
Edge Labeling Schemes for Graph Data
Oshini Goonetilleke

RMIT University
Melbourne, Australia

oshini.goonetilleke@rmit.edu.au

Danai Koutra
University of Michigan

Ann Arbor, USA
dkoutra@umich.edu

Timos Sellis
Swinburne University of Technology

Melbourne, Australia
tsellis@swin.edu.au

Kewen Liao
Swinburne University of Technology

Melbourne, Australia
kliao@swin.edu.au

ABSTRACT

Given a directed graph, how should we label both its outgoing
and incoming edges to achieve be�er disk locality and support
neighborhood-related edge queries? In this paper, we answer this
question with edge labeling schemes GrdRandom and FlipInOut,
to label edges with integers based on the premise that edges should
be assigned integer identi�ers exploiting their consecutiveness to a
maximum degree.

We provide extensive experimental analysis on real-world graphs,
and compare our proposed schemes with other labeling methods
based on assigning edge IDs in the order of insertion or even ran-
domly, as traditionally done. We show that our methods are e�cient
and result in signi�cantly improved query I/O performance, includ-
ing with indexes built on directed a�ributed edges. �is ultimately
leads to faster execution of neighborhood-related edge queries.

CCS CONCEPTS

•Information systems→Datamanagement systems;Data struc-
tures; Information storage systems; Database management system
engines;

KEYWORDS

Edge Labeling, Graph databases, Graph storage management, �ery
Processing
ACM Reference format:

Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao. 2017.
Edge Labeling Schemes for Graph Data. In Proceedings of SSDBM ’17,
Chicago, IL, USA, June 27-29, 2017, 12 pages.
DOI: h�p://dx.doi.org/10.1145/3085504.3085516

1 INTRODUCTION

Graph analysis has a�racted a lot of interest in the research commu-
nity. Some of the reasons are (i) the availability and heterogeneity
of data that naturally support graph data structures, such as social
interactions and browsing activity data, and (ii) the emerged tools
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SSDBM ’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5282-6/17/06. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3085504.3085516

and techniques for the convenience of managing and analyzing
such data. By leveraging more advanced tools, researchers and ana-
lysts have been able to gain more insights by asking new questions
(queries) about their graph data. At the same time, they should
expect to have their queries answered as e�ciently as possible.
Given that the throughput of many graph queries can be signi�-
cantly a�ected by disk performance, graph analysis methods need
to focus on e�ective graph storage and indexing for optimizing disk
operations.

A graph management system typically assigns internal identi-
�ers (IDs) to vertices and edges at insertion time to allow their fast
reference and indexing. In many systems, IDs are simply assigned
based on the order of insertion, which is dependent on the data
source: a web graph could be labeled in the lexicographic order of
web pages, and a social network in the order in which users are
crawled. A graph is generally represented as an adjacency list or
matrix. Other systems such as Sparksee [18] and SNAP [15] also
maintain a graph as list of edges, especially useful for indexing
edges with rich a�ributes and managing multigraphs. Representing
edges of a graph is therefore an important aspect and devising
optimal representations has an impact on the performance of such
systems; moreover, as we show later in this paper, such represen-
tations may play an important role in other applications, such as
graph streaming data.

Our motivation of this work stems from optimizing such sys-
tems, in particular for improving the e�ciency of answering edge
queries. For instance, given a node of a graph, a query could ask
for its k-hop neighboring a�ributed edges (both incoming and out-
going) which possess a value of a particular edge a�ribute like
the timestamp. In a friendship social network, such a query could
be �nding a person’s friendship details (with both followers and
followees) established at the date of 01/01/2017. Other examples of
neighborhood queries are �nding mutual ties in a co-authorship
network and recommendations in a product network.

Figure 1 displays the retrieval of node-neighbourhood edge prop-
erties via edge indexes (le� of the �gure), while the underlying
stored data �le (right of the �gure) is sorted by labeled edge IDs.
�e incident edges for a given node are indexed and contain point-
ers to the actual location of the edge records on disk. Each edge
record consists of the assigned edge ID, along with a number of
property value pairs that describes the edge. We argue that hav-
ing consecutive edge IDs (over all node neighbourhoods) ensures
edges are located in closer pages on disk, thus leading to be�er I/O
performance for answering neighbourhood queries.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao

Node id

 1,4,11,16 2,3,7

Index on incident edges
on nodes

1, <p1,v1>, <p2,v2>, <p3,v3>, ...
2, <p1,v1>, <p2,v2>, <p3,v3>, …
3, <p1,v1>, <p2,v2>, <p3,v3>, …
….
8, <p1,v1>, <p2,v2>, <p3,v3>, …
9, <p1,v1>, <p2,v2>, <p3,v3>, …
…
11, <p1,v1>, <p2,v2>, <p3,v3>, …
12, <p1,v1>, <p2,v2>, <p3,v3>, …
....

Data file on disk sorted by edge id
(edge ids followed by all its properties)

Edge ids

Page 1

Page 4

Page 5

Figure 1: An example of indexing attributed edges.

In this work, our goal is to optimally assign edge labels coupled
with edge indices to achieve improved disk locality for e�ciently
answering these typical graph queries, without modi�cation to the
storage internals of the graph system at hand. While node label-
ing has been widely studied, one should not overlook the related
edge-labeling problems aiming at improving query performance
of some current and future graph analysis systems that store edge
lists for di�erent reasons. We focus on edge-labeling schemes for
directed graphs, and demonstrate that even simple labeling of edges
alone can signi�cantly improve the performance of some typical
workloads of graph applications, by lowering the number of disk
reads. Retrieving neighborhood of a node is at the heart of many
operations conducted on graph data. We posit that be�er disk local-
ity of outgoing and incoming edges incident to a particular vertex
would result in signi�cant speedup of the neighborhood query,
and consequently, in be�er execution times for a vast majority of
queries which are based on it.

We approach this problem as labeling (encoding, ordering or
numbering) of edges, where each edge in a set of edges E is given
a number (an edge identi�er, ID or eid) between 1 and |E |. �e
encoding is performed so that outgoing and incoming edges of
nodes are given eids as consecutively as possible, thereby pu�ing
outgoing and incoming neighboring edges close together on disk
based on these eids. While many graph database systems (Neo4j,
Sparksee, etc.) take approaches to de�ne memory hierarchies for
e�cient query processing, we investigate how graph data storage
can be improved at physical level. �ese modern graph database
systems are relatively new and require further investigation on
topics such as physical data management to progress towards the
level of maturity of relational database systems.

Figure 2 illustrates di�erent edge-labeling strategies for a di-
rected multigraph. Random ordering as shown in Figure 2a has
not much consecutive guarantee on the eids assigned to edges. If
edges are ordered by source nodes (a directed edge points from a
source node to a target node), as in Figure 2b, all outgoing edges
from a source node are guaranteed to be assigned consecutive IDs.
However an obvious drawback of this approach is that incoming
edges of target nodes are overlooked, resulting in these edges pos-
sibly sca�ered across a range of IDs, undesirable for the underlying
physical data storage. On the other hand, Figure 2c shows a per-
fect edge numbering such that both incoming and outgoing edges
are given consecutive numbers. While for real graphs it is o�en
impossible to perform such a perfect labeling, we can a�empt to
maximize the overall consecutiveness.

In this work, we formulate edge-labeling as an optimization
problem, and present two scalable approaches, GrdRandom and
FlipInOut, to label edges in a way that maximizes the total edge
consecutiveness of graph, i.e., maximize the number of sequentially
labeled edges to enable sequential storage, thereby increasing the
locality of disk accesses. GrdRandom is based on the idea that num-
bering should be alternated between incoming and outgoing neigh-
bors to strike a balance between the edge directions. FlipInOut
extends this idea by taking into account the neighborhood infor-
mation, and prioritizing high-degree nodes. Our contributions in
this work can be summarized as follows:

• Formulation: We propose an edge consecutiveness met-
ric on directed graphs (that takes into account both outgo-
ing and incoming edges) and formulate edge-labeling as a
maximization problem of this metric.

