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Abstract—Given the soaring amount of data being generated
daily, graph mining tasks are becoming increasingly challenging,
leading to tremendous demand for summarization techniques.
Feature selection is a representative approach that simplifies
a dataset by choosing features that are relevant to a specific
task, such as classification, prediction, and anomaly detection.
Although it can be viewed as a way to summarize a graph in
terms of a few features, it is not well-defined for exploratory
analysis, and it operates on a set of observations jointly rather
than conditionally (i.e., feature selection from many graphs vs.
selection for an input graph conditioned on other graphs).

In this work, we introduce EAGLE (Exploratory Analysis of
Graphs with domain knowLEdge), a novel method that creates in-
terpretable, feature-based, and domain-specific graph summaries
in a fully automatic way. That is, the same graph in different
domains—e.g., social science and neuroscience—will be described
via different EAGLE summaries, which automatically leverage the
domain knowledge and expectations. We propose an optimization
formulation that seeks to find an interpretable summary with
the most representative features for the input graph so that
it is: diverse, concise, domain-specific, and efficient. Extensive
experiments on synthetic and real-world datasets with up to
∼ 1M edges and ∼ 400 features demonstrate the effectiveness
and efficiency of EAGLE and its benefits over existing methods.
We also show how our method can be applied to various graph
mining tasks, such as classification and exploratory analysis.

I. INTRODUCTION

Technological advances have led to a tremendous increase
in the collected data at a finer granularity than ever, including
scientific data from different domains that has the potential to
lead to new knowledge. Graphs are prevalent in scientific and
other data, as they naturally encode various phenomena like
structural or functional brain connectivity in neuroscience [8],
compounds in chemistry, protein interactions in biology, symp-
tom relations in healthcare [23], behavioral patterns in social
sciences, mobility patterns in transportation engineering, and
more. However, the size and complexity of these graphs
call for statistical and programmatic tools that can harness
them. Motivated by this need, we focus on the problem of
summarizing graph data in a scalable and domain-aware way,
enabling the extraction of intelligible information.

The typical first step of exploring a new graph dataset (e.g.,
brain connectome; social, technological, or communication
network) often involves plotting, fitting, seeking for outliers in,
and summarizing the distributions of various graph invariants
(or features) such as degree, PageRank, radius, local clustering
coefficient, eigenvectors, node attributes, and many more.
Univariate and bivariate distributions are often used in graph
mining to discover anomalous patterns at the node or graph

Fig. 1: Overview of EAGLE: Given an input graph g and a set
of K baseline graphs Gi that encode the domain knowledge, we
seek to find a domain-specific, feature-based summary of g that
is diverse, concise, and interpretable. The summary consists of
univariate feature distributions (e.g., degree, PageRank).

level ([3], [16], [14]). However, the features to be explored are
usually determined in a feature engineering approach, which
heavily depends on the analyst’s knowledge, intuition, and
prior studies. For example, in connectomics, typical features
for comparing healthy and non-healthy populations include the
average degree, clustering coefficient, path length [6], [8].

Moreover, the features selected in existing techniques are
determined by the choice of evaluation metrics and are task-
dependent. For example, highly correlated features are more
likely to be chosen in clustering; independent features are more
likely to be chosen for classification. Recent developments
in representation learning study latent feature representations
via optimization frameworks. Although they are promising
and remove the ad-hoc property of feature engineering, they
return latent representations which are hard to interpret and
are mostly suited for specific tasks such as link prediction and
multi-label classification. Therefore, there is need for a general
summarization or feature selection technique for exploring
graph properties independent of specific tasks.
Proposed Approach: Motivated by these observations, our
proposed method, EAGLE, aims to model the exploratory
analysis of graph data as a mathematically rigorous feature
selection problem which is automatically guided by and, thus,
conditioned on the domain of the data. Throughout the paper,
features is used to refer to a combination of graph invariants, or
structural node attributes (discrete or continuous—e.g., degree,
PageRank, clustering coefficient), and categorical or numerical
node attributes. Each feature is represented by its (univariate)
distribution over the nodes in the graph. Specifically, EAGLE



seeks to summarize an input graph g with the aid of a small
set of features by leveraging the information encoded in a
set of “baseline” graphs Gi for i 2 f1; 2; : : : ; kg, which, in
combination with their invariant distributions, represent the
domain knowledge.

