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Abstract—Graph representations have increasingly grown in
popularity during the last years. Existing embedding approaches
explicitly encode network structure. Despite their good perfor-
mance in downstream processes (e.g., node classification), there is
still room for improvement in different aspects, like effectiveness.
In this paper, we propose, t-PNE, a method that addresses this
limitation. Contrary to baseline methods, which generally learn
explicit node representations by solely using an adjacency matrix,
t-PNE avails a multi-view information graph—the adjacency ma-
trix represents the first view, and a nearest neighbor adjacency,
computed over the node features, is the second view—in order
to learn explicit and implicit node representations, using the
Canonical Polyadic (a.k.a. CP) decomposition. We argue that the
implicit and the explicit mapping from a higher-dimensional to
a lower-dimensional vector space is the key to learn more useful
and highly predictable representations. Extensive experiments
show that t-PNE drastically outperforms baseline methods by
up to 158.6% with respect to Micro-F1, in several multi-label
classification problems.

I. INTRODUCTION

Graphs are widely used to encode observed or unobserved
relationships between entities [2], such as social networks, co-
authorship networks, brain networks [1], [15] to name a few.
Representation learning techniques [12], [8], [17] primarily
aim to explicitly learn a unified set of representations in a
completely unsupervised or semi-supervised manner, which
ultimately can generalize across various tasks, such as, node
classification [1], [10]. However, since the “one-size fits all”
approach is adopted in the representation learning context, the
explicit learning does not guarantee that the representations
would convey crucial information for downstream tasks.

The ideal representations are those that capture both ex-
plicit (e.g., first-order proximity) and implicit (e.g., second-
and higher-order proximities) network connectivity patterns.
Existing representation learning approaches [12], [8], [17] can
preserve the explicit connections in a graph well, but barely
capture the implicit wide-spread connections. Therefore, we
argue that the observed graph does not reflect the actual exist-
ing implicit network structure, which ultimately compromises
downstream task performance.
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Figure. 1: The proposed method and its evaluation. (a): t-PNE
method. Step 1: Indicates the formation of tensor X using the two
views: the adjacency and K-NN matrices. Step 2: Shows representa-
tion generation process using CP decomposition. (b): Evaluation pro-
cess for t-PNE and comparison of its performance against baselines
on the WebKB dataset (Section VA). t-PNE drastically outperforms
baseline methods.

Aside from the shallow models, which leverage the first-
order connectivity, there has been work, where explicit and im-
plicit representations are learned [13]. However, [13] still relies
on a family of representations, which must be concatenated to
encode relationships at different scales. Here we instead seek
to learn representations that jointly capture various connections
to successfully generalize over different tasks.

In this paper, we propose, t-PNE (shown in Figure 1), a
method that overcomes the implicit relationship-related lim-
itation of existing embedding approaches, by using the CP
decomposition [4] to learn highly predictable representations.
To summarize, our contributions are:
• Systematic Exploration of Implicit Higher-order Prox-
imities: As we argue earlier, the adjacency matrix captures
explicit connections, which may not fully encode the actual
(unobserved) network structure. We augment that with another
information view: the K-NNN view, which can convey and
capture implicit relationships at different scales.
• Multi-View Representation Learning: We propose t-PNE,
a method that uses CP decomposition to learn rich, highly
predictable representations.
• Experiments: We extensively evaluate t-PNE on multi-
label classification problems using real-world datasets andIEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
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benchmark against three existing embedding approaches.

II. RELATED WORK

Here we briefly discuss the most related work to ours.
Conventional Representation Learning. There has been a re-
cent surge of interest in representation learning techniques [7],
[9]. In particular, [12], [8], [17] learn node representations by
leveraging explicit connections. Despite their good predictive
performance, they still fail to encode the implicit, unobserved
connections, which compromises their generalizability across
various tasks. On the other hand, [13] sought to capture both
the explicit and the implicit connections by learning a series
of representation corpora that are concatenated for the best
performance, while [19] employed both the adjacency matrix
and a textual information matrix to learn representations via
matrix factorization. Table I gives a qualitative comparison
of conventional embedding methods vs. our method, t-PNE.

TABLE I: Qualitative comparison of conventional representation
learning methods vs. t-PNE.

