G2, G1) are the same. The only differ-
ence is the order of solving them in Algorithm 1. Therefore, both the ROOTED distance d and the DELTACON
similarity score sim are the same.

A3. Zero Property: sim(G1, G2) → 0 for n → ∞, where G1 is the complete graph (Kn), and G2 is the
empty graph (i.e., the edge sets are complementary).

PROOF. We restrict ourselves to a sketch of proof, since the proof is rather intricate. First we show that all
the nodes in a complete graph get final scores in {sg, sng}, depending on whether they are included in group g
or not. Then, it can be demonstrated that the scores have finite limits, and specifically {sg, sng} → { n2g+1, n

2g
}

as n→∞ (for finite n
g

). Given this condition, it can be derived that the ROOTED, d(G1, G2), between the S

matrices of the empty and the complete graph becomes arbitrarily large. So, sim(G1, G2) = 1
1+d(G1,G2)

→ 0

for n→∞.

DELTACON satisfies the three axioms that every similarity measure must obey. We elaborate on the
satisfiability of the properties of P1− P3 next.

P1. [Edge Importance] For unweighted graphs, changes that create disconnected components should be
penalized more than changes that maintain the connectivity properties of the graphs.

Formalizing this property in its most general case with any type of disconnected components is hard, thus
we focus on a well-understood and intuitive case: the barbell graph.

PROOF. Assume that A is the adjacency matrix of an undirected barbell graph with two cliques of size n1

and n2 respectively (e.g., B10 with n1 = n2 = 5 in Figure 3) and (i0, j0) is the “bridge” edge. Without loss
of generality we can assume that A has a block-diagonal form, with one edge (i0, j0) linking the two blocks:
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aij =


for i, j ∈ {1, . . . , n1} and i 6= j

1 or i, j ∈ {n1 + 1, . . . , n2} and i 6= j

or (i, j) = (i0, j0) or (i, j) = (j0, i0)

0 otherwise

Then, B is an adjacency matrix with elements

bij =

{
0 for one pair (i, j) 6= (i0, j0) and (j0, i0)

aij otherwise

and C is an adjacency matrix with elements

cij =

{
0 if (i, j) = (i0, j0) or (i, j) = (j0, i0)

aij otherwise

We want to prove that sim(A,B) ≥ sim(A,C) ⇔ d(A,B) ≤ d(A,C) or, equivalently, that
d2(A,B) ≤ d2(A,C).

From Equation 1, by expressing the matrix inversion using a power series and ignoring the terms of greater
than second power, for matrix A we obtain the solution:

~si = [I + (εA− ε2DA) + (εA− ε2DA)2 + ...]~ei ⇒ SA = I + εA + ε2A2 − ε2DA,

where the index (e.g., A) denotes the graph each matrix corresponds to. Now, using the last equation, we can
write out the elements of the SA,SB,SC matrices, and derive their ROOTED distances:

d2(A,B) = 4(n2 − f)
ε4

c21
+ 2

ε2

c22

and

d2(A,C) = 2(n1 + n2 − 2)ε2 + 2ε,

where c1 =
√
ε+ ε2(n2 − 3) +

√
ε+ ε2(n2 − 2) and c2 =

√
ε2(n2 − 2) +

√
ε+ ε2(n2 − 2), and f = 3

if the missing edge in graphB and the “bridge” edge are incident to the same node, or f = 2 in any other case.
We can, therefore, write the difference of the distances we are interested in as

d2(A,C)− d2(A,B) = 2ε

(
ε(n1 + n2 − f) + 1−

(
2ε3(n1 − 2)

c21
+

ε

c22

))
.

By observing that c1 ≥ 2
√

(ε) and c2 ≥
√
ε for n2 ≥ 3 and using these facts in the last equation, it follows

that:

d2(A,C)− d2(A,B) ≥ 2ε

(
ε(n1 + n2 − f)− ε2(n1 − 2)

2

)
≥ 2ε2 (n1 + n2 − f − ε(n1 − 2)) .

Given that n2 ≥ 3 and f = 2 or 3, we obtain that n2 − f ≥ 0. Moreover, 0 < ε < 1 by definition and
n1 − εn1 ≥ 0. From these inequalities, it immediately follows that d2(A,B) ≤ d2(A,C). We note that this
property is not always satisfied by the Euclidean distance.

P2. [Edge-“Submodularity”] For unweighted graphs, a specific change is more important in a graph with
few edges than in a much denser, but equally sized graph.

Let A be the adjacency matrix of an undirected graph, with mA non-zero elements aij and ai0j0 = 1, and
B be the adjacency matrix of another graph which is identical to A, but is missing the edge (i0, j0).

bij =

{
0 if (i, j) = (i0, j0) or (i, j) = (j0, i0)

aij otherwise

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article 0000, Publication date: 2015.
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Let’s also assume another pair of graphs C and H6 defined as follows:

cij =

{
0 for ≥ 1 pair (i, j) 6= (i0, j0) and (i, j) 6= (j0, i0)

aij otherwise

that is C has mC < mA non-zero elements and

hij =

{
0 for(i, j) = (i0, j0) or (i, j) = (j0, i0)

cij otherwise

We want to show that sim(A,B) ≥ sim(C,H) ⇔ d(A,B) ≤ d(C,H). By substituting the ROOTED
distance, it turns out that we want to show that√√√√ n∑

i=1

n∑
j=1

(
√
sA,ij −

√
sB,ij)2 ≤

√√√√ n∑
i=1

n∑
j=1

(
√
sC,ij −

√
sH,ij)2,

where sij are the elements of the corresponding affinity matrix S. These are defined for A by expressing the
matrix inversion in Equation 1 using a power series and ignoring the terms of greater than second power:

~si = [I + (εA− ε2DA) + (εA− ε2DA)2 + ...]~ei ⇒ SA = I + εA + ε2A2 − ε2DA,

where the index (e.g., A) denotes the graph each matrix corresponds to.
The proof is very technical and far from easy. Thus, instead we show a representative set of simulations that

suggest that the submodularity property is satisfied by DELTACON. Specifically, we start from a complete graph
of size n, G0 = Kn, and randomly pick an edge (i0, j0). Then, we generate a series of graphs, Gt, derived
by Gt−1 by removing one new edge (it, jt). Note that (it, jt) cannot be the initially chosen edge (i0, j0). For
every derived graph, we compute the ROOTED distance between itself and the same graph without the edge
(i0, j0). What we expect to see is that the distance decreases as the number of edges in the graph increases. In
other words, the distance between a sparse graph and the same graph without (i0, j0) is bigger than the distance
between a denser graph and the same graph missing the edge (i0, j0). The opposite holds for the DELTACON
similarity measure, but in the proofs we use distance since that function is mathematically easier to manipulate
than the similarity function. In Figure 2, we plot, for different graph sizes n, the ROOTED distance as a function
of the edges in the graph (from left to right the graph becomes denser, and tends to the complete graph Kn).

P3. [Weight Awareness] In weighted graphs, the bigger the weight of the removed edge is, the greater the
impact on the similarity measure should be.

Assume thatGA is a graph with adjacency matrix A and elements aij ≥ 0. Also, letGB be a graph
with adjacency matrix B and elements

bij =

{
aij + k if (i, j) = (i0, j0) or (i, j) = (j0, i0)

aij otherwise

where k is a positive integer (k ≥ 1). Then, it holds that (SB)ij ≥ (SA)ij .

LEMMA 4.

PROOF OF LEMMA 4. From Equation 1, by expressing the matrix inversion using a power series and ig-
noring the terms of greater than second power, we obtain the solution:

~si = [I + (εA− ε2D) + (εA− ε2D)2 + ...]~ei ⇒ ~si ≈ [I + εA + ε2(A2 −D)]~ei,

or equivalently

SA = I + εA + ε2A2 − ε2DA

6We use H instead of D to distinguish the adjacency matrix of the graph from the diagonal matrix of degrees, which is
normally defined as D.
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(a) Graph of size 100 (b) Graph of size 300

(c) Graph of size 500 (d) Graph of size 700

(e) Graph of size 900 (f) Graph of size 1100

(g) Graph of size 1700 (h) Graph of size 2100

Fig. 2: Extensive simulations for different graph sizes indicate that DELTACON satisfies the edge-
submodularity property. The distance between two graphs that differ only in the edge (i0, j0) is a decreasing
function of the number of edges in the original graph Gt. Or reversely, the their similarity is an increasing
function of the number of edges in the original graph Gt.
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and

SB = I + εB + ε2B2 − ε2DB .

Note that

SB − SA = ε(B−A) + ε2(B2 −A2)− ε2(DB −DA), (4)

where

(B−A)ij =

{
k if (i, j) = (i0, j0) or (i, j) = (j0, i0)

0 otherwise

and

(DB −DA)ij =

{
k if (i, j) = (i0, j0) or (i, j) = (j0, i0)

0 otherwise.