• Methods: We introduce GrdRandom and FlipInOut as
two edge labeling algorithms that focus on the balance
between numbering outgoing and incoming edges.

• Experiments: We conduct extensive experiments on real
graphs, and show signi�cant bene�ts of our approaches
over baselines in disk I/Os and query times.

• Applications: We demonstrate a case study of our meth-
ods to be applied in streaming graph partitioning.

We conduct experiments to evaluate disk I/O performance, and
the subsequent speedup of various graph operations (e.g., friend-of-
friend queries and shortest paths). Among the systems that index
edges, we use Sparksee as a representative graph analysis system.
Other systems, such as Unicorn [7] can also take advantage of
edge-labeling. Unicorn has several types of edges (i.e., relationships
among users, posts etc. in Facebook), and any index built on these
edges based on edge properties can leverage a good labeling scheme
to achieve disk locality and e�cient edge indexing.

2 RELATEDWORK

In this section we �rst discuss several categories of existing work
that are closely related to the edge-labeling problem, and then
introduce an implementation, Sparksee, which stores its edges as
bitmaps on disk.
Node arrangement. �e most relevant body of work is node re-
ordering methods, which are introduced with di�erent goals in
mind. SlashBurn [16], for example, is a recent approach for renum-
bering the nodes so that the non-zero elements of the adjacency
matrix are grouped together, thus enabling faster execution of ma-
trix operations and be�er compression. SlashBurn investigates
the ‘no good cut’ problem [14] for power law graphs and pro-
pose techniques for node reordering. Shingle Ordering [6] groups
similar nodes to form dense communities by exploiting the link
reciprocity of social networks. It focuses on solving MLOGA and
MLOGGAPA minimization problems, whereas we focus on solv-
ing a maximization problem. Recently, Wei et al. [28] exploits
node ordering for improving CPU cache performance. Although
node reordering or relabeling can result in improved performance

Edge Labeling Schemes for Graph Data SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

1 3 2

4 6
5

12 9

7
10 8

11

13

tails

1 B1 000000000001

2 B2 000000001

3 B3 00000001001

4 B4 0000001001001

heads

3 B5 000000101101

5 B6 00000000001

6 B7 0000000100001

(a) Random order: Cin (G) = 0.4, Cout (G) = 0.4.

1 3 2

4 6
5

7 8

11
13 9

10

12

tails

1 B1 0000001

2 B2 00000001

3 B3 0000000011

4 B4 0000000000111

heads

3 B5 0000001100101

5 B6 0000000001

6 B7 000000001001

(b) Source-based order: Cin (G) = 0.4, Cout (G) = 1.0.

1 3 2

4 6
5

12 13

11
10 8

7

9

tails

1 B1 000000000001

2 B2 0000000000001

3 B3 00000011

4 B4 00000000111

heads

3 B5 0000000001111

5 B6 0000001

6 B7 000000011

(c) Perfect order: Cin (G) = 1.0, Cout (G) = 1.0.

Figure 2: Illustration of di�erent ordering strategies.

in many node-oriented queries, it does not necessarily guarantee
good performance for edge-oriented ones.
Graph compression. Existing work exploits the property of local-
ity in graphs with graph compression as a primary objective. Early
approaches have focused on compressing web graphs with simi-
larity and locality features [24], lexicographic localities [4]—later
extended to social networks [6, 8]—, or a BFS approach [2]. It must
be noted that compression is not our main focus, although a bene-
�t in compression may be a side-e�ect of our proposed encoding
schemes.
Space �lling curves. Hilbert and other curves [19] are also closely
related if we view the edge encoding problem as a mapping of edges
to IDs. Hilbert curves generate a mapping between a 1-dimensional
and a 2-dimensional space known to achieve good locality of ref-
erence. Di�erent types of space �lling curves are widely used to
index spatial objects based on proximity. Intuitively, Hilbert curves
recursively partition an (x,y) coordinate in a 2-dimensional space
such that it can be mapped to a single integer.

In our case, for every edge we can calculate a Hilbert index using
the combination of the adjacent endpoints. We can then use this
index to label the edges. �e Hilbert index of an edge is sensitive to
the neighboring node labels. In the original use of the space �lling
curve, the two endpoints refer to an actual (x,y) coordinate of a
point in space. But in the graph space unless the x,y node IDs are
‘close’ (distance-wise in the graph space), we cannot guarantee that
the edges will be assigned consecutive, or even close numbers.
Graph partitioning, Community detection and Clustering.

�e well-studied problem of graph partitioning is also pertinent
to our work. �e objective of partitioning algorithms is to reduce
the number of edges crossing partitions, i.e., edge cuts, so that the
nodes belonging to the same partition can be grouped together as
a coherent unit of storage. A multitude of partitioning algorithms
have been developed over the years in response to variations of the
classic partitioning. METIS [12], one of the most widely used in
practice, belongs to the category of multi-level partitioning strate-
gies [9, 13]; many distributed algorithms [23, 27] work well with
large graphs; DIDIC [10] and EvoCut [1] require only local com-
putations eliminating expensive global operations on the graph.
Community detection and clustering algorithms [3, 5, 20, 22] have
a very similar objective of grouping densely connected regions of a
graph (e.g. cliques and bipartite cores) which are loosely connected
with the rest of the graph.

All of these algorithms achieve some degree of locality within the
graph by considering homogeneous regions in the network. One
may be tempted to leverage a partitioning or clustering approach to
derive an edge numbering. For example, a method such as METIS
(known to have good edge-cuts) can be used to partition the graph,
and then guide the arrangement of the edges on disk. For instance,
the inter-edges can be assigned to the partition of the source or
destination node, decided at random, while the intra-edges can
be numbered in some arbitrary sequence. However, once a node
numbering is known it is not straightforward to de�ne a method
that labels the edges in a way that their consecutiveness is maxi-
mized. Moreover, techniques like SlashBurn and METIS operate on
undirected graphs, so only the existence of the edge is su�cient to
obtain the �nal numbering. Naturally edge directionality is ignored
when placing a node in a partition, cluster or community, while for
us directionality is of utmost importance.
Sparksee. Sparksee is one of the graph database management
systems that store edges for query processing, this is also the rea-
son we use it as our testbed in experiments. In Sparksee, vertices,
edges, a�ributes are stored internally as a combination of compact
bitmaps enabling e�cient bit operations for query processing. �e
motivation behind using a bitmap representation in Sparksee is
two-fold: First, bitmaps are able to hold large amounts of informa-
tion in reduced amount of memory. Second, graph queries can be
converted to a series of logic (bit) operations that can be performed
very e�ciently.

Figure 3: Bitmaps representing relationships for a graph

with edges sorted by the source

�e structure of the bitmaps depend on the IDs (labels) that are
assigned to the edges. Figure 3 shows the corresponding bitmaps
(LSB on le�) for storing relationships on a simple graph with edges
sorted by the source. �e tail/head group shows the IDs of all
edges of which each node is a tail/head. Let us consider node ID

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao

3 as an example: Node ID 3 is the tail for edges with IDs 9 and 10.
�erefore, in the bitmap for 3 in the tails group (B3), the 9th and the
10th bits are set to one. Similarly, node ID 3 is the head for edges
with IDs 7,8,11 and 13. Hence, its bitmap, B5, has the bits 7,8,11
and 13 set to one. Notice that a di�erent edge-labeling will result
in a di�erent bitmap in the relationships.

