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Abstract
How much did a network change since yesterday? How
different is the wiring between Bob’s brain (a left-handed
male) and Alice’s brain (a right-handed female)? Graph sim-
ilarity with known node correspondence, i.e. the detection
of changes in the connectivity of graphs, arises in numer-
ous settings. In this work, we formally state the axioms
and desired properties of the graph similarity functions, and
evaluate when state-of-the-art methods fail to detect crucial
connectivity changes in graphs. We propose DELTACON, a
principled, intuitive, and scalable algorithm that assesses the
similarity between two graphs on the same nodes (e.g. em-
ployees of a company, customers of a mobile carrier). Ex-
periments on various synthetic and real graphs showcase the
advantages of our method over existing similarity measures.
Finally, we employ DELTACON to real applications: (a) we
classify people to groups of high and low creativity based on
their brain connectivity graphs, and (b) do temporal anomaly
detection in the who-emails-whom Enron graph.

1 Introduction
Graphs arise naturally in numerous situations; social, traf-
fic, collaboration and computer networks, images, protein-
protein interaction networks, brain connectivity graphs and
web graphs are only a few examples. A problem that comes
up often in all those settings is the following: how much do
two graphs or networks differ in terms of connectivity?

Graph similarity (or comparison) is a core task for
sense-making: abnormal changes in the network traffic may
indicate a computer attack; differences of big extent in a
who-calls-whom graph may reveal a national celebration, or
a telecommunication problem. Besides, network similarity
can give insights into behavioral patterns: is the Facebook
message graph similar to the Facebook wall-to-wall graph?
Tracking changes in networks over time, spotting anomalies
and detecting events is a research direction that has attracted
much interest (e.g., [1], [2], [3]).

Long in the purview of researchers, graph similarity is
a well-studied problem and several approaches have been
proposed to solve variations of the problem. However, graph
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(a) Connectome: neural net-
work of brain.

(b) Dendogram representing the hierarchi-
cal clustering of the DELTACON similarities
between the 114 connectomes.

Figure 1: (a) Brain network (connectome). Different colors corre-
spond to each of the 70 cortical regions, whose centers are depicted
by vertices. Connections between the regions are shown by edges.
DELTACON is used for clustering and classification. (b) The con-
nectomes are nicely classified in two big clusters by hierarchical
clustering. The classification is based on the pairwise DELTACON

similarities between the 114 connectomes that we study. Elements
in red correspond to high artistic score - thus, DELTACON shows
that artistic brains seem to have different wiring than the rest.

comparison still remains an open problem, while, with the
passage of time, the list of requirements increases: the
exponential growth of graphs, both in number and size, calls
for methods that are not only accurate, but also scalable to
graphs with billions of nodes.

In this paper, we address two main questions: How to
compare two networks efficiently? How to evaluate their
similarity score? Our main contributions are the following:

1. Axioms/Properties: we formalize the axioms and prop-
erties that a similarity measure must conform to.

2. Algorithm: we propose DELTACON for measuring con-
nectivity differences between two graphs, and show
that it is: (a) principled, conforming to all the axioms
presented in Section 2, (b) intuitive, giving similarity
scores that agree with common sense and can be easily
explained, and (c) scalable, able to handle large-scale
graphs.

3. Experiments: we report experiments on synthetic and
real datasets, and compare DELTACON to six state-of-
the-art methods that apply to our setting.

4. Applications: We use DELTACON for real-world appli-
cations, such as temporal anomaly detection and clus-



Table 1: Symbols and Definitions. Bold capital letters: matrices,
lowercase letters with arrows: vectors, plain font: scalars.

Symbol Description
G graph
V, n set of nodes, number of nodes
E ,m set of edges, number of edges

sim(G1, G2) similarity between graphs G1 and G2

d(G1, G2) distance between graphs G1 and G2

I n× n identity matrix
A n× n adjacency matrix with elements aij
D n× n diagonal degree matrix, dii =

∑
j aij

L = D−A laplacian matrix
S n× n matrix of final scores with elements sij
S′ n× g reduced matrix of final scores

~ei n× 1 unit vector with 1 in the ith element
~s0k n× 1 vector of seed scores for group k
~si n× 1 vector of final affinity scores to node i

g number of groups (node partitions)
ε = 1/(1 + maxi (dii)) positive constant (< 1)

encoding the influence between neighbors

DC0, DC DELTACON0, DELTACON

VEO Vertex/Edge Overlap
GED Graph Edit Distance [4]

SS Signature Similarity [5]
λ-D ADJ. / LAP λ-distance on A / L /

N.L. normalized L

tering/classification. In Fig. 1, DELTACON is used for
clustering brain graphs corresponding to 114 individu-
als; the two big clusters which differ in terms of connec-
tivity correspond to people with high and low creativity.
More details are given in Sec. 5.

The paper is organized as follows: Section 2 presents
the intuition behind our method, and the axioms and desired
properties of a similarity measure; Sec. 3 has the proposed
algorithms; experiments on synthetic and big real networks
are in Sec. 4; Sec. 5 presents two real-world applications;
the related work and the conclusions are in Sec. 6 and 7
respectively. Finally, Table 1 presents the major symbols we
use in the paper and their definitions.

2 Proposed Method: Intuition
How can we find the similarity in connectivity between two
graphs, or more formally how can we solve the following
problem?
PROBLEM 1. DELTACONnectivity

Given: (a) two graphs, G1(V, E1) and G2(V, E2) with the
same node set1, V , and different edge sets E1 and E2,

1If the graphs have different, but overlapping, node sets V1 and V2, we
assume that V = V1 ∪ V2, and the extra nodes are treated as singletons.

and (b) the node correspondence.
Find: a similarity score, sim(G1, G2) ∈ [0, 1], between the

input graphs. Similarity score of value 0 means totally
different graphs, while 1 means identical graphs.