By applying basic algebra, it can be shown that

(B2)ij

{
= (A2)ij + 2k · ai0j0 + k2 if (i, j) = (i0, i0) or (i, j) = (j0, j0)

≥ (A2)ij otherwise

since bij ≥ aij ≥ 0 for all i, j by definition. Next, observe that for Equation 4, we have 3 cases:

— For all (i, j) 6= (i0, i0) and (j0, j0), we have

(SB − SA)ij = ε(B−A)ij + ε2(B2 −A2)ij ≥ 0

— For (i, j) = (i0, i0) we have

(SB − SA)i0i0 = ε2k(2k · ai0j0 + k − 1) ≥ 0

— For (i, j) = (j0, j0) we have

(SB − SA)j0j0 = ε2k(2k · ai0j0 + k − 1) ≥ 0

Hence, for all (i, j) it holds that (SB)ij ≥ (SA)ij .

Next we will use the lemma to prove the weight awareness property.

PROOF OF PROPERTY P3. We formalize the weight awareness property in the following way. Let A be
the adjacency matrix of a weighted, undirected graph, with elements aij . Then, B is equal A but with a bigger
weight for the edge (i0, j0), or more formally:

bij =

{
aij + k if (i, j) = (i0, j0) or (i, j) = (j0, i0)

aij otherwise

Let also C be the adjacency matrix of another graph with the same entries as A except for ci0,j0 , which is
bigger than bi0,j0 :

cij =

{
aij + k′ if (i, j) = (i0, j0) or (i, j) = (j0, i0)

aij otherwise

where k′ > k is an integer. To prove the property, it suffices to show that sim(A,B) ≥ sim(A,C) ⇔
d(A,B) ≤ d(A,C). Notice that this formal definition includes the case of removing an edge by assuming
that ai0,j0 = 0 for matrix A.

We can write the difference of the squares of the ROOTED distances as:

d2(A,B)− d2(A,C) =
n∑
i=1

n∑
j=1

(
√
sA,ij −

√
sB,ij)

2 −
n∑
i=1

n∑
j=1

(
√
sA,ij −

√
sC,ij)

2

=

n∑
i=1

n∑
j=1

(
√
sC,ij −

√
sB,ij)(2

√
sA,ij −

√
sB,ij −

√
sC,ij) < 0

because (SB)ij ≥ (SA)ij , (SC)ij ≥ (SA)ij , and (SC)ij ≥ (SB)ij for all i, j by the construction of the
matrices A, B, and C, and Lemma 4 .
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In Section 5, we show experimentally that DELTACON not only satisfies the properties, but also that other
similarity and distance methods fail in one or more test cases.

4. DELTACON-ATTR: ADDING NODE AND EDGE ATTRIBUTION
Thus far, we have broached the intuition and decisions behind developing DELTACON for calculating graph
similarity. However, we argue that computing this metric is only half the battle in the wider realm of change
detection and graph understanding. Equally important is finding out why the graph changed the way it did. One
way of doing this is by attributing the changes to nodes and/or edges.

Equipped with this information, we can draw conclusions with respect to how certain changes impact graph
connectivity and apply this understanding in a domain-specific context to assign blame, as well as instrument
measures to prevent such changes in the future. Additionally, such a feature can be used to measure changes
which have not yet happened in order to find information about which nodes and/or edges are most important
for preserving or destroying connectivity. In this section, we will discuss our extension of DELTACON, called
DELTACON-ATTR, which enables node- and edge-level attribution for this very purpose.

4.1. Algorithm Description
Node Attribution. Our first goal is to find the nodes which are mostly responsible for the difference

between the input graphs. Let the affinity matrices S′1 and S′2 be precomputed. Then, the steps of our node
attribution algorithm (Algorithm 3) can be summarized to:

Step 1. Intuitively, we compute the difference between the affinity of node v to the node groups in graph
A and the affinity of node v to the node groups in graph A2. To that end, we use the same distance, ROOTED,
that we applied to find the similarity between the whole graphs.

Given that the vth row vector (v ≤ n) of S′1 and S′2 reflects the affinity of node v to the remainder of the
graph, the ROOTED distance between the two vectors provides a measure of the extent to which that node is a
culprit for change — we refer to this measure as the impact of a node. Thus, culprits with comparatively high
impact are ones that are most responsible for change between graphs.

More formally, we quantify the contribution of each node to the graph changes by taking the ROOTED
distance between each corresponding pair of row vectors in S′1 and S′2 as wv for v = 1, . . . , n per Equation 5.

wv = ROOTED(S′1,v,S
′
2,v) =

√√√√ g∑
j=1

(
√
s′1,vj −

√
s′2,vj)

2. (5)

Step 2. We sort the scores in the n × 1 node impact vector ~w in descending order and report the most
important scores and their corresponding nodes.

ALGORITHM 3: DELTACON-ATTR Node Attribution
INPUT: affinity matrices S′1, S′2

edge files of G1(V, E1) and G2(V, E2), i.e., A1 and A2

for v = 1→ n do
// If an edge adjacent to the node has changed, the node is responsible:
if
∑
|A1(v, :)−A2(v, :)| > 0 then

wv = ROOTED(S′1,v,S
′
2,v)

end if
end for
[~wsorted, ~wsortedIndex] = sortRows(~w, 1, ‘descend’) // sort rows of vector w on column index 1

//(node impact score) by descending value
return [~wsorted, ~wsortedIndex]

Edge Attribution. Complementarily to the node attribution approach, we also developed an edge attribu-
tion method which ranks edge changes (additions and deletions) with respect to the graph changes. The steps
of our edge attribution algorithm (Algorithm 4) are:
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Step 1. We assign each changed edge incident to at least one node in the culprit set an impact score. This
score is equal to the sum of impact scores for the nodes that the edge connects or disconnects.

Our goal here is to assign edges impact according to the degree that they affect the nodes that they touch.
Since even the removal or addition of a single edge does not necessarily impact both incident nodes equally,
we choose the sum of both nodes’ scores as the edge impact metric. Thus, our algorithm will rank edges which
touch two nodes of moderately high impact more importantly than edges which touch one node of high impact
but another of low impact.

Step 2. We sort the edge impact scores in descending order and report the edges in order of importance.

Analysis of changed edges can reveal important discrepancies from baseline behavior. Specifically, a
large number of added edges or removed edges with individually low impact is indicative of star formation
or destruction, whereas one or a few added or removed edges with individually high impact are indicative of
community expansion or reduction via addition or removal of certain key bridge edges.

ALGORITHM 4: DELTACON-ATTR Edge Attribution
INPUT: adjacency matrices A1, A2, culprit set of interest ~wsortedIndex,1 . . . index and node impact scores ~w

for v = 1→ length(wsortedIndex,1 . . . index) do
srcNode = wsortedIndex,v
~r = A2,v −A1,v

for k = 1→ n do
destNode = k
if ~rk = 1 then

edgeScore = wsrcNode + wdestNode
append row [srcNode, destNode, ’+’, edgeScore] to E

end if
if ~rk = −1 then

edgeScore = wsrcNode + wdestNode
append row [srcNode, destNode, ’-’, edgeScore] to E

end if
end for

end for
Esorted = sortrows(E, 4, ’descend’) // sort rows of matrix E on column index 4 (edge impact

// score) by descending value
return Esorted

4.2. Scalability Analysis
Given precomputed S′1 and S′2 (precomputation is assumed since attribution can only be conducted after simi-
larity computation), the node attribution component of DELTACON-ATTR is loglinear on the number of nodes,
since n influence scores need to be sorted in descending order. In more detail, the cost of computing the impact
scores for nodes is linear on the number of nodes and groups, but is dominated by the sorting cost given that
g � log(n) in general.

With the same assumptions with respect to precomputed results, the edge attribution portion of DELTACON-
ATTR is also loglinear, but on the sum of edge counts, since m1 + m2 total possible changed edges need to
be sorted. In practice, the number of edges needing to be sorted should be far smaller, as we only need to
concern ourselves with edges which are incident to nodes in the culprit set of interest. Specifically, the cost
of computing impact scores for edges is linear on the number of nodes in the culprit set k and the number of
changed edges, but is again dominated by the sorting cost given that k � log(m1 +m2) in general.

5. EXPERIMENTS
We conduct several experiments on synthetic (Figure 3) as well as real data (undirected, unweighted graphs,
unless stated otherwise - see Table VI) to answer the following questions:
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Q1. Does DELTACON agree with our intuition and satisfy the axioms/properties? Where do other methods
fail?
Q2. Is DELTACON scalable and able to compare large-scale graphs?
Q3. How sensitive is it to the number of node groups?

We implemented the code in Matlab and ran the experiments on AMD Opteron Processor 854 @3GHz, RAM
32GB. The selection of parameters in Equation 1 follows the lines of the paper [Koutra et al. 2011]; all the
parameters are chosen so that the system converges.