As illustrated in Figure 3, when the graph edges are sorted by
source, 1s in the tail group will be grouped together however,
the 1s in the head group are sca�ered across the bitmap requiring
more pages to represent the bitmap on disk. Consequently, a query
that involves retrieving the incoming neighbors of node ID 3 will
incur more disk I/O operations. Maximizing consecutiveness of
edge IDs is crucial to performance, since achieving consecutive 1s
at a maximum will allow compression of bitmaps and therefore
faster bit-level operations as well as less storage.

3 EDGE-LABELING SCHEMES

Answering a query on a directed graph may either involve travers-
ing through a node’s outgoing edges, incoming edges, or a combi-
nation of both. A neighborhood query is the basis of most graph
queries, if not all, used in practice. Consider a graph-based rec-
ommendation query on a who-follows-whom network on Twi�er.
Recommending users to follow to a user u may involve �nding the
2-step followees (2-hop outgoing neighbors) who u is not following
(1-hop outgoing neighbors). Moreover, in label propagation, at any
round, both the incoming and outgoing edges of a node need to
be accessed as messages are exchanged between neighbors. As
such, our focus is primarily on improving the locality of the neigh-
borhood query. Although an optimal arrangement of the edges is
dependent on the characteristics of the graph and the type of query,
retrieving the 1-hop neighborhood is fundamental to (almost) all
graph operations.

Accessing neighboring edges of a node on disk requires reading
pages from disk. If the neighboring edges are placed closer together
on disk, this will reduce the costly random reads required for the
fundamental neighborhood query. As such our objective is to place
neighboring edges with improved locality independent of the type
of graph. In Sparksee and other systems, this translates to assigning
numbers to both outgoing and incoming edges as consecutively as
possible. Since there are many ways to number the edges in a graph
an exhaustive search is not feasible; we propose a ‘balanced label-
ing’ technique that alternately numbers edges of opposite types
(incoming and outgoing). As we con�rm in the experiments, how

Table 1: Some graph related notations used in algorithms.

Symbol Description

|V | number of vertices
|E | number of edges
E′ reordered set of edges in a graph
T edge type: ‘in’ or ‘out’
T ′ an inverse edge type
L set of unlabeled edges in a graph
NT (v) neighbors of vertex v of type T
deдT (v) degree of vertex v of edge type T
Ev set of unlabeled edges incident to v
(v, x) an outgoing edge of v , or incoming edge of x
visited [T] set of visited vertices of type T

well we can achieve consecutiveness depends on graph character-
istics and the type of query workload. In the following, we �rst
present the edge-labeling problem and then our proposed methods.
We provide descriptions of some graph related notations in Table 1.

3.1 Problem formulation

Let G (V, E) be a directed (multi-)graph with a set of vertices,V ,
and a set of edges, E. Internally, each vertex v ∈ V and edge e ∈ E
is identi�ed/labeled by a unique integer ID. We consider G stored
as edge lists (for reasons outlined in Section 1). First, we de�ne the
edge consecutiveness metric for any vertex as below:

De�nition 3.1 (Edge Consecutiveness). Given a directed graph
G = (V, E), and a mapping π : E → Z of edges to integer eids, the
incoming edge consecutiveness of a vertex v , Cin (v), is de�ned as
the number of pairs of its incoming edges with consecutive eids
under the ordering π . Also, if deдin (v) = 1, then Cin (v) = 1. �e
outgoing edge consecutiveness Cout (v) can be de�ned similarly.

Note that the maximum value ofCin (v) is deдin (v)−1 (similarly
for Cout (v)) except for the cases deдin (v) = 1 and 0. �e edge-
labeling problem we consider is then formulated as follows:

Problem 1. [edge-labeling] Given a directed graph G = (V, E),
we want to �nd the best labeling π , such that the ‘total’ in- and
out-consecutiveness of the graph, C (G) as below, is maximized:

C(G) = 1
|E | − nin

∑
v ∈V

Cin (v)︸ ︷︷ ︸
Cin (G)

+
1

|E | − nout

∑
v ∈V

Cout (v)︸ ︷︷ ︸
Cout (G)

(1)

where nin and nout are the number of nodes with > 1 incident
edges of their respective edge types.

�e scaling factors in the above consecutiveness formulation is
to ensure that C (G) ∈ [0, 2], since the maximum value of the
in-consecutiveness (out-consecutiveness) of G is |E | − nin (|E | −
nout). For example, the graph in Figure 2b has in-consecutiveness—
Cin (G)=0.4, since |E | − nin = 7 − 2 = 5 due to node 3 and 6,
and Cin (1) = Cin (2)= Cin (4) = Cin (6) = 0, and Cin (3) = Cin (5)
= 1. Similarly, its out-consecutiveness is Cout (G) = 1, so the total
consecutiveness is 1.4.

�e theoretical maximum for perfect in-/out- consecutiveness is
1.0 which means that all the edges of the graph are consecutive. For
a given graphG , the out- (or in-) consecutiveness can be easily made
1.0 by labeling all the outgoing (or incoming) edges of each vertex
i consecutively. However, it is unlikely that even in the optimal
case, both incoming and outgoing edges can be made perfectly
consecutive, because in directed graph labeling one type of edges
also labels the edges of the inverse type. An intuitive a�empt to
maximizing C (G) is to locally maximize Cout (v) and Cin (v) for
each node v ∈ V by ‘taking turns’ in labeling edges of opposite
directions. �is is the core idea of our proposed algorithms to be
presented next.

3.2 Labeling schemes

In this section we �rst describe the baseline methods for labeling
the edges of a graph, and then give the details of our proposed
methods. Our solution seeks to maximize the consecutiveness at

Edge Labeling Schemes for Graph Data SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

each individual vertex C (v) so that local decisions greedily make
progress towards the global optimal.

3.2.1 Baselines for labeling. �ere are three natural ways
that the edges of a graph can be ordered in the input �le, indepen-
dent of the type of graph. We use the following methods to form
our baselines:
• Random. �e edges are listed in an order given by a random

permutation.
• consecIN. �e incoming edges of each node are labeled con-

secutively, edge IDs are sorted over the edge target/destination
nodes.

• consecOUT. �e outgoing edges of each node are labeled con-
secutively, edge IDs are sorted over the edge source nodes.

As explained in Section 2, existing node reordering methods
are not directly applicable in solving our graph consecutiveness
maximization problem with edge-labeling. However, correlations
may exist between node and edge ordering methods for serving
di�erent types of graph queries. We leave such correlation studies
for future work and instead focus on solving the edge-labeling
problem here.

3.2.2 ProposedMethod: GrdRandom. �e two baseline meth-
ods consecIN and consecOUT are biased towards labeling the re-
spective edge type consecutively. We propose an intuitive algo-
rithm, GrdRandom, in which the labeling does not favor a single
edge type. In this greedy approach we �rst consider a random
permutation of the nodes to inform the visit order. For each of the
nodes we �ip a coin to decide if the outgoing or the incoming edges
of that node should be labeled consecutively. Once an edge is given
a number, it is not changed. �e idea is that we alternate between
the type of edge we number so that we do not favor a single edge
type.

Algorithm 1 shows the general idea of the GrdRandom algo-
rithm. �e algorithm randomly numbers the edges and can com-
plete fairly quickly. In the case that not all edges are labeled (due
to randomness), a restart procedure can always be performed on
labeling unlabeled edges. �e algorithm takes O(|V |) time to run
the random permutation, and performs the number assignment in
O(|E |). �erefore the complexity of the algorithm is O (|V | + |E |).