The obvious way to solve this problem is by measuring the
overlap of their edges. Why does this often not work in
practice? Consider the following example: according to the
overlap method, the pairs of barbell graphs shown in Fig. 2
of p. 5, (B10,mB10) and (B10,mmB10), have the same
similarity score. But, clearly, from the aspect of information
flow, a missing edge from a clique (mB10) does not play
as important role in the graph connectivity as the missing
“bridge” in mmB10. So, could we instead measure the
differences in the 1-step away neighborhoods, 2-step away
neighborhoods etc.? If yes, with what weight? It turns out
(Intuition 1) that our method does exactly this in a principled
way.

2.1 Fundamental Concept The first conceptual step of
our proposed method is to compute the pairwise node affini-
ties in the first graph, and compare them with the ones in the
second graph. For notational compactness, we store them in
a n× n similarity matrix2 S. The sij entry of the matrix in-
dicates the influence node i has on node j. For example, in a
who-knows-whom network, if node i is, say, republican and
if we assume homophily (i.e., neighbors are similar), how
likely is it that node j is also republican? Intuitively, node i
has more influence/affinity to node j if there are many, short,
heavily weighted paths from node i to j.

The second conceptual step is to measure the differences
in the corresponding node affinity scores of the two graphs
and report the result as their similarity score.

2.2 How to measure node affinity? Pagerank, personal-
ized Random Walks with Restarts (RWR), lazy RWR, and
the “electrical network analogy” technique are only a few
of the methods that compute node affinities. We could have
used Personalized RWR: [I−(1−c)AD−1]~si = c ~ei,where
c is the probability of restarting the random walk from the
initial node, ~ei the starting (seed) indicator vector (all ze-
ros except 1 at position i), and ~si the unknown Personalized
Pagerank column vector. Specifically, sij is the affinity of
node j w.r.t. node i. For reasons that we explain next, we
chose to use a more recent and principled method, the so-
called Fast Belief Propagation (FABP), which is identical to
Personalized RWR under specific conditions (see Theorem
2 in Appendix A.2). We use a simplified form of it (see Ap-
pendix A.1) given by:

(2.1) [I + ε2D− εA]~si = ~ei

2In reality, we don’t measure all the affinities (see Section 3.2 for an
efficient approximation).



where ~si = [si1, ...sin]T is the column vector of final
similarity/influence scores starting from the ith node, ε is a
small constant capturing the influence between neighboring
nodes, I is the identity matrix, A is the adjacency matrix and
D is the diagonal matrix with the degree of node i as the dii
entry.

An equivalent, more compact notation, is to use a matrix
form, and to stack all the ~si vectors (i = 1, . . . , n) into the
n× n matrix S. We can easily prove that

(2.2) S = [sij ] = [I + ε2D− εA]−1 .

2.3 Why use Belief Propagation? The reasons we choose
BP and its fast approximation with Eq. (2.2) are: (a) it is
based on sound theoretical background (maximum likeli-
hood estimation on marginals), (b) it is fast (linear on the
number of edges), and (c) it agrees with intuition, taking into
account not only direct neighbors, but also 2-, 3- and k-step-
away neighbors, with decreasing weight. We elaborate on
the last reason, next:

INTUITION 1. [Attenuating Neighboring Influence]
By temporarily ignoring the term ε2D in (2.2), we can
expand the matrix inversion and approximate the n × n
matrix of pairwise affinities, S, as

S ≈ [I− εA]−1 ≈ I + εA + ε2A2 + . . . .

As we said, our method captures the differences in the
1-step, 2-step, 3-step etc. neighborhoods in a weighted
way; differences in long paths have smaller effect on the
computation of the similarity measure than differences in
short paths. Recall that ε < 1, and that Ak has information
about the k-step paths. Notice that this is just the intuition
behind our method; we do not use this simplified formula to
find matrix S.

2.4 Which properties should a similarity measure sat-
isfy? Let G1(V, E1) and G2(V, E2) be two graphs, and
sim(G1, G2) ∈ [0, 1] denote their similarity score. Then, we
want the similarity measure to obey the following axioms:

A1. Identity property: sim(G1, G1) = 1
A2. Symmetric property: sim(G1, G2) = sim(G2, G1)
A3. Zero property: sim(G1, G2) → 0 for n → ∞, where

G1 is the clique graph (Kn), and G2 is the empty graph
(i.e., the edge sets are complementary).

Moreover, the measure must be:
(a) intuitive. It should satisfy the following desired

properties:

P1. [Edge Importance] Changes that create disconnected
components should be penalized more than changes
that maintain the connectivity properties of the graphs.

P2. [Weight Awareness] In weighted graphs, the bigger the
weight of the removed edge is, the greater the impact
on the similarity measure should be.

P3. [Edge-“Submodularity”] A specific change is more
important in a graph with few edges than in a much
denser, but equally sized graph.

P4. [Focus Awareness] Random changes in graphs are less
important than targeted changes of the same extent.

(b) scalable. The huge size of the generated graphs, as
well as their abundance require a similarity measure that is
computed fast and handles graphs with billions of nodes.

3 Proposed Method: Details
Now that we have described the high level ideas behind our
method, we move on to the details.

3.1 Algorithm Description Let the graphs we compare be
G1(V, E1) and G2(V, E2). If the graphs have different node
sets, say V1 and V2, we assume that V = V1 ∪ V2, where
some nodes are disconnected.