5.1. Intuitiveness of DELTACON

To answer Q1, for the first 3 properties (P1-P3), we conduct experiments on small graphs of 5 to 100 nodes
and classic topologies (cliques, stars, circles, paths, barbell and wheel-barbell graphs, and “lollipops” shown
in Figure 3), since people can argue about their similarities. For the name conventions, see Table 2. For our
method we used 5 groups (g), but the results are similar for other choices of the parameter. In addition to the
synthetic graphs, for informal property (IP ), we use real networks with up to 11 million edges (Table VI,
page 19).
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Fig. 3: Small, synthetic graphs used in DELTACON experimental analysis – K: clique, C: cycle, P: path, S: star,
B: barbell, L: lollipop, and WhB: wheel-barbell.

Table II: Name conventions for synthetic graphs. Missing number after the prefix implies X = 1.

Symbol Meaning Symbol Meaning
Kn clique of size n Bn barbell of size n
Pn path of size n WhBn wheel barbell of size n
Cn cycle of size n mX missing X edges
Sn star of size n mmX missing X “bridge” edges
Ln lollipop of size n w weight of “bridge” edge
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We compare our method, DELTACON, to the 6 best state-of-the-art similarity measures that apply to our
setting:

(1) Vertex/Edge Overlap (VEO): In [Papadimitriou et al. 2008], the VEO similarity between two graphs
G1(V1, E1) and G2(V2, E2) is defined as:

simV EO(G1, G2) = 2
|E1 ∩ E2|+ |V1 ∩ V2|
|E1|+ |E2|+ |V1|+ |V2|

.

(2) Graph Edit Distance (GED): GED has quadratic complexity in general, but it is linear on the number of
nodes and edges when only insertions and deletions are allowed [Bunke et al. 2006].

simGED(G1, G2) = |V1|+ |V2| − 2|V1 ∩ V2|
+ |E1|+ |E2| − 2|E1 ∩ E2|.

For V1 = V2 and unweighted graphs, simGED is equivalent to the Hamming distance (HD) defined as
HD(A1,A2) = sum(A1XORA2).

(3) Signature Similarity (SS): This is the best performing similarity measure studied in [Papadimitriou et al.
2008]. It starts from node and edge features, and by applying the SimHash algorithm (random projection
based method), projects the features to a small dimension feature space, which is called signature. The
similarity between the graphs is defined as the similarity between their signatures.

(4) The last 3 methods are variations of the well-studied spectral method “λ-distance” ([Bunke et al. 2006],
[Peabody 2003], [Wilson and Zhu 2008]). Let {λ1i}|V1|i=1 and {λ2i}|V2|i=1 be the eigenvalues of the matrices
that represent G1 and G2. Then, λ-distance is given by

dλ(G1, G2) =

√√√√ k∑
i=1

(λ1i − λ2i)
2,

where k is max(|V1|, |V2|) (padding is required for the smallest vector of eigenvalues). The variations
of the method are based on three different matrix representations of the graphs: adjacency (λ-D Adj.),
laplacian (λ-D Lap.) and normalized laplacian matrix (λ-D N.L.).

The results for the first 3 properties are presented in the form of Tables III-IV. For property P1 we compare
the graphs (A,B) and (A,C) and report the difference between the pairwise similarities/distances of our pro-
posed methods and the 6 state-of-the-art methods. We have arranged the pairs of graphs in such way that (A,B)
are more similar than (A,C). Therefore, table entries that are non-positive mean that the corresponding method
does not satisfy the property. Similarly, for properties P2 and P3, we compare the graphs (A,B) and (C,D) and
report the difference in their pairwise similarity/distance scores.

P1. Edge Importance. “Edges whose removal creates disconnected components are more important than
other edges whose absence does not affect the graph connectivity. The more important an edge is, the more it
should affect the similarity or distance measure.”

For this experiment we use the barbell, “wheel barbell” and “lollipop” graphs depicted in Figure 3, since
it is easy to argue about the importance of the individual edges. The idea is that edges in a highly connected
component (e.g., clique, wheel) are not very important from the information flow viewpoint, while edges that
connect (almost uniquely) dense components play a significant role in the connectivity of the graph and the
information flow. The importance of the “bridge” edge depends on the size of the components that it connects;
the bigger the components, the more important the role of the edge is.

OBSERVATION 2. Only DELTACON succeeds in distinguishing the importance of the edges (P1) with
respect to connectivity, while all the other methods fail at least once (Table III).

P2. “Edge-Submodularity”. “LetA(V, E1) andB(V, E2) be two unweighted graphs with the same node
set, and |E1| > |E2| edges. Also, assume that mxA(V, E1) and mxB(V, E2) are the respective derived graphs
after removing x edges. We expect that sim(A,mxA) > sim(B,mxB), since the fewer the edges in a
constant-sized graph, the more “important” they are.”

The results for different graph topologies and 1 or 10 removed edges (prefixes ‘m’ and ‘m10’, respec-
tively) are given compactly in Table IV. Recall that non-positive values denote the violation of the “edge-
submodularity” property.
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Table III: “Edge Importance” (P1). Highlighted entries violate P1.

GED λ-D λ-D λ-DGRAPHS DC0 DC VEO SS (XOR) ADJ. LAP. N.L.
A B C ∆s = sim(A,B) − sim(A,C) ∆d = d(A,C) − d(A,B)

B10 mB10 mmB10 0.07 0.04 0 −10−5 0 0.21 -0.27 2.14
L10 mL10 mmL10 0.04 0.02 0 10−5 0 -0.30 -0.43 -8.23

WhB10 mWhB10 mmWhB10 0.03 0.01 0 −10−5 0 0.22 0.18 -0.41
WhB10 m2WhB10 mm2WhB10 0.07 0.04 0 −10−5 0 0.59 0.41 0.87

Table IV: “Edge-Submodularity” (P2). Highlighted entries violate P2.

GED λ-D λ-D λ-DGRAPHS DC0 DC VEO SS (XOR) ADJ. LAP. N.L.
A B C D ∆s = sim(A,B) − sim(C,D) ∆d = d(C,D) − d(A,B)

K5 mK5 C5 mC5 0.03 0.03 0.02 10−5 0 -0.24 -0.59 -7.77
C5 mC5 P5 mP5 0.03 0.01 0.01 −10−5 0 -0.55 -0.39 -0.20
K100 mK100 C100 mC100 0.03 0.02 0.002 10−5 0 -1.16 -1.69 -311
C100 mC100 P100 mP100 10−4 0.01 10−5 −10−5 0 -0.08 -0.06 -0.08
K100 m10K100 C100 m10C100 0.10 0.08 0.02 10−5 0 -3.48 -4.52 -1089
C100 m10C100 P100 m10P100 0.001 0.001 10−5 0 0 -0.03 0.01 0.31

Table V: “Weight Awareness” (P3). Highlighted entries violate P3.

GED λ-D λ-D λ-DGRAPHS DC0 DC VEO SS (XOR) ADJ. LAP. N.L.
A B C D ∆s = sim(A,B) − sim(C,D) ∆d = d(C,D) − d(A,B)

B10 mB10 B10 w5B10 0.09 0.08 -0.02 10−5 -1 3.67 5.61 84.44
mmB10 B10 mmB10 w5B10 0.10 0.10 0 10−4 0 4.57 7.60 95.61

B10 mB10 w5B10 w2B10 0.06 0.06 -0.02 10−5 -1 2.55 3.77 66.71
w5B10 w2B10 w5B10 mmB10 0.10 0.07 0.02 10−5 1 2.23 3.55 31.04
w5B10 w2B10 w5B10 B10 0.03 0.02 0 10−5 0 1.12 1.84 17.73

Tables III-V: DELTACON0 and DELTACON (in bold) obey all the formal required properties (P1-P3). Each
row of the tables corresponds to a comparison between the similarities (or distances) of two pairs of graphs;
pairs (A,B) and (A,C) for property (P1); and pairs (A,B) and (C,D) for (P2) and (P3). Non-positive values
of ∆s = sim(A,B) − sim(C,D) and ∆d = d(C,D) − d(A,B) for similarity and distance methods,
respectively, are highlighted and mean violation of the property of interest.

OBSERVATION 3. Only DELTACON complies to the “edge-submodularity” property (P2) in all cases ex-
amined.

P3. Weight Awareness. “The absence of an edge of big weight is more important than the absence of a
smaller weighted edge; this should be reflected in the similarity measure.”

The weight of an edge defines the strength of the connection between two nodes, and, in this sense, can
be viewed as a feature that relates to the importance of the edge in the graph. For this property, we study
the weighted versions of the barbell graph, where we assume that all the edges except the “bridge” have unit
weight.

OBSERVATION 4. All the methods are weight-aware (P3), except VEO and GED, which compute just the
overlap in edges and vertices between the graphs (Table V).
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IP. Focus Awareness. At this point, all the competing methods have failed in satisfying at least one of
the formal desired properties. To test whether DELTACON satisfies our informal property, i.e., it is able to
distinguish the extent of a change in a graph, we analyze real datasets with up to 11 million edges (Table VI)
for two different types of changes. For each graph we create corrupted instances by removing: (i) edges from
the original graph randomly, and (ii) the same number of edges in a targeted way (we randomly choose nodes
and remove all their edges, until we have removed the appropriate fraction of edges).