Algorithm 1 GrdRandom
Input: Graph G = (V, E)
Output: Re-labeled edge list E′
1: E′ ← {} . labeled edge list to return
2: L ← E . list of unlabeled edges
3: VR ← random permutation(V)
4: for v ∈ VR

do

5: if rand () > 0.5 then T← ‘out’ else ‘in’ end if

6: /* Ev : unlabeled edges incident to v */
7: if T == ‘out’ then . unlabeled edges
8: Ev ← {(v, x) ∈ E } ∩ L . outgoing
9: else

10: Ev ← {(x, v) ∈ E } ∩ L . incoming
11: end if

12: for e ∈ Ev do

13: E′ ← E′ ∪ {e } . edge added in order
14: L ← L r {e }
15: end for

16: exit if |L | == 0
17: end for

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

(a) (b)

(c) (d)

1

3

2

Z Z ZCurrent node for which
edges are numbered

Candidate
neighboring node

Neighbor node with most unnumbered
edges of the inverse type

1

3

2

4

5

1

3

2

4

5

7

6

1

3

2

4

5

7

68

9

Figure 4: FlipInOut Algorithm: Example.

3.2.3 ProposedMethod: FlipInOut. Our �rst approach, Gr-
dRandom, is simple and easy-to-implement, and, as we show in
our experiments, it outperforms the baselines. In our proposed
method, FlipInOut, we further advance GrdRandom’s main idea,
and carefully incorporate more features to consciously improve the
edge consecutiveness. We �rst give a simpli�ed example of our
proposed algorithm in Figure 4 and then discuss its main features
in detail.

Illustrative Example. As shown in Figure 4 (a), the algorithm
starts with the vertex of the highest total degree (node B) and
numbers the edge type that has most unlabeled edges. From the
in-neighbors of B (candidate vertices: A, E and F), it then picks the
in-neighbor with the most unlabeled edges of the inverse (�ipped)
edge type (i.e., edgeType = out). For each node the algorithm keeps
track of the number of unlabeled out- and in-neighbors. Node E
is the selected vertex for the next iteration as neighbor A has no
more out-edges, while E has 2 and F has 1. E’s remaining outgoing
edges are labeled in sequence (4(b)). Our method continues by
considering the neighbors of E and selecting the vertex with the
highest unlabeled edges of edgeType = in etc. (Figure 4 (c)-(d)).
If all neighboring nodes have their edges labeled, the algorithm
restarts with the node with the highest remaining total degree.

As more edges are labeled there are many node instances with
all their neighbors labeled which results in the algorithm to restart
o�en. Our proposed algorithm, FlipInOut (Algorithm 2), incorpo-
rates the following three main ideas with the goal of labeling edges
in both directions as consecutively as possible:
I1. Alternate. Similar to GrdRandom, at each iteration, the algo-
rithm �ips between labeling outgoing and incoming edges (hence
the name Flip-In-Out) to balance the consecutiveness. �e node
visit order of FlipInOut is based on the number of unlabeled edges
of the �ipped type, while GrdRandom is neighborhood agnostic.
For example, if the incoming edges of a node was the last to be
labeled, FlipInOut will examine the outgoing edges of the current

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao

node’s neighbors, and vice versa. A swap procedure explained later
(a�er I3) ensures the continuity in labeling.
I2. Prioritize. High-degree nodes are given high priority, and are
labeled earlier in the algorithm. As in the example, when presented
with a choice, FlipInOut numbers the edges of the highest-degree
neighboring node. �e intuition is that locality is especially impor-
tant for high-degree nodes; If the edges of high in- and out-degree
nodes are assigned consecutive numbers, a larger proportion of
edges will be consecutive. As a result, it is more important that
edges incident to “popular” nodes are closer together on disk, com-
pared to a node with only a couple of incident edges. Any query
that involves accessing the neighborhood at a depth greater than
one (e.g. shortest paths) is more likely to reach a high-degree node
due to its large number of connections. If the neighbors of these
high-degree nodes are not close on the disk, a query can quickly
become very ine�cient. We therefore seek to minimize the overall
I/O cost for accessing the graph by minimizing the I/O activity of
the high-degree nodes.
I3. Terminate Early. �is idea is applicable and particularly im-
portant for large graphs, where it is common to have frequent
vertex restarts a�er a signi�cant portion of the edges are labeled.
�e idea behind early termination is to di�erently order the last
δ% of the edges. Speci�cally, we employ a neighborhood-agnostic
approach, which decides the visit order of the vertices with unla-
beled incident edges and terminates the ‘�ipping edge’ idea. Each
node v is represented as a set of at most two pairs: (i) (v,deдin (v)),
if it has unlabeled incoming edges; and (ii) (v,deдout (v)), if it has
unlabeled outgoing edges. �e resulting pairs are ordered in de-
creasing order of degree (in or out) to inform the order in which the
vertices will be visited. �eir incident edges of the corresponding
type are then labeled consecutively. In our experiments, δ = 12%
achieved good performance in the largest graphs that we used and
eliminated the frequent restart problem. �e percentage δ is set
once for all the remaining edges. For brevity, we have excluded the
early termination process from Algorithm 2 (the criterion on line 5
would change to |L| > δ |E |).

�e alternate and prioritize steps are employed to locally max-
imize the individual consecutiveness C (v) (Problem 1) for each
vertex v . When this greedy approach terminates, the algorithm is
making progress towards an optimal solution. As we mentioned
in the alternate step, we employ a swap procedure to ensure
continuity. As described in the example, at any given step, out of
the candidate neighboring nodes, the next vertex to visit is selected
based on the number of unlabeled edges a vertex has of the �ipped
edge type. When the vertex is chosen, the selected vertex inherits at
least one edge from the current node. Before labeling the edges of
the selected vertex a condition is tested: If the edge connecting the
current vertex and the selected vertex (i.e., the common edge) does
not have the highest edge number seen so far, the edge number
is swapped with the maximum sibling edge ID. �is ensures the
continuity in numbers assigned to the inherited edge and the edges
of the selected vertex that are about to be labeled. �is is another
strategy to ensure that the local consecutiveness of a given node is
at the maximum.

Algorithm 2 FlipInOut
Input: Graph G = (V, E)
Output: Re-labeled edge list E′

1: E′ ← {} . re-labeled edge list to return
2: L ← E . list of unlabeled edges
3: visited[out]← {} and visited[in]← {}

4: [v, T] = ChooseVertex(L, visited) . starting vertex
5: while |L | , ∅ do . �ere are still unlabeled edges
6: /* Ev : unlabeled edges incident to v */
7: if T == ‘out’ then
8: Ev ← {(v, x) ∈ E } ∩ L . outgoing
9: else

10: Ev ← {(x, v) ∈ E } ∩ L . incoming
11: end if

12: for (x, y) in Ev do

13: L ← L r {(x, y) }
14: E′ ← E′ ∪ {(x, y) } . edge added in order
15: visited[T]← visited[T] ∪{v }
16: deдT (x)–=1;deдT (y)–=1 . current degree
17: end for

18: T← T′ . �ip the edge type (‘in’ or ‘out’)

19: /* NT (v): neighbors of node v of type T */
20: if | {(x, y) ∈ E |x ∈ NT (v) } ∩ L |,∅ then

21: /* Find the next vertex to visit, from v ’s neighbors */
22: v = argmaxx∈NT (v)rvisited[T] {deдT (x) }
23: else

24: [v, T] = ChooseVertex(L, visited)
25: end if

26: end while

27: /* Choose the new starting vertex */
28: function ChooseVertex(L, visited)
29: v = argmaxvi ∈Vr{visited[T]∩visited[T’]} {deдT (vi) }
30: if deдout (v) > deдin (v) then T← ‘out’ else ‘in’

Runtime Complexity. Line 4 in Algorithm 2 spends time
O (|V |). Per node v , we execute lines 12-17 in O (deд(v)), and either
line 22 or 24, which are O (deд(v)) and O (|V |), respectively. So,
FlipInOut is O (|V | + |E | +max {|E |, |V |2}). Its worst case complex-
ity, O (|V |2), occurs only when it keeps restarting (line 24—i.e., the
graph consists of disconnected stars). In practice, restarts happen
only towards the end of the algorithm, and FlipInOut is very e�-
cient needing only 2.8 and 4.9 minutes to label 33M and 69M edges,
respectively.