As mentioned before, the main idea behind our proposed
similarity algorithm is to compare the node affinities in the
given graphs. The steps of our similarity method are:

Step 1. By eq. (2.2), we compute for each graph the
n× n matrix of pairwise node affinity scores (S1 and S2 for
graphs G1 and G2 respectively).

Step 2. Among the various distance and similarity mea-
sures (e.g., Euclidean distance (ED), cosine similarity, cor-
relation) found in the literature, we use the root euclidean
distance (ROOTED, a.k.a. Matusita distance)
(3.3)

d = ROOTED(S1,S2) =

√√√√ n∑
i=1

n∑
j=1

(
√
s1,ij −

√
s2,ij)2.

We use the ROOTED distance for the following reasons:
1. it is very similar to the Euclidean distance (ED), the

only difference being the square root of the pairwise
similarities (sij),

2. it usually gives better results, because it “boosts”
the node affinities3 and, therefore, detects even small
changes in the graphs (other distance measures, includ-
ing ED, suffer from high similarity scores no matter
how much the graphs differ), and

3. satisfies the desired properties P1-P4. As discussed in
the Appendix A.5, at least P1 is not satisfied by the ED.

Step 3. For interpretability, we convert the distance (d)
to similarity measure (sim) via the formula sim = 1

1+d . The
result is bounded to the interval [0,1], as opposed to being
unbounded [0,∞). Notice that the distance-to-similarity

3The node affinities are in [0, 1], so the square root makes them bigger.



transformation does not change the ranking of results in a
nearest-neighbor query.

The straightforward algorithm, DELTACON0 (Algo-
rithm 1), is to compute all the n2 affinity scores of matrix
S by simply using equation (2.2). We can do the inversion
using the Power Method or any other efficient method.

Algorithm 1 DELTACON0

INPUT: edge files of G1(V, E1) and G2(V, E2)
// V = V1 ∪ V2, if V1 and V2 are the graphs’ node sets
S1 = [I + ε2D1 − εA1]−1 // s1,ij : affinity/influence of
S2 = [I + ε2D2 − εA2]−1 //node i to node j in G1

d(G1, G2) =ROOTED (S1,S2)
return sim(G1, G2) = 1

1+d

3.2 Scalability Analysis DELTACON0 satisfies all the
properties in Section 2, but it is quadratic (n2 affinity scores
sij - using power method for the inversion of sparse ma-
trix) and thus not scalable. We present a faster, linear al-
gorithm, DELTACON (Algorithm 2), which approximates
DELTACON0 and differs in the first step. We still want each
node to become a seed exactly once in order to find the affini-
ties of the rest of the nodes to it; but, here, we have multiple
seeds at once, instead of having one seed at a time. The
idea is to randomly divide our node-set into g groups, and
compute the affinity score of each node i to group k, thus
requiring only n × g scores, which are stored in the n × g
matrix S′ (g � n). Intuitively, instead of using the n × n
affinity matrix S, we add up the scores of the columns that
correspond to the nodes of a group, and obtain the n× g ma-
trix S′ (g � n). The score s′ik is the affinity of node i to the
kth group of nodes (k = 1, . . . , g).

LEMMA 3.1. The time complexity of computing the reduced
affinity matrix, S′, is linear on the number of edges.

Proof. We can compute the n×g “skinny” matrix S′ quickly,
by solving [I + ε2D − εA]S′ = [~s01 . . . ~s0g], where ~s0k =∑
i∈groupk ~ei is the membership n×1 vector for group k (all

0’s, except 1’s for members of the group). �

Thus, we compute g final scores per node, which denote
its affinity to every group of seeds, instead of every seed
node that we had in eq. (2.2). With careful implementation,
DELTACON is linear on the number of number of edges and
groups g. As we show in section 4.2, it takes ∼ 160sec, on
commodity hardware, for a 1.6-million-node graph.

Once we have the reduced affinity matrices S′1 and S′2
of the two graphs, we use the ROOTED, to find the similarity
between the n× g matrices of final scores, where g � n.

LEMMA 3.2. The time complexity of DELTACON, when
applied in parallel to the input graphs, is linear on the

number of edges in the graphs, i.e. O(g · max{m1,m2}).

Proof. Based on lemma 3.1. See Appendix A.3. �

THEOREM 1. DELTACON’s similarity score between
any two graphs G1, G2 upper bounds the actual
DELTACON0’s similarity score, i.e. simDC−0(G1, G2) ≤
simDC(G1, G2).

Proof. Intuitively, grouping nodes blurs the influence infor-
mation and makes the nodes seem more similar than origi-
nally. For more details, see Appendix A.3. �

In the following section we show that DELTACON
(which includes DELTACON0 as a special case for g = n)
satisfies the axioms and properties, while in the Appendix
(A.4 and A.5) we provide the proofs.

Algorithm 2 DELTACON

INPUT: edge files of G1(V, E1) and G2(V, E2) and
g (groups: # of node partitions)

{Vj}gj=1 = random partition(V, g) //g groups
// estimate affinity vector of nodes i = 1, . . . , n to group
k
for k = 1→ g do
~s0k =

∑
i∈Vk ~ei

solve [I + ε2D1 − εA1]~s′1k = ~s0k

solve [I + ε2D2 − εA2]~s′2k = ~s0k

end for
S′1 = [~s′11 ~s

′
12 . . . ~s′1g]; S′2 = [~s′21 ~s

′
22 . . . ~s′2g]

// compare affinity matrices S′1 and S′2
d(G1, G2) =ROOTED (S′1,S

′
2)

return sim(G1, G2) = 1
1+d

4 Experiments
We conduct several experiments on synthetic and real data
(undirected, unweighted graphs, unless stated otherwise - see
Table 2) to answer the following questions:

Q1. Does DELTACON agree with our intuition and satisfy
the axioms/properties? Where do other methods fail?