For this property, we study 8 real networks: Email EU and Enron Emails, Facebook wall and Facebook
links, Google and Stanford web, Berkeley/Stanford web and AS Skitter. In Figure 4, for different levels of
corruption (10%, 20%, . . . , 80%), we give the DELTACON similarity score between the original graph and
the corrupted graph when the edge removal is random (solid line), and the DELTACON score when the edge
removal is targeted (dashed line).

OBSERVATION 5.

• “Targeted changes hurt more.” DELTACON is focus-aware (IP ). Removal of edges in a targeted way
leads to smaller similarity of the derived graph to the original one than removal of the same number of
edges in a random way.

• “More changes: random ≈ targeted.” In Figure 4, as the fraction of removed edges increases, the sim-
ilarity score for random changes (solid lines) tends to the similarity score for targeted changes (dashed
lines).

This is expected, because the random and targeted edge removal tend to be equivalent when a significant
fraction of edges is deleted.

In Figures 4(a)-(f), we give the similarity score as a function of the percent of the removed edges. Specifi-
cally, the x axis corresponds to the percentage of edges that have been removed from the original graph, and
the y axis gives the similarity score. As before, each point maps to the similarity score between the original
graph and the corresponding corrupted graph.

OBSERVATION 6. “More changes hurt more.” The higher the corruption of the original graph, the smaller
the DELTACON similarity between the derived and the original graph is. In Figures 4(a)-(f), we observe that
as the percentage of removed edges increases, the similarity to the original graph decreases consistently for
a variety of real graphs.

Table VI: Large Real and Synthetic Datasets

Name Nodes Edges Description
Brain Graphs Small [OCP 2014] 70 800-1,208 connectome
Enron Email [Klimt and Yang 2004] 36,692 367,662 who-emails-whom
Facebook wall [Viswanath et al. 2009] 45,813 183,412 who-posts-to-whom
Facebook links [Viswanath et al. 2009] 63,731 817,090 friend-to-friend
Epinions [Guha et al. 2004] 131,828 841,372 who-trusts-whom
Email EU [Leskovec et al. 2007] 265,214 420,045 who-sent-to-whom
Web Notre Dame [SNAP ] 325,729 1,497,134 site-to-site
Web Stanford [SNAP ] 281,903 2,312,497 site-to-site
Web Google [SNAP ] 875,714 5,105,039 site-to-site
Web Berk/Stan [SNAP ] 685,230 7,600,595 site-to-site
AS Skitter [Leskovec et al. 2007] 1,696,415 11,095,298 p2p links
Brain Graphs Big [OCP 2014] 16,777,216 49,361,130-90,492,237 connectome

Kronecker 1 6,561 65,536 synthetic
Kronecker 2 19,683 262,144 synthetic
Kronecker 3 59,049 1,048,576 synthetic
Kronecker 4 177,147 4,194,304 synthetic
Kronecker 5 531,441 16,777,216 synthetic
Kronecker 6 1,594,323 67,108,864 synthetic
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(a) Email Networks
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Fig. 4: DELTACON is “focus-aware” (IP): Targeted changes hurt more than random ones. (a)-(f): DELTACON
similarity scores for random (solid lines) and targeted (dashed lines) changes vs. the fraction of removed edges
in the “corrupted” versions of the original graphs (x axis). We note that the dashed lines are always below
the solid lines of the same color. (e)-(f):DELTACON agrees with intuition: the more a graph changes (i.e., the
number of removed edges increases), the smaller is its similarity to the original graph.

General Remarks. All in all, the baseline methods have several non-desirable properties. The spectral meth-
ods, as well as SS fail to comply with the “edge importance” (P1) and “edge submodularity” (P2) properties.
Moreover, λ-distance has high computational cost when the whole graph spectrum is computed, cannot distin-
guish the differences between co-spectral graphs, and sometimes small changes lead to big differences in the
graph spectra. As far as VEO and GED are concerned, they are oblivious to significant structural properties of
the graphs; thus, despite their straightforwardness and fast computation, they fail to discern various changes
in the graphs. On the other hand, DELTACON gives tangible similarity scores and conforms to all the desired
properties.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article 0000, Publication date: 2015.



0000:21

5.2. Intuitiveness of DELTACON-ATTR

In addition to evaluating the intuitiveness of DELTACON0 and DELTACON, we also test DELTACON-ATTR
on a number of synthetically created and modified graphs, and compare it to the state-of-the-art methods. We
perform two types of experiments: The first experiment examines whether the ranking of the culprit nodes
by our method agrees with intuition. In the second experiment, we evaluate DELTACON-ATTR’s classification
accuracy in finding culprits, and compare it to the best-performing competitive approach, CAD7, which was
introduced by Sricharan and Das [Sricharan and Das 2014] concurrently, and independently from us. CAD
uses the idea of commute time between nodes to define the anomalousness of nodes/edges. In a random walk,
the commute time is defined as the expected number of steps starting at i, before node j is visited and then
node i is reached again. We give a qualitative comparison between DELTACON-ATTR and CAD in Section 7
(Node/Edge Attribution).

Ranking Accuracy. We extensively tested DELTACON-ATTR on a number of synthetically created and
modified graphs, and compared it with CAD. We note that CAD was designed to simply identify culprits in
time-evolving graphs without ranking them. In order to compare it with our method, we adapted CAD so that
it returns ranked lists of node and edge culprits: (i) We rank the culprit edges in decreasing order of edge
score ∆E; (ii) To each node v, we attach a score equal to the sum of the scores of its adjacent edges, i.e.,∑
u∈N(v) ∆E((v, u)), where N(v) are the neighbors of v. Subsequently, we rank the nodes in decreasing

order of attached score.
We give several of the conducted experiments in Table VII, and the corresponding graphs in Figures 5 and

6. Each row of the table corresponds to a comparison between graph A and graph B. The node and edge
culprits that explain the main differences between the compared graphs are annotated in Figures 5 and 6. The
darker a node is, the higher it is in the ranked list of node culprits. Similarly, edges that are adjacent to darker
nodes are higher in the ranked list of edge culprits than edges that are adjacent to lighter nodes. If the returned
ranked list agrees with the expected list (according to the formal and informal properties), we characterize the

7CAD was originally introduced for finding culprit nodes and edges without ranking them. We extended the proposed method
to rank the culprits.

Table VII: DELTACON-ATTR obeys all the required properties. Each row corresponds to a comparison between
graph A and graph B, and evaluates the node and edge attribution of DELTACON-ATTR and CAD. The right
order of edges and nodes is marked in Figures 5 and 6. We give the ranking of a method if it is different from
the expected one.

Graph A Graph B DELTACON-ATTR CAD Propertiesedges nodes edges: δ for l = 5 nodes

K5 mK5 4 4 4 4
K5 m2K5 4 4 4 4 IP
B10 mB10 ∪ mmB10 4 4 4 4 P1, P2, IP
L10 mL10 ∪ mmL10 4 4 4 5,6,4 P1, IP
S5 mS5 4 4 4 1=5 P1 , P2

K100 mK100 4 4 4 4
K100 w5K100 4 4 4 4 P3
mK100 w5K100 4 4 4 4 P3
K100 m3K100 4 4 4 4 P3, IP
K100 m10K100 4 4 (80,82)=(80,88)=(80,92)* 80,30,88=92* P3, IP
P100 mP100 4 4 4 4 P1
w2P100 w5P100 4 4 4 4 P1, P3
B200 mmB200 4 4 4 4 P1
w20B200 m3B200 4 4 4 4 P1, P3, IP
S100 mS100 4 4 4 1=4 P1, P2
S100 m3S100 4 4 4 1,81=67=4 P1, P2, IP
wS100 m3S100 4 4 (1,4),(1,67),(1,81) 1,4=67,81 P1, P3, IP
Custom18 m2Custom18 4 4 (18,17),(10,11) 18,17,10,11 P1, P2
Custom18 m4Custom18b 4 4 4 5=6,17=18 P1, P3
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Fig. 5: DELTACON-ATTR respects properties P1-P3, and IP. Nodes marked green are identified as the culprits
for the change between the graphs. Darker shade corresponds to higher rank in the list of culprits. Removed
and weighted edges are marked red and green, respectively.
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Fig. 6: [continued] DELTACON-ATTR respects properties P1-P3, and IP. Nodes marked green are identified as
the culprits for the change between the graphs. Darker shade corresponds to higher rank in the list of culprits.
Removed edges are marked red.

attribution of the method correct (checkmark). If there is disagreement, we provide the ordered list that the
method returned. If two nodes or edges are tied, we use “=”. For CAD we picked the parameter δ such that the
algorithm returns 5 culprit edges and their adjacent nodes. Thus, we mark the returned list with “*” if CAD
outputs 5 culprits while more exist. For each comparison, we also give the properties (last column) that define
the order of the culprit edges and nodes.

OBSERVATION 7. DELTACON-ATTR reflects the desired properties P1, P2, P3, and IP, while CAD fails to
return the expected ranked lists of node and edge culprits in several cases.