4 EXPERIMENTAL EVALUATION

We conducted experiments to demonstrate the performance of our
encoding methods on a variety of real graphs. In the following
subsections, we answer the questions:
• Can we speed up popular graph queries using FlipInOut edge-
labeling?
• Can we observe improved disk I/O as a result of be�er locality
when storing the graph on disk?
•DoGrdRandom and FlipInOut show bene�t in storage compared
to a random ordering and other baseline schemes?

4.1 Experimental Setup

Environment. �e experiments were conducted on a Linux ma-
chine with 4.00GHz Intel Core i7-4790K, 8GB of memory and 60GB
SSD.
Datasets. We conducted experiments on six directed real-world
graphs with edges ranging from 100,000 to 69 million, which we

Edge Labeling Schemes for Graph Data SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

obtained from SNAP1 and KONECT2. In Table 2 we summarize
basic statistics of each graph considered, such as their sizes and
clustering coe�cients.
Setup. Our experiments used Sparksee 5.2 (cf. Section 2) for the
creation of databases. Given a dataset, node labeling is identical for
all labeling methods, but the edge-labeling di�ers.

For every graph, a Sparksee database is created for each of the
labeling methods including the baselines—Random, consecIN, con-
secOUT,GrdRandom and FlipInOut. �e timing reported in exper-
iments is only the query execution time (i.e., the database creation
time is excluded). In order to run queries on edge properties, we
augment each of the datasets by adding randomly generated inte-
ger a�ributes on all the edges, representing weight or timestamp
property.

4.2 Speedup of�eries

We perform experiments to demonstrate the speedup of some
popular graph queries: (i) friend-of-friend queries, which explore
a node’s 2-hop neighborhood (ii) shortest path queries, and (iii)
queries that retrieve edge properties. �e performance for all
queries is shown in Figure 5. Each plot shows the average exe-
cution time (y-axis) of running the query for 100 instances (node
IDs). For a dataset, the same instances (node IDs for FoF, property
queries and ID pairs for shortest paths) are used for all queries and
labeling methods.

4.2.1 Friend-of-Friend (FoF)�eries. We perform two types
of friend-of-friend queries, which explore neighborhoods at depth
2, to inspect both directions: FoF-in and FoF-out. �ese two queries
are chosen to show the behaviour of di�erent schemes when the
query is biased. For high-degree nodes these queries involve having
to traverse through a large neighborhood. �e FoF query perfor-
mance for di�erent labeling schemes is shown in Figure 5a-b.

We observe that for a FoF-out query (Figure 5a), consecOUT
numbering has the lowest execution time reported across all graphs.
�is is expected as consecOUT is the optimal arrangement of edges
for an FoF-out query with all outgoing edges having consecutive
numbers (Cout (G) = 1.0). However, the same query performed
on a database with consecIN edge encoding (Cin (G) ≈ 0), has
performance close to that of a random ordering.

Similarly, a consecIN numbering performs best for an FoF-in
query (Figure 5b), but performs similar to a random ordering when
running an FoF-out query. To put this in context, for the Flickr
graph, while consecOUT is 8× faster compared to consecIN for
FoF-out queries, it becomes 7× slower for FoF-in queries. �us,
consecIN and consecOUT are biased towards a single direction
(in/out, resp.) and are only suitable for the query type on which
the database is built.

If the query workloads are known apriori to be only of one type,
certainly these approaches work very well. But in practice this
is a strong assumption and rarely the case. �erefore, we need
methods to strike a balance between achieving locality of both
incoming and outgoing edges. Across a variety of query workloads,
our approaches meet halfway between the biased labeling and stay

1h�ps://snap.stanford.edu/data/index.html
2h�p://konect.uni-koblenz.de

consistent with the best- performing methods irrespective of query
type.

Observation 1. FlipInOut is closer to the best performing con-
secOUT for FoF-out query (Figure 5a) and closer to the best per-
forming consecIN for FoF-in queries (Figure 5b). For FlipInOut,
the average relative performance improvement for FoF-out (FoF-
in) queries ranges from 36% to 76% (38% to 66%, resp.) compared
to random numbering.

Although GrdRandom does not perform as well as FlipInOut,
its execution is still consistent across the query types. It outper-
forms the random and consecIN schemes for out-speci�c queries,
and the random and consecOUT schemes for in-speci�c queries.
Recall that GrdRandom was a fairly straightforward and easy-to-
implement approach which gives acceptable results. In Section 4.3
we con�rm that the main reason behind the be�er timing in our
methods is improved disk I/O operations.

4.2.2 Shortest Path�eries. We chose shortest path queries
to represent the category of queries that employ both outgoing
and incoming edges. �e shortest path from the source vertex s to
the target vertex t involves a bidirectional breadth-�rst strategy,
which leads to signi�cant speedup in the algorithm by reducing
the number of visited vertices. �e idea is to perform a forward
search from s via its outgoing edges, and a backward search from t
via its incoming edges until a common node is processed. �us, the
query requires going through the outgoing and incoming edges of
a graph simultaneously. �e shortest path query performance of
all labeling methods is shown in Figure 5c.

Observation 2. For shortest path queries, FlipInOut outper-
forms all the encoding methods, which are biased towards edges
in one direction.

�us, if a query needs to retrieve both outgoing and incoming
neighbors (e.g. the optimized shortest path query), a balanced
numbering clearly results in be�er query performance. Overall,
the average performance improvement for FlipInOut ranges from
18% to 86% compared to random numbering, and shows up to 7×
speedup (Flickr).

Upon closer inspection, we note that for WikiVote and LiveJ
datasets, the timing di�erence between FlipInOut and the fastest
baseline is marginal. For WikiVote, this can be a�ributed to the
small path lengths between node pairs (most lengths are 1-2, and
19% of them are 0—non reachable node pairs). For LiveJ, we a�ribute
the marginal di�erence to its high average clustering coe�cient
(0.27) compared to other graphs. �e clustering coe�cient of a ver-
tex indicates how well-connected the neighborhood of that vertex
is, and is de�ned as the ratio of actual edges between neighbors
over the maximum number of potential edges. If its neighbors are
well-connected, it is likely that the nodes required to perform an
FoF-out, FoF-in, or a shortest path query are already available in
memory, thus, leading to low execution time.

4.2.3 Edge-Property�eries. For the next set of experiments
we select a pa�ern matching query on edges. Any query that �lters
the incident edges of a node based on a given property value is an
example. We use a query that �lters the incident neighborhood

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao

Table 2: For each dataset, we give the number of nodes and edges, the average ratio of outgoing and incoming edges over the

total number of edges (OIR), the number of edges in the largest strong connected component (LCC), the average clustering

coe�cient (ACC), and a short description of the graph representation.

Dataset Nodes Edges Avg. OIR LCC ACC Description

WikiVote 8,297 103,690 0.73 / 0.27 0.38 0.14 who-votes-whom
Epinions 75,879 508,837 0.56 / 0.43 0.87 0.14 who-trusts-whom
Slashdot 82,168 948,464 0.43 / 0.56 0.96 0.06 social network
WikiTalk 2,394,385 5,021,410 0.03 / 0.96 0.29 0.05 Wiki talk network
Flickr 2,585,568 33,140,018 0.42 / 0.57 0.82 0.10 social network
LiveJ 4,847,571 68,993,773 0.49 / 0.50 0.95 0.27 social network

wVote Epinions SlashDot wTalk Flickr LiveJ
101

102

103

104

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(a) FoF-out

wVote Epinions SlashDot wTalk Flickr LiveJ
100

101

102

103

104

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(b) FoF-in

wVote Epinions SlashDot wTalk Flickr LiveJ
101

102

103

104

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(c) Shortest Path

wVote Epinions SlashDot wTalk Flickr LiveJ
103

104

105

T
im

e
(m

s)
 L

og
 s

ca
le

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(d) Edge-property

Figure 5: �ery Performance (in ms) in real networks: FlipInOut and GrdRandom have the best combined performance for

in- and out-speci�c queries. �e runtime is measured as the average execution time over 100 runs.