Q2. Is DELTACON scalable?

The implementation is in Matlab and we ran the experiments
on AMD Opteron Processor 854 @3GHz, RAM 32GB.

4.1 Intuitiveness of DELTACON. To answer Q1, for
the first 3 properties (P1-P3), we conduct experiments on
small graphs of 5 to 100 nodes and classic topologies
(cliques, stars, circles, paths, barbell and wheel-barbell
graphs, and “lollipops” shown in Fig. 2), since people can
argue about their similarities. For the name conventions see
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Figure 2: Small synthetic graphs – K: clique, C: cycle, P: path, S: star, B: barbell, L:
lollipop, WhB: wheel-barbell

Symbol Meaning
Kn clique of size n
Pn path of size n
Cn cycle of size n
Sn star of size n
Ln lollipop of size n
Bn barbell of size n

WhBn wheel barbell of size n
mX missing X edges

mmX missing X “bridge” edges
w weight of “bridge” edge

Table 3: Name Conventions for small syn-
thetic graphs. Missing number after the pre-
fix implied X = 1.

Table 4: “Edge Importance” (P1). Highlighted entries violate P1.

GED λ-D λ-D λ-DGRAPHS DC0 DC VEO SS (XOR) ADJ. LAP. N.L.
A B C ∆s = sim(A,B)− sim(A,C) ∆d = d(A,C)− d(A,B)

B10 mB10 mmB10 0.07 0.04 0 −10−5 0 0.21 -0.27 2.14
L10 mL10 mmL10 0.04 0.02 0 10−5 0 -0.30 -0.43 -8.23

WhB10 mWhB10 mmWhB10 0.03 0.01 0 −10−5 0 0.22 0.18 -0.41
WhB10 m2WhB10 mm2WhB10 0.07 0.04 0 −10−5 0 0.59 0.41 0.87

Table 6: “Edge-Submodularity” (P3). Highlighted entries violate P3.

GED λ-D λ-D λ-DGRAPHS DC0 DC VEO SS (XOR) ADJ. LAP. N.L.
A B C D ∆s = sim(A,B)− sim(C,D) ∆d = d(C,D)− d(A,B)

K5 mK5 C5 mC5 0.03 0.03 0.02 10−5 0 -0.24 -0.59 -7.77
C5 mC5 P5 mP5 0.03 0.01 0.01 −10−5 0 -0.55 -0.39 -0.20
P5 mP5 S5 mS5 0.003 0.001 0 −10−5 0 -0.07 0.39 3.64
K100 mK100 C100 mC100 0.03 0.02 0.002 10−5 0 -1.16 -1.69 -311
C100 mC100 P100 mP100 10−4 0.01 10−5 −10−5 0 -0.08 -0.06 -0.08
P100 mP100 S100 mS100 0.05 0.03 0 0 0 -0.08 1.16 196
K100 m10K100 C100 m10C100 0.10 0.08 0.02 10−5 0 -3.48 -4.52 -1089
C100 m10C100 P100 m10P100 0.001 0.001 10−5 0 0 -0.03 0.01 0.31
P100 m10P100 S100 m10S100 0.13 0.07 0 −10−5 0 -0.18 8.22 1873

Table 5: “Weight Awareness” (P2). Highlighted entries violate P2.

GED λ-D λ-D λ-DGRAPHS DC0 DC VEO SS (XOR) ADJ. LAP. N.L.
A B C D ∆s = sim(A,B)− sim(C,D) ∆d = d(C,D)− d(A,B)

B10 mB10 B10 w5B10 0.09 0.08 -0.02 10−5 -1 3.67 5.61 84.44
mmB10 B10 mmB10 w5B10 0.10 0.10 0 10−4 0 4.57 7.60 95.61

B10 mB10 w5B10 w2B10 0.06 0.06 -0.02 10−5 -1 2.55 3.77 66.71
w5B10 w2B10 w5B10 mmB10 0.10 0.07 0.02 10−5 1 2.23 3.55 31.04
w5B10 w2B10 w5B10 B10 0.03 0.02 0 10−5 0 1.12 1.84 17.73

Figure 3: “Focus-Awareness” (P4).

Tables 4-6/Figure 3: DELTACON0 and DELTACON (in bold) obey all the required properties (P1-P4). Tables 4-6: Each row of the tables
corresponds to a comparison between the similarities (or distances) of two pairs of graphs; pairs (A,B) and (A,C) for (P1); and pairs (A,B)
and (C,D) for (P2) and (P3): Non-positive values of ∆s = sim(A,B)− sim(C,D) and ∆d = d(C,D)− d(A,B) - depending on whether the
corresponding method computes similarity or distance - are highlighted and mean violation of the property of interest. Figure 3: Targeted
changes hurt more than random. Plot of DELTACON similarity scores for random changes (y axis) vs. DELTACON similarity scores for
targeted changes (x axis) for 4 real-world networks. For each graph we create 8 “corrupted” versions with 10% to 80% fewer edges than
the initial graphs. Notice that all the points are above the diagonal.