Next we explain some of the comparisons that we present in Table VII:

• K5-mK5: The pair consists of a 5-node complete graph and the same graph with one missing edge, (3, 4).
DELTACON-ATTR considers nodes 3 and 4 top culprits, with equal rank, due to equivalent loss in connec-
tivity. Edge (3, 4) is ranked top, and is essentially the only changed edge. CAD finds the same results.

• K5-m2K5: The pair consists of a 5-node complete graph and the same graph with two missing edges,
(3, 4) and (3, 5). Both DELTACON-ATTR and CAD consider node 3 the top culprit, because two of its
adjacent edges were removed. Node 3 is followed by 4 and 5, which are tied since they are both missing
one adjacent edge (Property IP). The removed edges, (3, 4) and (3, 5), are considered equally responsible
for the difference between the two input graphs. We observe similar behavior in larger complete graphs
with 100 nodes (K100, and modified graphs mK100, w5K100 etc.). In the case of K100 and m10K1008,

8m10K100 is a complete graph of 100 nodes where we have removed 10 edges: (i) 6 of the edges were adjacent
to node 80—(80, 82), (80, 84), (80, 86), (80, 88), (80, 90), (80, 92); (ii) 3 of the edges were adjacent to node 30—
(30, 50), (30, 60), (30, 70); and (iii) edge (1, 4).
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CAD does not return all 13 node culprits and 10 culprit edges because its parameter, δ, was set so that it
would return at most 5 culprit edges9.

• B10-mB10 ∪ mmB10: We compare a barbell graph of 10 nodes to the same graph that is missing both an
edge from a clique, (6, 7), and the bridge edge, (5, 6). As expected, DELTACON-ATTR finds 6, 5 and 7 as
top culprits, where 6 is ranked higher than 5, since 6 lost connectivity to both nodes 5 and 7, whereas 5
disconnected only from 6. Node 5 is ranked higher than 7 because the removal of the bridge edge is more
important than the removal of (6, 7) within the second clique (Property P1). CAD returns the same results.
We observe similar results in the case of the larger barbell graphs (B200, mmB200, w20B200, m3B200).

• L10-mL10 ∪mmL10: This pair of graphs corresponds to the lollipop graph, L10, and the lollipop variant,
mL10 ∩ mmL10, that is missing one edge from the clique, as well as a bridge edge. Nodes 6, 5 and 4
are considered the top culprits for the difference in the graphs. Moreover, 6 is ranked more responsible
for the change than 5, since 6 lost connectivity to a more strongly connected component than 5 (Property
P2). However, CAD ranks node 5 higher than node 6 despite the difference in the connectivity of the two
components (violation of P2).

• S5, mS5: We compare a 5-node star graph, and the same graph missing the edge (1, 5). DELTACON-ATTR
considers 5 and 1 top culprits, with 5 ranking higher than 1, as the edge removal caused a loss of connectiv-
ity from node 5 to all the peripheral nodes of the star, 2, 3, 4, and the central node, 1. CAD considers nodes
1 and 5 equally responsible, ignoring the difference in the connectivity of the components (violation of P2).
Similar results are observed in the comparisons between the larger star graphs–S100, mS100, m3S100,
wS100.

• Custom18-m2Custom18: The ranking of node culprits that DELTACON-ATTR finds is 11, 10, 18, and 17.
The nodes 11 and 10 are considered more important than the nodes 18 and 17, as the edge removal (10, 11)
creates a large connected component and a small chain of 4 nodes, while the edge removal (17, 18) leads to
a single isolated node (18). Node 10 is higher in the culprit list than node 11 because it loses connectivity to
a denser component. The reasoning is similar for the ranking of nodes 18 and 17. CAD does not consider
the differences in the density of the components, and leads to a different ranking of the nodes.

• Custom18-m2Custom18: The ranking of node culprits that DELTACON-ATTR returns is 5, 6, 18, and 17.
This is in agreement with properties P1 and P3, since the edge (5, 6) is more important than the edge
(17, 18). Node 5 is more responsible than node 6 for the difference between the two graphs, as node 5
ends up having reduced connectivity to a denser component. This property is ignored by CAD, which thus
results in different node ranking.

As we observe, in all the synthetic and easily controlled examples, the ranking of the culprit nodes and edges
that DELTACON-ATTR finds agrees with intuition.

Classification Accuracy. To further evaluate the accuracy of DELTACON-ATTR in classifying nodes as
culprits, we perform a simulation-based experiment and compare our method to CAD. Specifically, we set up
a simulation similar to the one that was introduced in [Sricharan and Das 2014].

We sample 2000 points from a 2-dimensional Gaussian mixture distribution with four components, and
construct the matrix P ∈ R2000×2000, with entries p(i, j) = exp ||i− j||, for each pair of points (i, j).
Intuitively, the adjacency matrix P corresponds to a graph with four clusters that have strong connections
within them, but weaker connections across them. By following the same process and adding some noise in
each component of the mixture model, we also build a matrix Q, and add more noise to it, which is defined as:

Rij =

{
0 with probability 0.95

uij ∼ U(0, 1) otherwise,

where U(0, 1) is the uniform distribution in (0, 1). Then, we compare the two graphs, GA and GB , to each
other, which have adjacency matrices A = P and B = Q + (R + R′)/2, respectively. We consider culprits
(or anomalous) the inter-cluster edges for which Rij 6= 0, and the adjacent nodes. According to property P1,
these edges are considered important (major culprits) for the difference between the graphs, as they establish
more connections between loosely coupled clusters.

Conceptually, DELTACON-ATTR and CAD are similar because they are based on related methods [Koutra
et al. 2011] (Belief Propagation and Random Walk with Restarts, respectively). As shown in Figure 7, the

9The input graphs are symmetric. If edge (a, b) is considered culprit, CAD returns both (a, b) and (b, a), which have the
same anomalousness score.
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Fig. 7: DELTACON-ATTR ties state-of-the-art method with respect to accuracy. Each plot shows the ROC curves
for DELTACON-ATTR and CAD for different realizations of two synthetic graphs. The graphs are generated
from points sampled from a 2-dimensional Gaussian mixture distribution with four components.
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simulation described above corroborates this argument, and the two methods have comparable performance –
i.e., the areas under the ROC curves are similar for various realizations of the data described above. Over 15
trials, the AUC of DELTACON-ATTR and CAD is 0.9922 and 0.9934, respectively.

OBSERVATION 8. Both methods are very accurate in detecting nodes that are responsible for the differences
between two highly-clustered graphs (Property P1).

5.3. Scalability of DELTACON

In Section 2 we demonstrated that DELTACON is linear on the number of edges, and here we show that this
also holds in practice. We ran DELTACON on Kronecker graphs (Table VI), which are known [Leskovec et al.
2005] to share many properties with real graphs.

OBSERVATION 9. As shown in Figure 8, DELTACON scales linearly with the number of edges in the largest
input graph.

We note that the algorithm can be trivially parallelized by finding the node affinity scores of the two graphs in
parallel instead of sequential. Moreover, for each graph, the computation of the similarity scores of the nodes
to each of the g groups can be parallelized. However, the runtime of our experiments refer to the sequential
implementation.

The amount of time taken for DELTACON-ATTR is trivial even for large graphs, given that the necessary
affinity matrices are already in memory from the DELTACON similarity computation. Specifically, node and
edge attribution are loglinear on the nodes and edges, respectively, given that sorting is unavoidable for the task
of ranking.

To compare the runtime of DELTACON-ATTR with the runtime of CAD, we perform the runtime experiment
that the authors ran in [Sricharan and Das 2014]. Specifically, we generate sparse uniformly distributed random
and symmetric matrices of n = O(107) nodes, and sparsity level 1

n
. Over 10 trials, the combined runtime of

DELTACON and DELTACON-ATTR is 4.01 minutes on average on a less powerful machine10. than the one used
in [Sricharan and Das 2014], while the reported time for CAD is 5 minutes on average. Thus, our method is
faster than CAD, while having comparable or better accuracy on small and large synthetic datasets.
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Fig. 8: DELTACON is linear on the number of edges (time in seconds vs. number of edges). The exact number
of edges is annotated.

10The source code of [Sricharan and Das 2014] is not yet available, while we have implemented their naı̈ve algorithm which
is cubic. To make a more fair comparison between the two methods, we reproduced the experiment that the authors described,
ran only our method, and compared the runtime of DELTACON to the reported runtime of CAD. For this experiment we used
a 64-bit 2.8GHz single quad core AMD Opteron (tm) Processor 854 with 32GB RAM, while the authors of CAD used a
64-bit 2.3 GHz dual quad core Dell Precision T7500 desktop with 32GB RAM.
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5.4. Robustness of DELTACON

DELTACON0 satisfies all the desired properties, but its runtime is quadratic and does not scale well to large
graphs with more than a few million edges. On the other hand, our second proposed algorithm, DELTACON,
is scalable both in theory and practice (Lemma 2, Section 5.3). In this section we present the sensitivity of
DELTACON to the number of groups g, as well as how the similarity scores of DELTACON and DELTACON0

compare.
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Fig. 9: DELTACON is robust to the number of groups. And more importantly, at every group level, the
ordering of similarities of the different graph pairs remains the same (e.g., sim(K100,m1K100) >
sim(K100,m3K100) > . . . > sim(S100,m1S100) > . . . > sim(S100,m10S100)).