Approach Predictability
Preserve
Explicit

Connections

Preserve
Implicit

Connections
DeepWalk [12] 8 4 8
node2vec [8] 8 4 8
Walklets [13] 8 4 4
TADW [19] 8 4 ?
t-PNE 4 4 4

Tensor-based Representation Learning. To the best of our
knowledge, this work is the first to demonstrate the use
of tensor factorization techniques in the context of network
representation learning. Tensor decomposition captures the
node relations via low-dimensional latent components. There
are very few NLP works that aim to learn word representations
via tensor decomposition: [6] generates word embeddings of
prepositions using 3-mode tensor decomposition; and [18]
investigates three-way co-occurrences using non-negative ten-
sor factorization. Aside from word representations, t-BNE [3]
learns brain network representations by leveraging side infor-
mation. Unlike our work: (1) These directions are not designed
to handle different real-world networks; and (2) The NLP-
related techniques cannot capture sophisticated connections
that emerge in large-scale real-world networks.

III. PROBLEM FORMULATION

A. Preliminary Definitions

A tensor or a multi-view graph is a higher order general-
ization of a matrix. We call tensor X ∈ RI×J×L, a three-
“mode” tensor, where “modes” are the numbers of indices
used to index the tensor. Here we use one of the most
widely used tensor decompositions: CP decomposition [4].
Consider an example of 3-mode tensor X ∈ RI×J×L data
of Amazon reviews [16] with modes: Users, Product and
Word. The R-latent component CP decomposition expresses
as the summation of rank-1 tensors, i.e., a summation of outer
products of three vectors, as follows:

X ≈
R∑

r=1

A(:, r) ◦B(:, r) ◦C(:, r) (1)

where A ∈ RI×R,B ∈ RJ×R and C ∈ RL×R correspond
to factor matrices of users, product, and word in modes, re-
spectively. ◦ indicates the outer product, and A(:, r) represents
the rth column of A—the same applies to B and C.

B. Problem Definition

Information Network. An information network is defined as
a graph G = (V,E), where V represents the set of nodes
connected together by a set of edges E. In this paper, we focus
on multi-view undirected, unweighted information graphs that
describe the same set of nodes to learn network represen-
tations. Throughout the paper, we use the terms “view”,
“matrix”, and “layer” interchangeably. For each network, we
use two views; (1) The adjacency matrix; a square node-by-
node matrix, which we refer to as, Y ∈ RV×V ; and (2) The
feature matrix, which is denoted as, F ∈ RV×T .
Learning Large-scale Network Representations. Given a
large-scale, multi-view information network, G = (V,E), the
problem of learning a graph G’s node representations strives to
preserve the network explicit and implicit connections, while
mapping each node v ∈ V from a higher-dimensional feature
space to a lower-dimensional feature space Rd using a map-
ping function, fG : V → Rd, where d � |V |. For simplicity,
we assume the tensor’s rank R is given. Generally, when tensor
decomposition is used in a multi-label classification context,
the tensor rank R is set to the number of classes. Instead in
this study, we employ CP decomposition for representation
learning, therefore, we set R = d � |V |, where d is
a parameter specifying the number of dimensions of our
representation vector. The problem we solve is as follows:

Given a 3-dimensional tensor X ∈ RV ×V ×L, where the first
view represents an adjacency matrix Y ∈ RV ×V , and the other
view indicates its corresponding K-NN matrix Z ∈ RV ×V ,
Jointly Learn an implicit and explicit representation of each
vertex v ∈ V in tensor X under the hood of CP decomposition.

IV. PROPOSED METHOD

In order to successfully map the nodes of a multi-view
graph G from a higher-dimensional to a lower-dimensional
vector space using a mapping function, fG : V → Rd, where
d � |V |, we need to concurrently preserve the observed
explicit and the unobserved implicit connections, which most
of the existing methods fail to address. Therefore, we propose
t-PNE, a method that learns rich representations using CP
decomposition. Below, we describe the two steps of t-PNE.
Step 1: Systematic Exploration of Implicit Higher-order
Proximities. In the context of representation learning, the first-
order and the second-order proximities [7], defined over the
adjacency matrix, are commonly preserved. However, the pre-
dictive performance of existing methods indicates that utilizing
these two proximity measures is insufficient to reconstruct the
original network. To increase the predictive performance of



representation learning methods, we propose to learn repre-
sentations from both the explicit and the (widely ignored)
numerous unobserved implicit relationships between nodes.