Table 2: Real and Synthetic Datasets

Name Nodes Edges Description
Brain Graphs 70 800-1,208 connectome

Enron Email [6] 36,692 367,662 who-emails-whom

Epinions [7] 131,828 841,372 who-trusts-whom

Email EU [8] 265,214 420,045 who-sent-to-whom

Web Google [9] 875,714 5,105,039 site-to-site

AS skitter [8] 1,696,415 11,095,298 p2p links

Kronecker 1 6,561 65,536 synthetic

Kronecker 2 19,683 262,144 synthetic

Kronecker 3 59,049 1,048,576 synthetic

Kronecker 4 177,147 4,194,304 synthetic

Kronecker 5 531,441 16,777,216 synthetic

Kronecker 6 1,594,323 67,108,864 synthetic

Table 2. For our method we used 5 groups (g), but the results
are similar for other choices of the parameter. In addition to
the synthetic graphs, for the last property (P4), we use real
networks with up to 11 million edges (Table 2).

We compare our method, DELTACON, to the 6 best
state-of-the-art similarity measures that apply to our setting:

1. Vertex/Edge Overlap (VEO) [5]: For two graphs
G1(V1, E1) and G2(V2, E2):

simV EO(G1, G2) = 2
|E1 ∩ E2|+ |V1 ∩ V2|
|E1|+ |E2|+ |V1|+ |V2|

.

2. Graph Edit Distance (GED) [4]: GED has quadratic
complexity in general, so they [4] consider the case
where only insertions and deletions are allowed.

simGED(G1, G2) = |V1|+ |V2| − 2|V1 ∩ V2|
+ |E1|+ |E2| − 2|E1 ∩ E2|.

For V1 = V2 and unweighted graphs, simGED

is equivalent to hamming distance(A1,A2) =
sum(A1XORA2).

3. Signature Similarity (SS) [5]: This is the best perform-
ing similarity measure studied in [5]. It is based on the
SimHash algorithm (random projection based method).

4. The last 3 methods are variations of the well-studied
spectral method “λ-distance” ([4], [10], [11]). Let
{λ1i}|V1|i=1 and {λ2i}|V2|i=1 be the eigenvalues of the ma-
trices that represent G1 and G2. Then, λ-distance is
given by

dλ(G1, G2) =

√√√√ k∑
i=1

(λ1i − λ2i)
2
,

where k is max(|V1|, |V2|) (padding is required for the
smallest vector of eigenvalues). The variations of the
method are based on three different matrix representa-
tions of the graphs: adjacency (λ-d Adj.), laplacian (λ-d
Lap.) and normalized laplacian matrix (λ-d N.L.).

The results for the first 3 properties are presented in
the form of tables 4-6. For property P1 we compare the
graphs (A,B) and (A,C) and report the difference between
the pairwise similarities/distances of our proposed methods
and the 6 state-of-the-art methods. We have arranged the
pairs of graphs in such way that (A,B) are more similar than
(A,C). Therefore, table entries that are non-positive mean
that the corresponding method does not satisfy the property.
Similarly, for properties P2 and P3, we compare the graphs
(A,B) and (C,D) and report the difference in their pairwise
similarity/distance scores.

P1. Edge Importance : “Edges whose removal creates
disconnected components are more important than other
edges whose absence does not affect the graph connectivity.
The more important an edge is, the more it should affect the
similarity or distance measure.”

For this experiment we use the barbell, “wheel barbell”
and “lollipop” graphs, since it is easy to argue about the
importance of the individual edges. The idea is that edges
in a highly connected component (e.g. clique, wheel) are not
very important from the information flow viewpoint, while
edges that connect (almost uniquely) dense components play
a significant role in the connectivity of the graph and the
information flow. The importance of the “bridge” edge
depends on the size of the components that it connects; the
bigger the components the more important is the role of the
edge.

OBSERVATION 1. Only DELTACON succeeds in distin-
guishing the importance of the edges (P1) w.r.t. connectivity,
while all the other methods fail at least once (Table 4).

P2. Weight Awareness : “The absence of an edge of
big weight is more important than the absence of a smaller
weighted edge; this should be reflected in the similarity
measure.”

The weight of an edge defines the strength of the con-
nection between two nodes, and, in this sense, can be viewed
as a feature that relates to the importance of the edge in the
graph. For this property, we study the weighted versions of
the barbell graph, where we assume that all the edges except
the “bridge” have unit weight.

OBSERVATION 2. All the methods are weight-aware (P2),
except VEO and GED which compute just the overlap in
edges and vertices between the graphs (Table 5).

P3. “Edge-Submodularity” : “Let A(V, E1) and
B(V, E2) be two graphs with the same node set, and |E1| >
|E2| edges. Also, assume that mxA(V, E1) and mxB(V, E2)
are the respective derived graphs after removing x edges. We
expect that sim(A,mxA) > sim(B,mxB), since the fewer
the edges in a constant-sized graph, the more “important”
they are.”



The results for different graph topologies and 1 or 10
removed edges (prefixes ’m’ and ’m10’ respectively) are
given compactly in Table 6. Recall that non-positive values
denote violation of the “edge-submodularity” property.

OBSERVATION 3. Only DELTACON complies to the “edge-
submodularity” property (P3) in all cases examined.

P4. Focus Awareness : At this point, all the competing
methods have failed in satisfying at least one of the desired
properties. To test whether DELTACON is able to distinguish
the extent of a change in a graph, we analyze real datasets
with up to 11 million edges (Table 2) for two different types
of changes. For each graph we create corrupted instances
by removing: (i) edges from the original graph randomly,
and (ii) the same number of edges in a targeted way (we
randomly choose nodes and remove all their edges, until we
have removed the appropriate fraction of edges).