For this experiment, we use complete and star graphs, as well as the Political Blogs dataset. For each of the
synthetic graphs (a complete graph with 100 nodes and star graph with 100 nodes), we create three corrupted
versions, where we remove 1, 3 and 10 edges, respectively. For the real dataset, we create four corrupted
versions of the Political Blogs graph by removing {10%, 20%, 40%, 80%} of the edges. For each pair of
<original, corrupted> graphs, we compute the DELTACON similarity for varying number of groups. We note
that when g = n, DELTACON is equivalent to DELTACON0. The results for the synthetic and real graphs are
shown in Figures 9(a) and (b), respectively.

OBSERVATION 10. In our experiments, DELTACON0 and DELTACON agree on the ordering of pairwise
graph similarities.

In Figure 9(b) the lines not only do not cross, but are almost parallel to each other. This means that for a fixed
number of groups g, the differences between the similarities of the different graph pairs remain the same. In
other words, the ordering of similarities is the same at every group level g.

OBSERVATION 11. The similarity scores of DELTACON are robust to the number of groups, g.

Obviously, the bigger the number of groups, the closer are the similarity scores to the “ideal” similarity scores,
i.e., scores of DELTACON0. For instance, in Figure 9(b), when each blog is in its own group (g = n = 1490),
the similarity scores between the original network and the derived networks (with any level of corruption) are
identical to the scores of DELTACON0. However, even with few groups, the approximation of DELTACON0 is
very good.

It is worth mentioning that the bigger the number of groups g, the bigger runtime is required, since the
complexity of the algorithm is O(g ·max{m1,m2}|). Not only the accuracy, but also the runtime increases
with the number of groups; so, the speed and accuracy trade-offs need to be conciliated. Experimentally, it
seems that a good compromise is achieved even for g smaller than 100.
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Fig. 10: DELTACON detects anomalies on Enron data coinciding with major events. The marked days corre-
spond to anomalies. The blue points are similarity scores between consecutive instances of the daily email
activity between the employees, and the marked days are 3σ units away from the median similarity score.

6. DELTACON & DELTACON-ATTR AT WORK
In this section we present three applications of our graph similarity algorithms, one of which comes from social
networks and the other two from the area of neuroscience.

6.1. Enron
Graph Similarity. First, we employ DELTACON to analyze the ENRON dataset, which consists of emails

sent among employees in a span of more than two years. Figure 10 depicts the DELTACON similarity scores
between consecutive daily who-emailed-whom graphs. By applying Quality Control with Individual Moving
Range, we obtain the lower and upper limits of the in-control similarity scores. These limits correspond to
median ±3σ11. Using this method, we were able to define the threshold (lower control limit) below which the
corresponding days are anomalous, i.e. they differ “too much” from the previous and following days. Note that
all the anomalous days relate to crucial events in the company’s history in 2001 (points marked with red boxes
in Figure 10):

(1) May 22nd, 2001: Jordan Mintz sends a memorandum to Jeffrey Skilling (CEO for a few months) for his
sign-off on LJM paperwork.

(2) August 21st, 2001: Kenneth Lay, the CEO of Enron, emails all employees stating he wants “to restore
investor confidence in Enron.”;

(3) September 26th, 2001: Lay tells employees that the accounting practices are “legal and totally appropriate”,
and that the stock is “an incredible bargain.”;

(4) October 5th, 2001: Just before Arthur Andersen hired Davis Polk & Wardwell law firm to prepare a defense
for the company;

(5) October 24-25th, 2001: Jeff McMahon takes over as CFO. Email to all employees states that all the pertinent
documents should be preserved;

(6) November 8th, 2001: Enron announces it overstated profits by 586 million dollars over five years.
(7) February 4th, 2002: Lay resigns from board.

Although high similarities between consecutive days do not consist anomalies, we found that mostly week-
ends expose high similarities. For instance, the first two points of 100% similarity correspond to the weekend
before Christmas in 2000 and a weekend in July, when only two employees sent emails to each other. It is

11The median is used instead of the mean, since appropriate hypothesis tests demonstrate that the data does not follow the
normal distribution. Moving range mean is used to estimate σ.
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noticeable that after February, 2002, many consecutive days are very similar; this happens because, after the
collapse of Enron, the email exchange activity was rather low and often between certain employees.

Attribution. We additionally apply DELTACON-ATTR to the ENRON dataset for the months of May,
2001 and February, 2002, which are the most anomalous months according to the analysis of the data on a
month-to-month timescale. Based on the node and edge rankings produced as a result of our method, we drew
some interesting real-world conclusions .

May 2001:
• Top Influential Culprit: John Lavorato, the former head of Enron’s trading operations and CEO of Enron

America, connected to ∼50 new nodes in this month.
• Second Most Influential Culprit: Andy Zipper, VP of Enron Online, maintained contact with all those from

the previous month, but also connected to 12 new people.
• Third Most Influential Culprit: Louise Kitchen, another employee (President of ENRON Online) lost 5-6

connections and made 5-6 connections. Most likely, some of the connections she lost or made were very
significant in terms of expanding/reducing her office network.

February 2002:
• Top Influential Culprit: Liz Taylor lost 51 connections this month but made no new ones - it is reasonable

to assume that she likely quit the position or was fired (most influential culprit)
• Second Most Influential Culprit: Louise Kitchen (third culprit in May 2001) made no new connections, but

lost 22 existing ones.
• Third Most Influential Culprit: Stan Horton (CEO of Enron Transportation) made 6 new connections and

lost none. Some of these connections are likely significant in terms of expanding his office network.
• Fourth, Fift and Sixth Most Influential Culprits: Employees Kam Keiser, Mike Grigsby (former VP for

Enron’s Energy Services) and Fletcher Sturm (VP) all lost many connections and made no new ones. Their
situations were likely similar to those of L. Taylor and L. Kitchen.

6.2. Brain Connectivity Graph Clustering
We also use DELTACON for the clustering and classification of graphs. For this purpose we study conectomes,
i.e., brain graphs, which are obtained by Multimodal Magnetic Resonance Imaging [Gray et al. 2012].

In total, we study the connectomes of 114 people which are related to attributes such as age, gender, IQ, etc.
Each brain graph consists of 70 cortical regions (nodes), and connections (weighted edges) between them (see
Table VI “Brain Graphs Small”). We ignore the strength of connections and derive one undirected, unweighted
brain graph per person.

We first compute the DELTACON pairwise similarities between the brain graphs, and then perform hierar-
chical clustering using Ward’s method (Figure 1(b)). As shown in the figure, there are two clearly separable
groups of brain graphs. Applying a t-test on the available attributes for the two groups created by the clusters,
we have found that the latter differ significantly (p < .01) in the Composite Creativity Index (CCI), which is
related to the person’s performance on a series of creativity tasks. Figure 11 illustrates the brain connections
in a subject with high and low creativity index. It appears that more creative subjects have more and heav-
ier connections across their hemispheres than those subjects that are less creative. Moreover, the two groups

(a) Subject with high creativity index. (b) Subject with low creativity index.

Fig. 11: Illustration of brain graphs for subjects with high and low creativity index, respectively. The low-CCI
brain has fewer and lighter cross-hemisphere connections than the high-CCI brain.
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correspond to significantly different openness index (p = .0558), one of the “Big Five Factors”; that is, the
brain connectivity is different in people that are inventive and people that are consistent. Exploiting analysis of
variance (ANOVA: generalization of the t-test when more than 2 groups are analyzed), we tested whether the
various clusters that we obtain from the connectivity-based hierarchical clustering map to differences in other
attributes. However, in the dataset we studied there is no sufficient statistical evidence that age, gender, IQ, etc.
are related to brain connectivity.

6.3. Test-Retest: Big Brain Connectomes
We also applied our method on the KKI-42 dataset [Roncal et al. 2013; OCP 2014], which consists of con-
nectomes corresponding to n = 21 subjects. Each subject underwent two Functional MRI scans at different
times, and so the dataset has 2n = 42 large connectomes with ∼ 17 million voxels and 49.3 to 90.4 million
connections among them (see Table VI “Brain Graphs Big”). Our goal is to recover the pairs of connectomes
that correspond to the same subject, by relying only on the structures of the brain graphs. In the following
analysis, we compare our method to the standard approach in the neuroscience literature [Roncal et al. 2013],
the Euclidean distance (as induced by the Frobenius norm), and also to the baseline approaches we introduced
in Section 5.

We ran the following experiments on a 32-cores Intel(R) Xeon(R) CPU E7-8837 at 2.67GHz, with 1TB of
RAM. The signature similarity method runs out of memory for these large graphs, and we could not use it for
this application. Moreover, the variants of λ-distance are computationally expensive, even when we compute
only a few top eigenvalues, and they also perform very poorly in this task.