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

101

102

103

104

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(a) FoF-out

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

100

101

102

103

104

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(b) FoF-in

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

101

102

103

104

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(c) Shortest Path

100k 500k 900k 5M 33M 68M
Number of edges in graph (log scale)

103

104

105

T
im

e
(m

s)
 (

lo
g

 s
ca

le
)

consecOUT
consecIN
Random
GrdRandom
FlipInOut

(d) Edge-property

Figure 6: �eryPerformance (inms) vs. number of edges in each input graph (log-log scale): FlipInOut’s relative improvement

is robust to the graph size both for FoF-out / FoF-in (a-b), and shortest path queries (c).

(both edge directions) of a given node v based on a edge property
value x . �e value of x is selected such that the selectivity is around
5%-10%. �e query involves retrieving both the outgoing and in-
coming incident edges of v . �e edge-property query performance
for the di�erent encoding schemes is shown in Figure 4d.

We observe that FlipInOut numbering results in lowest average
execution time across all graphs. Similar to shortest path queries,
since FlipInOut a�empts to balance the numbering it results in
be�er performance when dealing with queries that involve inci-
dent neighborhood irrespective of direction. Overall, the average
performance improvement for FlipInOut ranges from 10% to 78%
compared to a random numbering.

Observation 3. For edge property queries, FlipInOut outper-
forms all the encoding methods with an average relative perfor-
mance improvement ranging from 10% to 78% compared to a
random numbering.

�e behaviour of consecOUT and consecIN varies depending on
the query mix–if the node IDs consistently have higher out-degree
nodes than the in-degree of the same node, consecOUT performs
be�er and the reverse otherwise.

4.2.4 Scalability. Figure 6 presents the average execution time
of the encoding schemes as a function of the size of graph edges.
�e x-axis in the plot corresponds to the number of edges in each
of the datasets (Table 2) in increasing order and the y-axis to the
average time in log scale. For FoF-out and FoF-in, the dark blue star
line representing FlipInOut remains consistent across the graphs
regardless of the query direction.

Edge Labeling Schemes for Graph Data SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

friend-of-friend out (a) friend-of-friend in (b) shortest-path (c) edge-prop (d)
WikiVote

consecOUT consecIN Random FlipInOut GrdRandom
15

20

25

30

35

40

45

50

55

60

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom
15

20

25

30

35

40

45

50

55

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

15

20

25

30

35

40

45

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

26

27

28

29

30

31

32

33

34

35

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

Epinions

consecOUT consecIN Random FlipInOut GrdRandom

20

40

60

80

100

120

140

160

180

200

220

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

40

60

80

100

120

140

160

180

200

220

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d
consecOUT consecIN Random FlipInOut GrdRandom

20

40

60

80

100

120

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

35

40

45

50

55

60

65

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

SlashDot

consecOUT consecIN Random FlipInOut GrdRandom

50

100

150

200

250

300

350

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

50

100

150

200

250

300

350

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

20

40

60

80

100

120

140

160

180

200

220

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

30

40

50

60

70

80

90

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

WikiTalk

consecOUT consecIN Random FlipInOut GrdRandom

200

400

600

800

1000

1200

1400

1600

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

100

200

300

400

500

600

700

800

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

50

100

150

200

250

300

350

400

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

Flickr

consecOUT consecIN Random FlipInOut GrdRandom

0

2000

4000

6000

8000

10000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

500

1000

1500

2000

2500

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

LiveJournal

consecOUT consecIN Random FlipInOut GrdRandom
0

2000

4000

6000

8000

10000

12000

14000

16000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

2000

4000

6000

8000

10000

12000

14000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

consecOUT consecIN Random FlipInOut GrdRandom

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u

m
b

er
 o

f
P

er
si

st
an

t
P

ag
es

 R
ea

d

Figure 7: Disk I/O Performance of�eries

Observation 4. FlipInOut scales well with the size of the input
graph, and its relative improvement is robust to the graph size
regardless of the edge direction in the queries.

As explained before, the drop in timing for the LiveJ graph is likely
related to the high connectivity between the neighbors that are
already loaded into memory.

4.3 Disk I/O Performance

To measure locality preservation on disk and con�rm our hypothe-
sis that be�er edge-labeling improves the number of disk accesses,
we monitored the disk I/O performance of each query. In Figure 7,
for each type of query and encoding scheme, we show the total

number of persistent page reads from disk (y-axis) over 100 in-
stances of node IDs. �e disk I/O for FoF-out, FoF-in, shortest path,
edge property queries are shown in columns a, b, c, and d, respec-
tively. �e reported number of pages read refers to all the internal
structures, including the indexes and actual data stored in bitmaps.
All the statistics are recorded the �rst time a query is run, on a cold
cache.

Figure 7 shows how the page accesses vary across di�erent
labeling schemes and their relative di�erences. For FoF-out and
FoF-in queries, a consecOUT and consecIN layout clearly show a
bene�t consistently across all the graphs. FlipInOut is closer to the
winner in each of the respective methods. Both the shortest path

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao

and edge property queries seem to bene�t from having a more non-
biased edge layout on disk. Peculiar behaviour in the LiveJournal
graph is also exhibited in these plots. Variations on these plots help
explain the behaviour of query times in the previous section.

Observation 5. �e number of persistent page reads correlates
with the query time of the encoding schemes.

For WikiVote, there appears to be a big di�erence in the number
of reads between the methods (which should a�ect its runtime), but
the disk page reads are consistent across methods, ranging from 15
to just 60. �e small number of reads is likely due to the network’s
small size—its 100K edges can be cached.

Furthermore, with the promising results shown with improved
disk I/O, we believe that the proposed labeling schemes will also be
useful in a distributed se�ing where the graph is partitioned across
machines. Having locality in neighboring edges would mean less
communication overhead across the network.

Disk Storage Bene�t. We also compare the schemes with re-
spect to the raw sizes of the databases they created with the di�erent
encoding methods. As shown in Table 3, FlipInOut and GrdRan-
dom achieve comparable or be�er storage bene�t than consecIN
and consecOUT, ranging between 10%–27% reduction compared to
a database with random ordering.
Observation 6. FlipInOut and GrdRandom achieve compa-
rable or be�er storage bene�t than consecIN and consecOUT,
ranging between 10%–27% reduction compared to a database
with random ordering.

�e reduction in size compared to a graph with consecOUT or
consecIN is marginal (at most 8%). �e reason is that when the
edges are sorted by source (in consecOUT), the bitmaps in the tails
group (Figure 3) is optimal, but the disarray in the heads cancels
out its storage bene�t. �e low compression bene�t of consecIN
for WikiTalk is due to its high in-ratio (Table 2), which means that
many nodes have only incoming edges. In Sparksee (Section 2), this
translates to sparse head group bitmaps, and numbering the edges
of such a graph with consecIN is almost equivalent to a random
numbering.

Table 3: Storage Bene�t (%) compared to the Random encod-

ing scheme. Higher is better.

Method wVote Epinions SlashDot wTalk Flickr LiveJ

FlipInOut 19.6 19.5 23.2 15.4 26.7 26.5
GrdRandom 18.5 18.7 21.0 10.4 25.2 24.4
consecIN 19.6 16.6 18.9 1.9 24.5 24.0
consecOUT 18.5 16.9 18.5 15.0 24.6 24.1

In conclusion, our methods generally have be�er and balanced
runtime and disk I/O performance for a wide range of queries, and
also have the side-bene�t of be�er or comparable storage bene�t
to the baseline encoding schemes.