For instance in Fig. 1, let the input graph be a new social
network (g) and the domain contain well-established social
networks (Gi). A ‘surprising’ summary of g would consist
of a small set of features including the degree distribution
(the leftmost distribution in the central box) which follows
the Gaussian distribution, while in the domain a power-law
distribution is expected. Our approach can be seen either as
feature-based graph summarization, or domain-specific feature
selection that seeks to choose some features for an input
graph conditioned on the features of the baseline graphs.
This conditional property sets our work apart from traditional
feature selection methods that jointly operate on a set of
observations (e.g., select features from multiple graphs).

We formalize the problem as an optimization model
that outputs an interpretable, feature-based summary satisfy-
ing four important properties: diversity, conciseness, domain
specificity, and efficiency. Application-wise, we consider the
cases where the number of features in the summary (i) can be
defined via prior knowledge or domain expertise, or (ii) need
to be defined automatically. Our main contributions are:
� Novel Formulation: We propose a new mathematical formu-
lation of graph exploration as a conditional feature selection
problem over structural or other node attributes. The goal of
our proposed constrained optimization framework is to find
a diverse, succinct, domain-specific summary for the input
graph, which is also interpretable.
� Scalable Algorithms: We propose EAGLE-FIX and EAGLE-
FLEX, two efficient methods for obtaining the desired sum-
maries. To speed up our methods, we carefully handle the
correlations between graph features by systematically investi-
gating their affinities in a data-driven way.
� Experiments: We compare EAGLE with baseline approaches
on a variety of real-world datasets (including social networks,
citation networks, and human connectomes) and show that it
satisfies all the desired properties and it is scalable. Although
our approach is task-independent, we show that it can be
applied to traditional graph mining tasks, such as classification.

For reproducibility, the source code is available at https:
//github.com/DerekDiJin/Domain_Knowledge.

II. RELATED WORK

Our work is related to several research directions:
Feature selection. The process of feature selection con-

sists of two parts: a search technique for proposing new
feature subsets, and a measure for evaluating these different
feature subsets. Search techniques vary from exhaustive [12]
to improved ones, such as greedy hill climbing. Evaluation
metrics are divided into three categories: wrappers (which
use predictive models to score feature subsets, e.g., [19]),
filters (which use measures, such as pointwise mutual informa-
tion [27]), and embedded methods (which perform selection

as part of the model construction process [4]). Our proposed
method, EAGLE, is the first approach searching for features
greedily based on the domain knowledge and expectations and
specifically targeting the graph setting. Moreover, while the
above methods select features by jointly learning from all the
available observations, our method performs a ‘customized’
feature selection for a given graph conditioned on observations
from a set of baseline graphs. Though EAGLE is used for
summarizing a dataset with desired properties and there is no
particular task guiding its evaluation, we showcase how to
adapt it for task-dependent evaluation too.

Pattern mining and Summaries. Mining static graphs
often involves analyzing the distributions of specific graph
invariants (e.g., skewed degree distribution [9] in numerous
settings, small-worldness in connectomics [6], [8]), and speed-
ing up their computations (e.g., betweenness centrality [5]).
Moreover, systems [3], [16] have been proposed for anomaly
detection via analyzing specific distributions of graph invari-
ants, and spam detection on bivariate distributions. These
methods focus on modeling manually-chosen distributions of
invariants and potentially finding outliers in them, while our
work aims to automatically detect the features that summarize
a given graph depending on its domain. Moreover, we assume
that fast methods are used prior to applying EAGLE in order to
obtain the distributions of various node invariants. Although
EAGLE finds feature-based summaries for an input graph, our
work differs significantly from graph summarization [18], [17],
which typically seeks to find a compact representation of a
network with fewer nodes/links.