Unweighted graphs. The brain graphs that were obtained from the FMRI scans have weighted edges that
correspond to the strength of the connections between different voxels. The weights tend to be noisy, so we
initially ignore them, and treat the brain graphs as binary by mapping all the non-zero weights to 1. To discover
the pairs of connectomes that correspond to the same subject, we first find the DELTACON pairwise similarities
between the connectomes. We note that it suffices to do

(
2n
2

)
= 861 graph comparisons, since the DELTACON

similarities are symmetric. Then, we find the potential pairs of connectomes that belong to the same subject
by using the following approach: For each connectome Ci ∈ {1, . . . , 2n}, we choose the connectome Cj ∈
{1, . . . , 2n} \ i so that sim(Ci, Cj) is maximized. In other words, we pair each connectome with its most
similar graph (excluding itself) as defined by DELTACON. This results in 97.62% accuracy of predicting the
connectomes of the same subject.

In addition to our method, we compute the pairwise Euclidean distances (ED) between the connectomes
and evaluate the predictive power of ED. Specifically, we compute the quantities ED(i, j) = ||Ci − Cj ||2F ,
where Ci and Cj are the binary adjacency matrices of the connectomes i and j, respectively, and || · ||F is
the Frobenius norm of the enclosed matrix. As before, for each connectome i ∈ {1, . . . , 2n}, we choose

Fig. 12: DELTACON similarity outperforms almost all the baseline approaches. In the figure, the accuracy
reflects the percentage of correctly recovered pairs of brain graphs. DELTACON recovers correctly all pairs of
connectomes that correspond to the same subject for weighted graphs outperforming all the baselines. It also
recovers almost all the pairs correctly in the case of unweighted graphs, following VEO, which has the best
accuracy. The variants of λ-distance perform very poorly (accuracy ∼ 2.38%) and are omitted from the plot,
while the signature similarity method runs out of memory for the large input graphs.
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(a) Test brain graph of a 32-year-old male.

(b) True re-test brain graph of the male in (a). (c) Recovered re-test brain graph by the Euclidean
distance.

Fig. 13: DELTACON outperforms the Euclidean distance in recovering the correct test-retest pairs of brain
graphs. Spy plots of three brain graphs (Nodes aligned in all plots, and in increasing order of degrees in plot
(a).). The correct test-retest pair (a)-(b) that DELTACON recovers consists of “visually” more similar brain
graphs than the incorrect test-retest pair (a)-(c) that the Euclidean distance found.

the connectome j ∈ {1, . . . , 2n} \ i so that ED(i, j) is minimized12, the accuracy of recovering the pairs
of connectomes that correspond to the same subject is 92.86% (vs. 97.62% for DELTACON) as shown in
Figure 12.

Finally, from the baseline approaches, the Vertex/Edge Overlap similarity performs slightly better than our
method, while GED has the same accuracy as the Euclidean distance (Figure 12, ‘Unweighted Graphs’). All the
variants of λ-distance perform very poorly with 2.38% accuracy. As mentioned before, the signature similarity
runs out of memory and, hence, could not be used for this application.

Weighted graphs. We also wanted to see how accurately the methods can recover the pairs of weighted
connectomes that belong to the same subject.

Given that the weights are noisy, we follow the common practice and first smooth them by applying the
logarithm function (with base 10). Then we follow the procedure described above both for DELTACON and the
Euclidean distance. Our method yields 100% accuracy in recovering the pairs, while the Euclidean distance
results in 92.86% accuracy. The results are shown in Figure 12 (labeled ’Weighted Graphs’), while Figure 13
shows a case of brain graphs that were incorrectly recovered by the ED-based method, but successfully found
by DELTACON.

In the case of weighted graphs, as shown in Figure 12, all the baseline approaches perform worse than
DELTACON in recovering the correct brain graph pairs. In the plot we include the methods that have comparable
performance to our method. The λ-distance has the same very poor accuracy (2.38% for all the variants) as in

12We note that DELTACON computes the similarity between two graphs, while ED computes their distance. Thus, when
trying to find the pairs of connectomes that belong to the same subject, we want to maximize the similarity, or equivalently,
minimize the distance.
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the case of unweighted graphs, while the signature similarity could not be applied due to its very high memory
requirements.

Therefore, by using DELTACON we are able to recover, with almost perfect accuracy, which large connec-
tomes belong to the same subject. On the other hand, the commonly used technique, the Euclidean distance, as
well as the baseline methods fail to detect several connectome pairs (with the exception of VEO in the case of
unweighted graphs).

7. RELATED WORK
The related work comprises three main areas: Graph similarity, node affinity algorithms, and temporal anomaly
detection with node attribution. We give the related work in each area, and mention what sets our method apart.

Graph Similarity. Graph similarity refers to the problem of quantifying how similar two graphs are. The
graphs may be aligned or not, which leads to two instances of the problem:
(1) Known Node Correspondence. The first instance of the problem assumes that the two given graphs
are aligned, or, in other words, the node correspondence between the two graphs is given. [Papadimitriou
et al. 2008] proposes five similarity measures for directed web graphs, which are applied for anomaly
detection. Among them the best is Signature Similarity (SS), which is based on the SimHash algorithm,
while Vertex/Edge Overlap similarity (VEO) also performs very well. Bunke [Bunke et al. 2006] presents
techniques used to track sudden changes in communications networks for performance monitoring. The
best approaches are the Graph Edit Distance and Maximum Common Subgraph. Both are NP-complete,
but the former approach can be simplified given the application and it becomes linear on the number of
nodes and edges in the graphs. The current manuscript attacks the graph similarity problem with known
node correspondence, and is an extension of the work in [Koutra et al. 2013b], where DELTACON was first
introduced. In addition to computational methods to assess the similarity between graphs, there is also a line of
work on visualization-based graph comparison. These techniques are based on the side-by-side visualization of
the two networks [Andrews et al. 2009; Hascoët and Dragicevic 2012], or superimposed/augmented graph or
matrix views [Alper et al. 2013; Erten et al. 2003]. A review of visualization-based comparison of information
based on these and additional techniques is given in [Gleicher et al. 2011]. [Alper et al. 2013] investigate
ways of visualizing differences between small brain graphs using either augmented graph representations or
augmented adjacency matrices. However, their approach works for small and sparse graphs (40-80 nodes).
Honeycomb [van Ham et al. 2009] is a matrix-based visualization tool that handles larger graphs with several
thousands edges, and performs temporal analysis of a graph by showing the time series of graph properties
that are of interest. The visualization methods do not compute the similarity score between two graphs, but
show just their differences. This is related to the culprit nodes and edges that our method DELTACON finds.
However, these methods tend to visualize all the differences between two graphs, while our algorithm routes
attention to the nodes and edges that are mostly responsible for the differences among the input graphs. All in
all, visualizing and comparing graphs with millions or billions of nodes and edges remains a challenge, and
best suits small problems.

(2) With Unknown Node Correspondence. The previous works assume that the correspondence of nodes across
the two graphs is known, but this is not always the case. Social network analysis, bioinformatics, and pattern
recognition are just a few domains with applications where the node correspondence information is missing or
even constitutes the objective. The works attacking this problem can be divided into three main approaches: (a)
feature extraction and similarity computation based on the feature space, (b) graph matching and the application
of techniques from the first category, and (c) graph kernels.

There are numerous works that follow the first approach and use features to define the similarity between
graphs. The λ-distance, a spectral method which defines the distance between two graphs as the distance be-
tween their spectra (eigenvalues) has been studied thoroughly ([Bunke et al. 2006; Peabody 2003; Wilson and
Zhu 2008], algebraic connectivity [Fiedler 1973]). The existence of co-spectral graphs with different structure,
and the big differences in the graph spectra, despite subtle changes in the graphs, are two weaknesses that
add up to the high cost of computing the whole graph spectrum. Clearly, the spectral methods that call for
the whole spectrum cannot scale to the large-scale graphs with billions of nodes and edges that are of interest
currently. Also, depending on the graph-related matrix that is considered (adjancency, laplacian, normalized
laplacian), the distance between the graphs is different. As we show in Section 5, these methods fail to satisfy
one or more of the desired properties for graph comparison. [Li et al. 2011] proposes an SVM-based approach
on some global feature vectors (including the average degree, eccentricity, number of nodes and edges, num-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article 0000, Publication date: 2015.



0000:33

ber of eigenvalues, and more) of the graphs in order to perform graph classification. Macindoe and Richards
[Macindoe and Richards 2010] focus on social networks and extract three socially relevant features: leader-
ship, bonding and diversity. The complexity of the last feature makes the method applicable to graphs with
up to a few million edges. Other techniques include computing edge curvatures under heat kernel embedding
[Elghawalby and Hancock 2008], comparing the number of spanning trees [Kelmans 1976], comparing graph
signatures consisting of summarized local structural features [Berlingerio et al. 2013], and a distance based on
graphlet correlation [Yaveroğlu et al. 2014].