In Fig. 3, for each of the 4 real networks -Email
EU, Enron, Google web and AS Skitter-, we give the
pair (sim DELTACON random, sim DELTACON targeted) for
each of the different levels of corruption (10%, 20%, . . . ,
80%). That is, for each corruption level and network, there
is a point with coordinates the similarity score between the
original graph and the corrupted graph when the edge re-
moval is random, and the score when the edge removal is
targeted. The line y = x corresponds to equal similarity
scores for both ways of removing edges.

OBSERVATION 4. • “Targeted changes hurt more.”
DELTACON is focus-aware (P4). Removal of edges
in a targeted way leads to smaller similarity of the
derived graph to the original one than removal of the
same number of edges in a random way.
• “More changes: random ≈ targeted.” As the corruption

level increases, the similarity score for random changes
tends to the similarity score for targeted changes (in
Fig. 3, all lines converge to the y = x line for greater
level of corruption).

This is expected, because the random and targeted edge
removal tend to be equivalent when a significant fraction of
edges is deleted.

General Remarks. All in all, the baseline methods have
several non-desirable properties. The spectral methods, as
well as SS fail to comply to the “edge importance” (P1) and
“edge submodularity” (P3) properties. Moreover, λ-distance
has high computational cost when the whole graph spectrum
is computed, cannot distinguish the differences between co-
spectral graphs, and sometimes small changes lead to big dif-
ferences in the graph spectra. As far as VEO and GED are
concerned, they are oblivious on significant structural prop-
erties of the graphs; thus, despite their straightforwardness
and fast computation, they fail to discern various changes in
the graphs. On the other hand, DELTACON gives tangible
similarity scores and conforms to all the desired properties.

4.2 Scalability of DELTACON. In Section 2 we demon-
strated that DELTACON is linear on the number of edges, and
here we show that this also holds in practice. We ran DELTA-
CON on Kronecker graphs (Table 2), which are known [12]
to share many properties with real graphs.

OBSERVATION 5. As shown in Fig. 4, DELTACON scales
linearly with the number of edges in the graph.

Notice that the algorithm can be trivially parallelized by find-
ing the node affinity scores of the two graphs in parallel in-
stead of sequential. Moreover, for each graph the compu-
tation of the similarity scores of the nodes to each of the g
groups can be parallelized. However, the runtime of our ex-
periments refer to the sequential implementation.
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Figure 4: DELTACON is linear on the number of edges (time in sec.
vs. number of edges). The exact number of edges is annotated.

5 DELTACON at Work
In this section we present two applications of graph similar-
ity measures; we use DELTACON and report our findings.

5.1 Enron. First, we employ DELTACON to analyze the
ENRON dataset. Figure 5 depicts the similarity scores
between consecutive daily who-emailed-whom graphs. By

Figure 5: Graph Anomaly Detection with DELTACON. The marked
days correspond to anomalies and coincide with major events
in the history of Enron. The blue points are similarity scores
between consecutive instances of the daily email activity between
the employees, and the marked days are 3σ units away from the
median similarity score.



applying Quality Control with Individual Moving Range, we
obtain the lower and upper limits of the in-control similarity
scores. These limits correspond to median±3σ (The median
is used instead of the mean, since appropriate hypothesis
tests demonstrate that the data does not follow the normal
distribution. Moving range mean is used to estimate σ.).
Using this method we were able to define the threshold
(lower control limit) below which the corresponding days
are anomalous, i.e. they differ “too much” from the previous
and following days. Note that all the anomalous days relate
to crucial events in the company’s history in 2001 (points
marked with red boxes in Fig. 5): (2) 8/21. Lay emails all
employees stating he wants “to restore investor confidence
in Enron.”; (3) 9/26. Lay tells employees that the accounting
practices are “legal and totally appropriate”, and that the
stock is “an incredible bargain.”; (4) 10/5. Just before Arthur
Andersen hired Davis Polk & Wardwell law firm to prepare
a defense for the company; (5) 10/24-25. Jeff McMahon
takes over as CFO. Email to all employees states that all the
pertinent documents should be preserved; (6) 11/8. Enron
announces it overstated profits by 586 million dollars over
five years.

Although high similarities between consecutive days
do not consist anomalies, we found that mostly weekends
expose high similarities. For instance, the first two points of
100% similarity correspond to the weekend before Christmas
in 2000 and a weekend in July, when only two employees
sent emails to each other. It is noticeable that after February
2002 many consecutive days are very similar; this happens
because, after the collapse of Enron, the email exchange
activity was rather low and often between certain employees.

5.2 Brain Connectivity Graph Clustering. We also use
DELTACON for clustering and classification. For this pur-
pose we study conectomes -brain graphs-, which are ob-
tained by Multimodal Magnetic Resonance Imaging [13].

In total we study the connectomes of 114 people; each
consists of 70 cortical regions (nodes), and connections
(weighted edges) between them. We ignore the strength
of connections and derive an undirected, unweighted brain
graph per person. In addition to the connectomes, we have
attributes for each person (e.g., age, gender, IQ).