In more detail, we propose to jointly learn network rep-
resentations that can effectively generalize across downstream
processes, by leveraging a multi-view information graph, using
CP decomposition. The first view is the adjacency matrix,
Y ∈ RV×V , while the second view is the feature matrix,
F ∈ RV×T , with a T -dimensional feature vector per node.
However, as shown in Figure 1, we process the feature matrix
F using the K-order implicit proximity exploration algorithm
(shown in Algorithm 1), where K represents the number of
nearest nodes we specify, using the intuition of the K-NN
algorithm [14] for two reasons: (1) To systematically explore
implicit higher order proximities that capture network connec-
tivity patterns, since the direct use of matrix F does not convey
the implicit network connections (proven by TADW’s [19]
performance in Section V); and (2) To make the size of the
second view same as the size of the first view. Let the K-
NN matrix, Z ∈ RV×V , be the feature matrix F after being
processed by the K-NN algorithm [14]. As a measure of
similarity, we use cosine similarity, which has been shown to
efficiently capture proximity in sparse matrices (e.g., matrix
F) [5]. Algorithm 1 shows that for each input matrix F, we
generate the dot product matrix D, and the norm matrix N to
create the output matrix Z.

Algorithm 1: K-order Implicit Proximity Exploration
Input: F ∈ RV ×T , K
Output: Z ∈ RV ×V

1: N = (
√∑V

v |Fv|2) ∗ (
√∑V

v |Fv|2)
′

B create norm matrix

2: D = FF
′

B create dot product matrix
3: Z = D

N
4: diag(Z) = 0 B keep diagonal as 0 for distance matrix
5: for i← 1 to K do
6: [−, idx] = max(Z);
7: for j ← 1 to V do
8: Z(j, idx(j)) = 1;
9: Z(j, rest) = 0;

10: end for
11: end for
12: return Z ∈ RV ×V .

Step 2: Multi-View Representation Learning. After we con-
duct Step 1, we now stack up the two views: Y ∈ RV×V and
Z ∈ RV×V to form the tensor X. We decompose the tensor
X to compute the d latent components: node representations,
using CP decomposition. Below, we show the mathematical
formulation of CP decomposition:

L ≈ min ||X−A ◦B ◦C||2F (2)

where the factor matrices A ∈ RV×d and B ∈ RV×d

shares partially similar information as the X is symmetric in
the first layer. The factor matrix C ∈ RL×d indicates the
contribution of each view or layer of tensor X to the learned
latent representations. d is a parameter specifying the number

of dimensions of our final feature representation. ‖.‖ represents
the Frobenius norm. In order to solve the CP decomposition
problem (shown in Eq.(2)), we use the Alternating Least
Squares (ALS) algorithm [4]. It repeatedly iterates over the
factor matrices and updates them, as shown in Eq.(3) - Eq.(5),
until the objective function stops decreasing.

A← min ||X−A(C ◦B)
′
||2F (3)

B← min ||X−B(C ◦A)
′
||2F (4)

C← min ||X−C(B ◦A)
′
||2F (5)

Complexity Analysis and Convergence. In t-PNE, the proce-
dure of computing the Z ∈ RV×V graph, takes O(|V |2 +K ∗
|V |) time. The complexity of each iteration of minimizing L
is O(NNZ(X))+O(|V |2+K|V |), where NNZ() indicates
the number of non-zero entries. The ALS algorithm converges
to a good approximation error within 50-60 iterations.

V. EXPERIMENTS

We aim to answer how t-PNE compares to other represen-
tation learning approaches in multi-label classification.

Datasets. Table II provides a brief description of the real-
world datasets that we use in our experiments. The reason
why we choose these networks, is the ease of obtaining the
corresponding textual information matrices F along with the
adjacency matrices.

Baselines. We evaluate the node representations obtained
through t-PNE on standard, non-trivial multi-label classifi-
cation problems. We compare t-PNE’s performance against
four representation learning methods: (1) DeepWalk [12], (2)
node2vec [8], (3) Walklets [13], and (4) TADW [19].

Experimental Setup. (A) Hyperparameter Settings: For
DeepWalk, node2vec and Walklets, we set the number of
walks per node to 10, the walk length to 80, the neighborhood
size to 10, and the number of dimensions of the feature
representation d = 128. For node2vec, we set the return
parameter p = 1, and the in-out parameter q = 1, in order
to capture the homophily, and the structural equivalence
connectivity patterns, respectively. For Walklets, we set the
feature representation scale, π = 2, which captures the
relationships captured at scale 2. For TADW, we set the
regularization parameter λ = 0.2, the text rank TR = 200,
and d = 128. For t-PNE, we vary K by dataset to reflect
the best performance. Similarly to the baselines, we set the
dimensionality of the learned representations to d = 128.