The second approach first solves the graph matching or alignment problem – i.e., finds the ‘best’ correspon-
dence between the nodes of the two graphs– and then finds the distance (or similarity) between the graphs.
[Conte et al. 2004] reviews graph matching algorithms in pattern recognition. There are over 150 publications
that attempt to solve the graph alignment problem under different settings and constraints. The methods span
from genetic algorithms to decision trees, clustering, expectation-maximization and more. Some recent meth-
ods that are more efficient for large graphs include a distributed, belief-propagation-based method for protein
alignment [Bradde et al. 2010], another message-passing algorithm for aligning sparse networks when some
possible matchings are given [Bayati et al. 2013], and a gradient descent-based method for aligning probabilis-
tically large bipartite graphs [Koutra et al. 2013a].

The third approach uses kernels between graphs, which were introduced in 2010 by [Vishwanathan et al.
2010]. Graph kernels work directly on the graphs without doing feature extraction. They compare graph struc-
tures, such as walks [Kashima et al. 2003; Gärtner et al. 2003], paths [Borgwardt and Kriegel 2005], cy-
cles [Horváth et al. 2004], trees [Ramon and Gärtner 2003; Mahé and Vert 2009], and graphlets [Shervashidze
et al. 2009; Costa and De Grave 2010] which can be computed in polynomial time. A popular graph kernel is
the random walk graph kernel [Kashima et al. 2003; Gärtner et al. 2003], which finds the number of common
walks on the two input graphs. The simple version of this kernel is slow, requiring O(n6) runtime, but can
be sped up to O(n3) by using the Sylvester equation. In general, the above-mentioned graph kernels do not
scale well to graphs with more than 100 nodes. A faster implementation of the random walk graph kernel with
O(n2) runtime was proposed by Kang et al. [Kang et al. 2012]. The fastest kernel to date is the subtree kernel
proposed by Shervashidze and Borgwardt [Shervashidze and Borgwardt 2009; Shervashidze et al. 2011], which
is linear on the number of edges and the maximum degree, O(m · d), in the graphs. The proposed approach
uses the Weisfeiler-Lehman test of isomorphism, and operates on labeled graphs. In our work, we consider
large, unlabeled graphs, while most kernels require at least O(n3) runtime or labels on the nodes/edges. Thus,
we do not compare them to DELTACON quantitatively.

Both research problems – graph similarity with given or missing node correspondence– are important, but
apply in different settings. If the node correspondence is available, the algorithms that make use of it can only
perform better than the methods that omit it. Our work tackles the former problem.

Node Affinity. There are numerous node affinity algorithms; Pagerank [Brin and Page 1998], Personalized
Random Walks with Restarts [Haveliwala 2003], the electric network analogy [Doyle and Snell 1984],
SimRank [Jeh and Widom 2002] and extensions/improvements [Yu et al. 2013], [Li et al. 2010], and Belief
Propagation [Yedidia et al. 2003] are only some examples of the most successful techniques. Here we focus on
the latter method, and specifically a fast variation, FABP [Koutra et al. 2011], which is also intuitive. LINBP
[Gatterbauer et al. 2015] generalizes FABP to handle multiple node classes, as well as a mix of network
effects (e.g., heterophily and homophily). All the techniques have been used successfully in many tasks, such
as ranking, classification, malware and fraud detection ([Chau et al. 2011],[McGlohon et al. 2009]), and
recommendation systems [Kim and El Saddik 2011].

Anomaly Detection. Anomaly detection in static graphs has been studied using various data mining and
statistical techniques [Akoglu et al. 2014; Khoa and Chawla 2010; Akoglu* et al. 2012; Koutra et al. 2013;
Lee et al. 2013; Kang et al. 2014]. Detection of anomalous behaviors in time-evolving networks is more
relevant to our work, and is covered in the surveys [Akoglu et al. 2014; Ranshous et al. 2015]. A non-inclusive
list of works on temporal graph anomaly detection follows. [Maruhashi et al. 2011], [Koutra et al. 2012]
and [Mao et al. 2014] employ tensor decomposition to identify anomalous substructures in graph data in the
context of intrusion detection. Henderson et al. propose a multi-level approach for identifying anomalous
behaviors in volatile temporal graphs based on iteratively pruning the temporal space using multiple graph
metrics [Henderson et al. 2010]. CopyCatch [Beutel et al. 2013] is a clustering-based MapReduce approach to
identify lockstep behavior in Page Like patterns on Facebook. Akoglu and Faloutsos use local features and the
node eigen-behaviors to detect points of change – when many of the nodes behave differently –, and also spot
nodes that are most responsible for the change point [Akoglu and Faloutsos 2010]. Finally, [Sricharan and Das
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2014] monitors changes in the commute time between all pairs of nodes to detect anomalous nodes and edges
in time-evolving networks. All these works use various approaches to detect anomalous behaviors in dynamic
graphs, though they are not based on the similarity between graphs, which is the focus of our work.

Node/Edge Attribution. Some of the anomaly detection methods discover anomalous nodes, and other
anomalous structures in the graphs. In a slightly different context, a number of techniques have been proposed
in the context of node and edge importance in graphs. PageRank, HITS [Kleinberg 1999] and betweenness cen-
trality (random-walk-based [Newman 2005] and shortest-path-based [Freeman 1977]) are several such methods
for the purpose of identifying important nodes. [Tong et al. 2012] proposes a method to determine edge im-
portance for the purpose of augmenting or inhibiting dissemination of information between nodes. To the best
of our knowledge, this and other existing methods focus only on identifying important nodes and edges in the
context of a single graph. In the context of anomaly detection, [Akoglu and Faloutsos 2010] and [Sricharan
and Das 2014] detect nodes that contribute mostly to change events in time-evolving networks.

Among these works, the most relevant to ours are the methods proposed by [Akoglu and Faloutsos 2010]
and [Sricharan and Das 2014]. The former –which is based on [Ide and Kashima 2004]– extracts node features,
computes an ‘eigen’-behavior per node, and spots changes each node’s behavior over time. Therefore, the
method relies on the selection of features (e.g., in-degree, out-degree, edge weights, number of triangles).
Moreover, because of the focus on local egonet features, it may not distinguish between small and large changes
in time-evolving networks, and it also tends to return a large number of false positives [Sricharan and Das
2014]. At the same time, and independently from us, Sricharan and Das proposed CAD [Sricharan and Das
2014], a method which defines the anomalousness of edges based on the commute time between nodes. The
commute time is the expected number of steps in a random walk starting at i, before node j is visited and then
node i is reached again. This method is closely related to DELTACON as Belief Propagation (the foundation
of our method) and Random Walks with Restarts (the core idea behind CAD) are equivalent under certain
conditions [Koutra et al. 2011]. However, the methods work in different directions: DELTACON first identifies
the most anomalous nodes, and then defines the anomalousness of edges as a function of the outlierness of
the adjacent nodes; CAD first identifies the most anomalous edges, and then defines all their adjacent nodes as
anomalous without ranking them. Our method does not only find anomalous nodes and edges in a graph, but
also (i) ranks them in decreasing order of anomalousness (which can be used for guiding attention to important
changes) and (ii) quantifies the difference between two graphs (which can also be used for graph classification,
clustering and other tasks).

In Table VIII we summarize the differences between our proposed methods and alternative approaches.

Table VIII: Qualitative comparison of DELTACON with state-of-the-art approaches.
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Vertex/Edge Overlap [Papadimitriou et al. 2008] 4 8 8 8 4 4
Graph Edit Distance [Bunke et al. 2006] 4 8 8 8 ? 4
Signature Similarity [Papadimitriou et al. 2008] 4 8 8 8 4 4
λ-distance [Bunke et al. 2006; Peabody 2003; Wilson and Zhu 2008] 4 8 8 8 8 ?
CAD [Sricharan and Das 2014] possible 8 4 possible 4 8

DELTACON
4 4 4 4 4 4DELTACON-ATTR

8. CONCLUSIONS
In this work, we tackle the problem of graph similarity when the node correspondence is known, such as
similarity in time-evolving phone networks. Our contributions are:
◦ Axioms/Properties: We formalize the problem of graph similarity by providing axioms, and desired prop-

erties.
◦ Algorithm: We propose DELTACON, a graph similarity algorithm that is (a) principled (axioms A1-A3, in

Section 2), (b) intuitive (properties P1-P4, in Section 5), and (c) scalable, needing on commodity hard-
ware ˜160 seconds for a graph with over 67 million edges. We additionally introduce DELTACON-ATTR, a
scalable method enabling node/edge attribution for differences between graphs.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article 0000, Publication date: 2015.



0000:35

◦ Experiments: We evaluate the intuitiveness of DELTACON, and compare it to 6 state-of-the-art measures by
using various synthetic and real, big graphs.

◦ Applications: We use DELTACON and DELTACON-ATTR for temporal anomaly detection (ENRON), clus-
tering & classification (brain graphs), as well as recovery of test-retest brain scans.

Future directions include extending DELTACON to handle streaming graphs, incremental similarity updates
for time-evolving graphs, as well as graphs with node and/or edge attributes. Revisiting the desired properties,
adapting them to these types of graphs, and exploring the trade-off between approximate computation of the
similarity score and the runtime are only a few of the points worth investigating.
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