We first get the DELTACON pairwise similarities be-
tween the brain graphs, and then perform hierarchical clus-
tering using Ward’s method (Fig. 1(b)). As shown in the fig-
ure, there are two clearly separable groups of brain graphs.
Applying t-test on the available attributes for the two groups
created by the clusters, we found that the latter differ sig-
nificantly (p-value=0.0057) in the Composite Creativity In-
dex (CCI), which is related to the person’s performance on
a series of creativity tasks. Moreover, the two groups cor-
respond to low and high openness index (p-value=0.0558),
one of the “Big Five Factors”; that is, the brain connectivity

is different in people that are inventive and people that are
consistent. Exploiting analysis of variance (ANOVA: gen-
eralization of t-test when more than 2 groups are analyzed),
we tested whether the various clusters that we obtain from
hierarchical clustering reflect the structural differences in the
brain graphs. However, in the dataset we studied there is no
sufficient statistical evidence that age, gender, IQ etc. are
related to the brain connectivity.

6 Related Work
Graph Similarity. The problems are divided in two main
categories: (1) With Known Node Correspondence. Pa-
padimitriou et al. [5] propose 5 similarity measures for di-
rected web graphs. Among them the best is the Signature
Similarity (SS), which is based on the SimHash algorithm,
while the Vertex/Edge Overlap similarity (VEO) performs
very well. Bunke [4] presents techniques used to track sud-
den changes in communications networks for performance
monitoring. The best approaches are the Graph Edit Distance
and Maximum Common Subgraph. Both are NP-complete,
but the former approach can be simplified given the appli-
cation and it becomes linear on the number of nodes and
edges in the graphs. (2) With Unknown Node Correspon-
dence. Two approaches can be used: (a) feature extraction
and similarity computation, (b) graph matching and applica-
tion of techniques from the first category [14], (c) graph ker-
nels [15]. The research directions in this category include: λ-
distance ([4], [10], algebraic connectivity [16] [11]), a spec-
tral method that has been studied thoroughly; an SVM-based
approach on global feature vectors [17]; social networks sim-
ilarity [18]; computing edge curvatures under heat kernel
embedding [19]; comparison of the number of spanning trees
[20]; fast random walk graph kernel [21].

Both research directions are important, but apply in
different settings; if the node correspondence is available, the
algorithms that make use of it can perform only better than
methods that omit it. Here we tackle the former problem.

Node affinity algorithms. There are numerous node
affinity algorithms; Pagerank [22], Personalized Random
Walks with Restarts [23], the electric network analogy [24],
SimRank [25], and Belief Propagation [26] are only some
examples of the most successful techniques. Here we focus
on the latter method, and specifically a fast variation [27]
which is also intuitive. All the techniques have been used
successfully in many tasks, such as ranking, classification,
malware and fraud detection ([28],[29]), and recommenda-
tion systems [30].

7 Conclusions
In this work, we tackle the problem of graph similarity when
the node correspondence is known (e.g., similarity in time-
evolving phone networks). Our contributions are:
• Axioms/Properties: we formalize the problem of graph



similarity by providing axioms, and desired properties.
• Algorithm: We propose DELTACON, an algorithm that

is (a) principled (axiomsA1-A3, in Sec. 2), (b) intuitive
(properties P1-P4, in Sec. 4), and (c) scalable, needing
on commodity hardware ˜160 seconds for a graph with
over 67 million edges.

• Experiments: We evaluate the intuitiveness of DELTA-
CON, and compare it to 6 state-of-the-art measures.

• Applications: We use DELTACON for temporal
anomaly detection (ENRON), and clustering & classifi-
cation (brain graphs).

Future work includes parallelizing our algorithm, as well as
trying to partition the graphs in a more informative way (e.g.,
using elimination tree) than random.
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A Appendix
A.1 From Fast Belief Propagation (FABP) to DELTA-
CON FABP ([27]) is a fast approximation of the loopy BP
algorithm, which is guaranteed to converge and is described
by the linear equation: [I+aD−c′A]~s = ~s0,where ~s0 is the
vector of prior scores, ~s is the vector of final scores (beliefs),
a = 4h2

h/(1 − 4h2
h), and c′ = 2hh/(1 − 4h2

h) are small
constants, and hh is a constant that encodes the influence
between neighboring nodes. By (a) using the MacLaurin ex-
pansion for 1/(1 − 4h2

h) and omitting the terms of power
greater than 2, (b) setting ~s0 = ~ei and ~s = ~si, and (c) setting
hh = ε/2, we obtain eq. (2.1), the core formula of DELTA-
CON.

A.2 Connection between FABP and Personalized RWR

THEOREM 2. The FABP equation (2.1) can be written in
the Personalized RWR-like form:

[I− (1− c′′)A∗D−1]~si = c′′ ~y,

where c′′ = 1 − ε, ~y = A∗D
−1A−1 1

c′′~ei and A∗ =
D(I + ε2D)−1D−1AD.

Proof. We begin from the derived FABP equation (2.1) and
do simple linear algebra operations:
[I + ε2D− εA]~si = ~ei (×D−1 from the left)
[D−1 + ε2I− εD−1A]~si = D−1~ei (F = D−1 + ε2I)
[F− εD−1A]~si = D−1~ei (× F−1 from the left)
[I− εF−1D−1A]~si = F−1D−1~ei ( A∗ = F−1D−1AD)
[I− εA∗D−1]~si = (1− ε) (A∗D

−1A−1 1
1−ε~ei) �

A.3 Proofs for Section 3

LEMMA A.1. The time complexity of DELTACON is lin-
ear on the number of edges in the graphs, i.e. O(g ·
max{m1,m2}).