(B) Multi-label Classification: In multi-label classification
each node in a graph is assigned to a single or multiple labels
from a finite set of labels, L. In our study, we feed the learned
representations to a one-vs-rest logistic regression classifier
with the default L2 regularization. We report the mean Micro-
F1 score results of the 10-fold cross validation.

Results. Table III presents t-PNE’s performance and its gain
over the baseline techniques. For the entire datasets, we



TABLE II: A brief description of evaluation datasets. Number of edges in K-NN matrix varies by K. The acronym TFIDF stands for: term
frequency-inverse document frequency.

Dataset # Vertices # Edges in GY T # Edges in GZ # Labels Network Type Feature Type
Wikipedia [19] 2,405 35,962 4973 149,053 20 Language TFIDF info
WebKB [11] 877 5,168 1703 36,466 5 Citation Unique words
CiteSeer [19] 3,312 9,464 3703 49,680 6 Citation Unique words
Terrorist [20] 848 16,392 1224 82,048 4 Terrorism Relations

TABLE III: Micro-F1 scores for multi-label classification problems on various datasets. The representation feature space has 128 dimensions.
Numbers where t-PNE outperforms other baselines are bolded. For each dataset, we report the used K between two parentheses that yields
the best performance. Remarkably, tensor-based embeddings better preserve network structure, which ultimately, improves task performance.

Algorithm Wikipedia (K = 8) WebKB (K = 40) CiteSeer (K = 15) Terrorist (K = 25)
10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%

DeepWalk 59.04 68.25 69.75 42.82 45.49 45.57 54.22 61.91 0.62.11 81.60 86.13 86.82
node2vec 58.73 66.98 70.12 43.20 44.87 44.43 52.66 60.22 60.87 81.07 84.81 84.47
Walklets 58.17 65.61 66.68 42.16 46.83 49.09 52.57 59.25 60.96 79.45 84.20 84.59
TADW 19.25 32.69 46.27 48.10 49.25 48.98 25.52 56.51 67.92 54.28 54.43 54.35
t-PNE ∗ 61.64 66.16 74.00 73.53 82.95 85.73 66.00 70.00 75.00 82.59 90.92 91.88
Gain over DeepWalk 4.4 – 6.1 71.7 82.4 88.1 21.7 13.1 20.8 1.2 5.6 5.8
Gain over node2vec 4.9 – 5.5 70.2 84.9 92.9 25.3 16.2 23.2 1.9 7.2 8.8
Gain over Walklets 6.0 0.8 11.0 74.4 77.1 74.6 25.5 18.1 23.0 4.0 8.0 8.6
Gain over TADW 220.2 102.4 59.9 52.9 68.4 75.0 158.6 23.9 10.4 52.2 67.0 69.0

observe that t-PNE outperforms the baseline methods across
different training percentages of labeled data, except for Deep-
Walk when the training percentage of labeled data = 50%. For
Wikipedia dataset, t-PNE achieves at most a gain of 220.2%
when the labeled data is sparse (10%). Further, despite the
fact that TADW is the most competitive baseline method, it
achieves significantly lower accuracy than t-PNE. We argue
that TADW’s high predictive accuracy is attributed to the
high predictive power of the support vector machine (SVM)
classifier TADW employed for training and prediction. The
same reasoning applies to the rest datasets. With respect to
WebKB dataset, it is interesting that using t-PNE allows
us to uncover the unique connectivity patterns baselines are
incapable of. Regarding the CiteSeer dataset, t-PNE surpasses
the baselines most when the labeled data is sparse (10%) by at
most 158.6%. For the Terrorist dataset, the baselines perform
almost on par with t-PNE, which can be rooted in the fact
that Terrorist network structure is easy to capture and it highly
corresponds to the label information.

VI. CONCLUSION

We propose a novel and effective embedding method, t-
PNE. It employs multi-view graph information by jointly
exploiting the conventional adjacency view along with its
corresponding side information view: K-NN matrix. Empirical
demonstrations show that t-PNE outperforms baseline tech-
niques by up to 158.6% with respect to Micro-F1 score, when
the labeled data is sparse. In our future work, we will address
the issues of interpretability and embedding update, especially
for a recently-joined node that has no evident connections.
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