Similarity/Distance and Interestingness measures. An
excellent review of existing distance/similarity measures for
distributions is given in [7]. Attempts to define the interest-
ingness of a plot or distribution by studying its geometric
properties [11] include: SCAGNOSTICS [26], which ranks and
guides the interactive exploration of bivariate distributions,
and motif-based interestingness measures for local patterns in
scatterplots [21]. However, unlike our work, these methods are
unaware of the domain and introduce generic measures that
define the ‘interestingness’ of each plot independently.

III. PROPOSED METHOD

Motivated by the large amounts of graph data and the preva-
lent need for exploratory analysis in various areas (e.g., neuro-
science, social science), we focus on generating interpretable
graph summaries by leveraging the domain knowledge:

DEFINITION 1. [Domain Knowledge] We refer to the
expected patterns (or laws) for the distributions of node
invariants or other attributes in a specific area as the domain
knowledge.

Examples of graph invariants include global structural statis-
tics such as the degree and PageRank; local structural statis-
tics such as the egonet size, interactions to neighbors, and
properties revealed by different algorithms such as community
detection. In social science, examples of categorical and nu-
merical attributes are the gender and age of a user, respectively.



Our assumption is that the domain expectations are implicitly
encoded in a set of baseline graphs which belong to that
domain. For example, in social networks many distributions
of structural attributes (e.g., degree variants, PageRank) are
expected to follow a power law [9], while in functional con-
nectomes that are produced via neuroimaging techniques more
uniform distributions are expected. Based on this definition,
we state the problem that we tackle as follows:

PROBLEM. [Exploratory Analysis of Graph Data using
Domain Knowledge] Given the node features of a plain or
attributed input graph g and a set G of baseline graphs Gi,
i = 1; : : : ;K, we seek to find a domain-specific summary
consisting of a small set of representative and interpretable
features in an efficient way.

If g is attributed, the features consist of invariants and node
attributes. Otherwise, the features include only node invariants.
Our main idea is to formulate the exploratory analysis of
graphs as an optimization model that will produce as an output
a feature-based summary with four desired properties:
� P1. High Diversity / Coverage. The summary is required
to ‘cover’ the information or patterns or laws encoded in the
baseline graphs: the features in the summary should provide
diverse aspects of the domain knowledge. We measure diver-
sity between the features through the concept of “similarity”,
so the features in the summary should have trivial dependence.
� P2. Conciseness. Although diversity is crucial for good
summaries, it connives the “greed” to select features: the
most diverse summary should contain many features. To
avoid duplication and verbosity, conciseness indicates that the
number of features in the summary should be small.
� P3. Domain-specificity. Based on the information of the
baseline graphs G, the summary of g should be related or
contrasted to the features of the baseline graphs. For example,
if a ‘contrasted’ summary is required and all the baselines
follow a power law degree distribution (e.g., social networks)
while g does not, the degree distribution should be included in
the summary. However, a ‘contrasted’ summary in a different
domain (e.g., neuroscience) would include different features.
� P4. Efficiency. Given the soaring amount of data being
generated daily, the computation of the summary must be
efficient and scale to large amounts of data.