Proof. [Proof of Lemma 3.2] By using the Power Method
[27], the complexity of solving eq. (2.1) is O(|Ei|) for each
graph (i = 1, 2). The node partitioning needs O(n) time;
the affinity algorithm is run g times in each graph, and the
similarity score is computed in O(gn) time. Therefore, the
complexity of DELTACON is O((g + 1)n + g(m1 + m2)),
where g is a small constant. Unless the graphs are trees,
|Ei| < n, so the complexity of the algorithm reduces to
O(g(m1 + m2)). Assuming that the affinity algorithm is
run on the graphs in parallel, since there is no dependency
between the computations, DELTACON has complexity O(g ·
max{m1,m2}). �

LEMMA A.2. The affinity score of each node to a group
(computed by DELTACON) is equal to the sum of the affinity
scores of the node to each one of the nodes in the group
individually (computed by DELTACON0).

Proof. Let B = I + ε2D− εA. Then DELTACON0 consists
of solving for every node i ∈ V the equation B~si = ~ei;
DELTACON solves the equation B~s′k = ~s0k for all groups
k ∈ (0, g], where ~s0k =

∑
i∈groupk ~ei. Because of

the linearity of matrix additions, it holds true that ~s′k =∑
i∈groupk ~si, for all groups k. �

THEOREM 3. DELTACON’s similarity score between
any two graphs G1, G2 upper bounds the actual
DELTACON0’s similarity score, i.e. simDC−0(G1, G2) ≤
simDC(G1, G2).

Proof. [Proof of Theorem 1] Let S1,S2 be the n × n final-
scores matrices of G1 and G2 by applying DELTACON0,
and S′1,S

′
2 be the respective n × g final-scores matrices by

applying DELTACON. We want to show that DELTACON0’s
distance

dDC0 =
√∑n

i=1

∑n
j=1(
√
s1,ij −

√
s2,ij)2

is greater than DELTACON’s distance

dDC =

√∑g
k=1

∑n
i=1 (

√
s′1,ik −

√
s′2,ik)2

or, equivalently, that d2
DC0

> d2
DC . It is sufficient to

show that for one group of DELTACON, the corresponding
summands in dDC are smaller than the summands in dDC0

that are related to the nodes that belong to the group. By
extracting the terms in the squared distances that refer to one
group of DELTACON and its member nodes in DELTACON0,
and by applying Lemma A.2, we obtain the following terms:

tDC0
=

∑n
i=1

∑
j∈group(

√
s1,ij −

√
s2,ij)

2

tDC =
∑n
i=1 (

√∑
j∈group s1,ij −

√∑
j∈group s2,ij)

2.

Next we concentrate again on a selection of summands (e.g.
i = 1), we expand the squares and use the Cauchy-Schwartz
inequality to show that∑

j∈group
√
s1,ijs2,ij <

√∑
j∈group s1,ij

∑
j∈group s2,ij ,

or equivalently that tDC0
> tDC . �

A.4 Satisfaction of the Axioms Here we elaborate on the
satisfiability of the axioms by DELTACON0 and DELTACON.

A1. Identity Property: sim(G1, G1) = 1.
The proof is straightforward; the affinity scores are

identical for both graphs.
A2. Symmetric Property: sim(G1, G2) =

sim(G2, G1).
The proof is straightforward for DELTACON0. For the

randomized algorithm, DELTACON, it can be shown that
sim(G1, G2) = sim(G2, G1) on average.



A3. Zero Property: sim(G1, G2) → 0 for n → ∞,
where G1 is the clique graph (Kn), and G2 is the empty
graph (i.e., the edge sets are complementary).

We restrict ourselves to a sketch of proof, since the proof
is rather intricate.

Proof. [(Sketch of Proof - Zero Property)] First we show
that all the nodes in a clique get final scores in {sg, sng},
depending on whether they are included in group g or not.
Then, it can be demonstrated that the scores have finite
limits, and specifically {sg, sng} → { n2g + 1, n2g} as n →
∞ (for finite n

g ). Given this condition, it can be directly
derived that the ROOTED between the S matrices of the
empty graph and the clique becomes arbitrarily large. So,
sim(G1, G2)→ 0 for n→∞. �

A.5 Satisfaction of the Properties Here we give some
theoretical guarantees for the most important property, “edge
importance” (P1). We prove the satisfiability of the property
in a special case; generalizing this proof, as well as the proofs
of the rest properties is theoretically interesting and remains
future work.

Special Case [Barbell graph]: Assume A is a barbell
graph with n1 and n2 nodes in each clique (e.g., B10 with
n1 = n2 = 5 in Fig. 2), B does not have one edge in the first
clique, and C does not have the “bridge” edge.

Proof. From eq. (2.1), by using the Power method we obtain
the solution:

~si = [I + (εA− ε2D) + (εA− ε2D)2 + ...]~ei ⇒

~si ≈ [I + εA + ε2(A2 −D)]~ei,

where we ignore the terms of greater than second power.
By writing out the elements of the SA,SB ,SC matrices as
computed by DELTACON0 and the above formula, and also
the ROOTED between graphs A, B and A, C, we obtain the
following formula for their relevant difference:

d(A,C)2−d(A,B)2 = 2ε{ε(n−f)+1−(
2ε3(n1 − 2)

c21
+
ε

c22
)},

where c1 =
√
ε+ ε2(n1 − 3) +

√
ε+ ε2(n1 − 2) and c2 =√

ε2(n1 − 2) +
√
ε+ ε2(n1 − 2). We can show that c1 ≥

2
√
ε for hh < 1 (which holds always) and c2 ≥

√
ε,

where f = 3 if the missing edge in graph B is adjacent
to the “bridge” node, and f = 2 in any other case. So,
d(A,C)2 − d(A,B)2 ≥ 0.

This property is not always satisfied by the euclidean
distance. �
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