4.4 Balance of Labeling

�e edge consecutiveness of graph G de�ned in Section 3.1 is a
combination of individual metrics Cin (G) and Cout (G). As dis-
cussed in Section 3, our proposed methods a�empt to maximize
the consecutiveness and have a balance between the in- and out-
consecutiveness. �e method consecIN performs perfectly on

the Cin (G) metric but penalizes Cout (G). Methods that are non-
biased to a single edge direction possess the property thatCin (G) ≈
Cout (G), i.e., the balance Cin (G)/Cout (G) ≈ 1. For query workloads
that are uniform with respect to accesses of incoming and outgoing
edges, it is desirable to increase total C (G) while maintaining the
balance of labeling.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Edge consecutiveness C(G)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
al

an
ce

consecOUT
consecIN
Random
FlipInOut
GrdRandom

Figure 8: Trade-o� between consecutiveness and balance.

Markers are scaled according to graph size.

Figure 8 shows the trade-o� between these two properties (bal-
ance on y-axis and total graph consecutiveness on x-axis) for all
labeling methods on the datasets. �e markers on the �gure are
scaled with the graph size. We aim to be at the upper right corner
of the matrix maximizing on both consecutiveness and balance. In
the bo�om right, consecIN and consecOUT algorithms exhibit high
C (G), however fail to balance the consecutiveness. We observe
that our proposed methods are consistently placed in the upper
right corner demonstrating the desired balanced property of these
algorithms.

5 APPLICATION: STREAMING GRAPH

PARTITIONING

In this section we investigate an application area that can bene�t
from an improved edge labeling, namely streaming graph partition-
ing.

In the application of partitioning, our conjecture is that if the
input stream is already pre-processed to ensure locality, be�er
performance (e.g. lower edge cuts) can be achieved. For example,
the FlipInOut edge labeling and its locality bene�ts can be achieved
via small modi�cations in the crawling procedure by leveraging
the true or estimated (via sampling) marginal degree distribution
of the input graph.

We start by brie�y summarizing the basics of the streaming
partitioning model. For an undirected graph G = (V, E), the ver-
tices arrive in a stream, each with the set of its adjacent neighbors.
�e goal is to divide the set of vertices into k disjoint partitions
(P1, ..., Pk) such that inter-edges, i.e., the edge cuts, are minimized.
Streaming algorithms [21, 25, 26], which focus on scalable parti-
tioning solutions to large graphs with time and space constraints,
assign each vertex to a partition using local graph information (e.g.

Edge Labeling Schemes for Graph Data SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

the existing partitions), and never move it. Existing work, such as
LDG [25] and Fennel [26], shows that the produced edge cuts are
comparable to the ones created by o�ine versions with access to
the whole graph, such as METIS [12].

Given that the node assignment is based on increasing amount
of information (i.e., the partitions at time t), the streaming order
is an important consideration that a�ects the performance of the
greedy node assignments to partitions. Existing work in this area
usually considers three node streaming orders; Random, Breadth
First Search (BFS), and Depth First Search (DFS). �e Random order-
ing is practical, does not involve pre-processing, and is preferred
for very large graphs.

Based on FlipInOut, we introduce a streaming graph partition-
ing method, FlipCut, which is (almost) agnostic to the neighbor-
hood of each incoming vertex. We de�ne as k the number of parti-
tions with capacityC , and P (t) (i) the ith partition at time t . Unlike
other methods, which consider a streaming order of vertices, Flip-
Cut considers one edge, (v1,v2), at a time in the FlipInOut order,
and assigns its endpoints to partitions based on the following three
rules:

(1) If v1 and v2 are already assigned to partitions, FlipCut
ignores the incoming edge.

(2) If v1 and v2 have not been assigned to a partition yet, both
of them are assigned to the partition with the minimum
load at time t , i.e., arдmini ∈{1,2, ...,k }

|P (t) (i) |
C .

(3) If onlyv1 is not assigned to a partition, it is assigned to the
partition of its neighbor v2, i.e., arдi ∈{1,2, ...,k }P (t) (i) ∪v2.
If that partition is full, rule 2 is applied, andv1 is assigned to
the current smallest partition, i.e., arдmini ∈{1,2, ...,k }

|P (t) (i) |
C .

If v2 is the only unassigned endpoint, it is handled simi-
larly.

In other words, the endpoints of any streaming edge dictate the
order in which FlipCut will visit the vertices. We strive to keep a
set of simple rules assuming that we are already working on an edge
set that has improved locality. An advantage of FlipCut over other
baselines is that it only inspects one edge at a time, and decides on
the placement of the incoming edges’ vertices without accessing
the subgraph of already seen vertices. FlipCut does only one pass
over the edges of a directed graph, and thus runs in O (|E |) time.

5.1 Baseline Methods and Methodology

To evaluate the performance of our streaming graph partitioning
method, FlipCut, with respect to the percentage of edge cuts, we
compare it to three state-of-the-art methods:
• BFS + LDG [25]: �is is the best performing method among

3 node orderings and 7 partitioning heuristics in [25]. �e nodes
are being read in BFS order, and assigned to partitions according to
the Linear Deterministic Greedy (LDG) heuristic. �e idea of LDG
is to assign an incoming node v to the partition with most of its
neighbors, while penalizing larger partitions and imposing size of
∼ |V |/k vertices in each partition. In order to make the decision for
a given node v , LDG looks at the partitions of all the neighbors of
v .

• Random + LDG [25]: Nodes arriving in a random order is
another streaming order tested due to its simplicity and scalability

to large graphs. On average, it has been observed [25] to report
comparable performance to BFS + LDG.

• Hashing [11, 17]: A node is hashed to a partition independent
of the graph structure. �e vertices can be distributed evenly across
the partitions and the expected fraction of edge cuts for k ≥ 1
partitions is 1− 1

k . �is technique is widely used in practice because
it is simple and can e�ciently determine the partition of a node
without maintaining a mapping table. �e performance of hashing
also acts as a classic upper bound.

5.2 Results

To compare FlipCut with the baseline methods, graphs were made
undirected for the LDG baselines. As the graph size grows, it is
more sensible to test with higher value for the number of partitions,
k . �us, for small graphs, we test with partition sizes 4 and 8, and
for the larger graphs (Flickr, LiveJ) we vary k from 12 to 100.

�e percentage of edge cuts is shown in Table 4 for k = 4 and
k = 8. We see that with the exception of Epinions, LDG with BFS
and random ordering exhibit similar performance, which has been
con�rmed on other datasets as well [25].

Observation 7. For k = 4 partitions, FlipCut has 8% to 42%
reduction in edge cuts compared to the LDG variants, and 26%-
50% reduction compared to the Hashing method.

For 8 partitions, the bene�t compared to BFS+LDG becomes
smaller, and is very similar in the case of Epinions and WikiTalk.
FlipCut outperforms the Hash partitioning by a large margin, and
also has potential for practical use, given that it requires observing
only a single edge at a time, without accessing the whole graph. As
expected, for all the methods, the fraction of edge cuts increases
with more partitions.

Table 4: Percentage of edge cuts for 4 and 8 partitions. Lower

(in bold) is better. Italics indicate near-ties.

Data BFS+LDG Random+LDG FlipCut Hashing

k = 4

WikiVote 63.63 69.93 41.41 75.0
Epinions 26.94 64.98 24.87 75.0
SlashDot 63.32 65.20 36.48 75.0
WikiTalk 56.45 54.47 48.54 75.0

k = 8

WikiVote 78.35 82.09 65.73 87.5
Epinions 41.33 76.56 42.5 87.5
SlashDot 76.52 76.81 66.85 87.5
WikiTalk 62.46 64.17 63.12 87.5

Table 5 shows the fraction of edge cuts for Flickr and LiveJ. As
done in [25], for the larger graphs we compare our method to the
natural ordering provided in the original dataset. In addition, we
also test with a random node permutation.