Moreover, an informal desired property is that the selected
features are interpretable and easy-to-understand. To that end,
unlike network embedding or factorization-based methods, we
seek summaries that do not rely on latent features. Next we
introduce our proposed optimization framework. For reference,
we list the major symbols in Table I.
A. Proposed Formulation

We propose to model the Exploratory Analysis of Graph
Data problem as an optimization problem that encodes the
above-mentioned desired properties and selects the features to
add in the summary such that:

argmin
f
λ1 fT SFf| {z }

1st term

+λ2 ‖f‖0|{z}
2nd term

+λ3 · φ(g,G1, G2, . . . , GK)| {z }
3rd term

(1)

TABLE I: Table of symbols

Symbol Definition
G a collection of baseline graphs, G = fG1, G2, . . . , GKg
g input graph
K total number of baseline graphs
F size of feature space
B number of buckets in a distribution
λ1,2,3 regularization parameters
f F � 1 indicator vector for selected features, f 2 f0, 1gF
SF F � F pairwise feature relevance matrix for the baseline graphs G
SFi F � F pairwise feature relevance matrix for baseline graph Gi

w K � 1 weight vector for the baseline graphs in G,
∑K

i wi = 1
h F � 1 vector denoting similarity / distance between

equivalent marginal distributions (e.g., degree) of g and G
s(, ), d(, ) similarity and distance between two objects o1 and o2, resp.
φ(�) coupling function of the input graph g and the baseline graphs G

where f 2 f0; 1gF is the vector indicating the selected fea-
tures; SF is the aggregated matrix that represents the pairwise
feature relevance in the domain of interest, as encoded in the
baseline graphs G; kfk0 is the l0-norm of the indicator feature
vector; �() is a function that couples the input graph g and
the baseline graphs, thus grounding the summary to domain;
and �1; �2; �3 are regularization parameters which are set so
that the three terms are comparable (cf. Sec. IV-A).

Intuitively, the first quadratic term, fTSFf , forces the
selected features to be diverse. It uses the baseline graphs to
establish the ‘norms’ in the domain of interest and uses them
to capture the relevance between all pairs of graph invariants.
Specifically, SF represents the aggregate of the ‘correlation’ or
relevance between all F features over the baseline graphs G,
while the quadratic term evaluates the sum of relevance scores
of selected features. The regularization parameter �1 is set to
a positive number (discussed later). Unlike existing work, this
term quantifies the relevance between different graph invariants
(e.g., PageRank and local clustering coefficient) in the domain
by harnessing the information in the baseline graphs.

The second term, kfk0, which is multiplied by a positive
regularization parameter �2, requires that the summary is
concise, i.e., it consists of a few features. Although, ideally,
the l0-norm encodes this requirement, we will later relax this
constraint to the l2-norm which is mathematically tractable.

The last term, �(g;G1; : : : ; Gk), is crucial because it
couples the input graph g and the domain knowledge. It can
be interpreted as the term that forces the features that will be
selected for the summary to come as close (or far) as possible
to those of the baseline graphs. That way, it can be tuned
to provide an ‘ordinary/expected’ summary or a ‘surprising’
summary. This is useful when an analyst who knows the
information that is being captured in the baseline graphs
(e.g., connectomes of subjects with depression) wants to see a
holistic overview of the feature-based similarities and possible
differences of a newly obtained graph (e.g., connectome of a
new subject). When �() is a positive, increasing function of
f , we have the so-called “0 pit” problem of Equation (1):

DEFINITION 2. [The 0-pit problem] When the three terms of
Equation (1) are positive, the solution is 0F�1 irrespectively
of the input and baseline node invariants, i.e., the objective
function falls into a “pit” with optimal value 0.

To handle this problem, we add constraints to our optimiza-



tion problem. We elaborate more on the design choices of this
term and the additional constraints in Section III-C.

The efficiency of computing the summary comes from our
proposed framework, which we discuss in Section IV. The
additional (informal) requirement for interpretability follows
from our feature representation in f . As opposed to latent
representations that are hard to interpret, in our work the
selected features correspond to node invariants (e.g., degree,
PageRank) or node attributes, which depend on the domain.
Throughout our formulation, we assume that the graph fea-
tures are represented by their PDFs (Probability Density
Function) and adapt appropriate measures to quantify their
relevance/dissimilarities.