In the case of Flickr, our method shows a reduction in edge
cuts compared to all the other methods. For LiveJ, although the
edge cuts are improved compared to the Random and Hashing
counterparts, this is not the case compared to the Natural Order +

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Oshini Goonetilleke, Danai Koutra, Timos Sellis, and Kewen Liao

Table 5: Percentage of edge cuts for the largest graphs with

higher number of partitions, k . Lower (in bold) is better.

Data k Natural + LDG Random + LDG FlipCut Hashing

Flickr

12 55.85 85.45 27.04 91.7
24 61.65 89.74 54.12 95.8

LiveJ

24 41.01 87.88 63.67 95.8
50 46.99 90.56 70.16 98.0
100 51.74 92.04 75.00 99.0

LDG. We speculate that one reason for this discrepancy is the high
clustering coe�cient of LiveJ compared to the other graphs (Table 2).
It may have had an adverse e�ect on FlipCut, since it does not
use the graph structure information (other than the current edge)
when deciding the vertex assignments. We note that independent
work also reports that the LiveJ graph exhibits di�erent behavior
from other social networks; Chieriche�i et al. [6] focus on network
compression and claim that the natural crawl order outperforms
their Shingle ordering method.

�is experiment shows the potential applicability of FlipCut
on generating partitions in a streaming se�ing. Our results are
promising, as they display consistently be�er cuts compared to LDG
with random ordering. We emphasize that FlipInOut, which was
designed with a di�erent goal in mind and was not optimized for
reducing the edge cuts, has the side-bene�t of supporting streaming
graph partitioning. Lastly, existing algorithms generally work on
undirected graphs inspecting 2|E | edges while FlipCut can produce
comparable results observing only half the edges for a directed
graph.

6 CONCLUSION AND FUTUREWORK

In this paper we proposed the problem of edge-labeling on di-
rected graphs, mainly to support e�cient neighborhood-related
edge queries. We presented two novel and e�cient edge-labeling
schemes, GrdRandom and FlipInOut, which seek to balance and
maximize the consecutiveness at every individual vertex so that
local decisions greedily make progress towards the global opti-
mal. Our purpose was to experimentally evaluate the potential
overall bene�t that a relabeled edge list will have on query process-
ing. We observed that our edge-labeling schemes did in fact lead
to signi�cantly improved query times and disk I/O performance
by achieving a be�er layout and locality of edges on disk. Based
on FlipInOut, we also introduced FlipCut, an e�ective one-pass,
neighborhood-agnostic strategy for streaming graph partitioning.

For future work, we plan to �rst validate our conjecture that
the edge-labeling maximization problem is polynomial time solv-
able. On the other hand, proving its NP-hardness and coming up
with bounded approximation algorithms will also be interesting.
�ere also exist several node reordering methods [6, 8, 28] that are
not directly applicable to solve our consecutiveness maximization
problem. However, correlations may exist between node and edge
ordering methods for optimizing di�erent types of graph queries.
Performing such correlation studies is also necessary. Last but not
least, online node and edge-labeling schemes should be considered
together for optimizing real-time systems such as graph streaming.

REFERENCES

[1] R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In
Proceedings of the Forty-�rst Annual ACM Symposium on �eory of Computing,
2009.

[2] A. Apostolico and G. Drovandi. Graph Compression by BFS. Algorithms,
2(3):1031–1044, 2009.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambio�e, and E. Lefebvre. Fast Unfolding of
Communities in Large Networks. J. Stat. Mech. �eor. Exp., 2008(10), 2008.

[4] P. Boldi and S. Vigna. �e Webgraph Framework I: Compression Techniques.
2004.

[5] J. J. Carrasco, D. C. Fain, K. J. Lang, and L. Zhukov. Clustering of bipartite
advertiser-keyword graph. In ICDM, 2003.

[6] F. Chieriche�i, R. Kumar, S. La�anzi, M. Mitzenmacher, A. Panconesi, and
P. Raghavan. On compressing social networks. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009.

[7] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson, S. Kun-
natur, S. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss, C. Yang, and N. Zhang.
Unicorn: A system for searching the social graph. PVLDB, 6(11):1150–1161, Aug.
2013.

[8] L. Dhulipala, I. Kabiljo, B. Karrer, G. O�aviano, S. Pupyrev, and A. Shalita. Com-
pressing graphs and indexes with recursive graph bisection. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1535–1544. ACM, 2016.

[9] C. M. Fiduccia and R. M. Ma�heyses. A linear-time heuristic for improving
network partitions. In DAC, 1982.

[10] J. Gehweiler and H. Meyerhenke. A distributed di�usive heuristic for clustering
a virtual p2p supercomputer. In IPDPSW. IEEE, 2010.

[11] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining
system implementation and observations. In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, ICDM ’09, 2009.

[12] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed computing, 48(1):96–129, 1998.

[13] B. Kernighan and S. Lin. An E�cient Heuristic Procedure for Partitioning Graphs.
�e Bell Systems Technical Journal, 49, 1970.

[14] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical Properties
of Community Structure in Large Social and Information Networks. In WWW,
2008.

[15] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and graph-
mining library. ACM Trans. Intell. Syst. Technol., 8(1):1:1–1:20, July 2016.

[16] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph compression and mining
beyond caveman communities. IEEE Trans. Knowl. Data Eng., 2014.

[17] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Graphlab: A new framework for parallel machine learning. CoRR, abs/1006.4990,
2010.

[18] N. Martı́nez-Bazan, M. A. Águila Lorente, V. Muntés-Mulero, D. Dominguez-Sal,
S. Gómez-Villamor, and J.-L. Larriba-Pey. E�cient graph management based on
bitmap indices. In Proceedings of the 16th International Database Engineering and
Applications Sysmposium, 2012.

[19] M. F. Mokbel and W. G. Aref. Encyclopedia of Database Systems, chapter Space-
Filling Curves. 2009.

[20] M. E. J. Newman. Modularity and community structure in networks. PNAS,
103(23), 2006.

[21] J. Nishimura and J. Ugander. Restreaming graph partitioning: Simple versatile
algorithms for advanced balancing. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’13,
2013.

[22] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu. Hierarchical, Parameter-Free
Community Discovery. In ECML PKDD, 2008.

[23] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi. Ja-
be-ja: A distributed algorithm for balanced graph partitioning. In , 2013 IEEE
7th International Conference on Self-Adaptive and Self-Organizing Systems. IEEE,
2013.

[24] K. H. Randall, R. Stata, J. L. Wiener, and R. G. Wickremesinghe. �e link data-
base: Fast access to graphs of the web. In Proceedings of the Data Compression
Conference, DCC ’02, 2002.

[25] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2012.

[26] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel: Streaming
graph partitioning for massive scale graphs. In Proceedings of the 7th ACM
international conference on Web search and data mining, 2014.

[27] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-node graph.
In Proceedings of ICDE, 2014.

[28] H. Wei, J. X. Yu, C. Lu, and X. Lin. Speedup graph processing by graph ordering.
In Proceedings of the 2016 International Conference on Management of Data, pages
1813–1828. ACM, 2016.

	Abstract
	1 Introduction
	2 Related Work
	3 edge-labeling schemes
	3.1 Problem formulation
	3.2 Labeling schemes

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Speedup of Queries
	4.3 Disk I/O Performance
	4.4 Balance of Labeling

	5 Application: Streaming Graph Partitioning
	5.1 Baseline Methods and Methodology
	5.2 Results

	6 Conclusion and Future work
	References