B. Proposed Model for Feature Diversity

As we mentioned above, the first term in our proposed opti-
mization function enforces diversity in the selected features so
that they are not correlated. In this subsection we discuss how
we design SF in order to capture the ‘correlation’ between
the node invariants per baseline graph. Assuming that only
the PDFs of the node invariants are provided, computing the
correlation between the corresponding invariants is not feasible
(more information per node would be needed). Thus, we use
feature relevance or similarity between different invariants as
a surrogate correlation model.

In general, the features (node invariants) that are considered
can be: discrete (e.g., degree distribution) or continuous (e.g.,
PageRank distribution). If we view each PDF i as a vector of
length li, it can be seen that different invariants are represented
by distribution vectors of different lengths, which leads to
two main challenges: (i) What is the right length for each
distribution vector, or, put differently, what is the proper size
of buckets to be used in different node invariant distributions?
and (ii) How can we compute the relevance between two PDFs
of different lengths? We address these two questions next.
(i) A general feature representation model. In order to
compute the relevance between the features in the baseline
graphs, we first need to define the feature model. As we
mentioned, we view each feature i as the PDF of the cor-
responding invariant, which can be represented as a vector of
length li or, equivalently, li ‘buckets’. If the PDF is organized
in a large number of buckets, the histogram “looks” uniform,
while a small number of buckets results in information loss
by aggregating many original values into one bucket.

Visualizing the feature distributions involves selecting the
number of buckets li. For example, for a degree distribution,
the number of buckets is equal to the number of unique node
degrees, while for a PageRank distribution the number of
buckets depends on the analyst and the data at hand. As
we see in Fig. 2, the number of buckets is critical when
computing the relevance between two features via their PDFs,
as they can lead to different ‘shapes’ of distributions, and help
with or prevent the detection of patterns (e.g., spikes). Fig. 2
indicates that a large number of buckets helps show the pattern
of discrete PDFs such as the power-law of the out-degree
distribution with 10�4 range in Fig. 2a, yet a small number

of buckets fails to reflect the actual pattern and may miss
the spikes that often indicate anomalies. On the contrary, for
continuous PDFs, many buckets blur the patterns as the values
in the distribution may differ slightly, while fewer buckets may
address this problem. This is illustrated through the “uniform”
distribution with unique bucketing in Fig. 2b.

We propose to find proper bucket sizing for any (discrete
or continuous) PDF by adapting Scott’s reference rule [20]:

Bucket size = 3:5 � �̂=n1=3 (2)

where �̂ is the sample standard deviation and n is the
number of elements in the distribution. The distribution plots
labeled “Scott” in Fig. 2 illustrate the effectiveness of Scott’s
rule by capturing not only the pattern, but also existing
spikes. Scott’s rule generates a flexible number of buckets for
different PDFs, and it applies to both big and small graphs.
There are several variants such as Sturges’ formula [25] and
Freedman–Diaconis’ rule [10], all apply to different settings.
For generality, we integrate all these rules including the fixed
sizing in the proposed framework and use Scott’s rule to
conduct computation and experiments.
(ii) A surrogate feature correlation model. Assuming that
only the PDFs of the node invariants are provided, computing
the correlation between the corresponding invariants is not fea-
sible (more information per node would be needed). Thus, we
use feature relevance or similarity between different invariants
as a surrogate correlation model. Other traditional distance-
based measures [7] can be applied when two distribution
vectors are of the same length, but, as we saw above, this
is usually not the case when dealing with distributions of
different invariants, e.g., degree vs. PageRank. For PDFs of
different lengths, such as the ones generated by Scott’s rule,
those measures are not suitable unless they are normalized to
have the same length. We discussed the challenges of such
normalization above (a general feature representation model).

To emphasize the importance of ‘shape’ match between
distributions of different invariants, and not point-wise match,
we propose to leverage the dynamic time warping (DTW)
algorithm. DTW is designed to calculate an optimal match
between two given sequences by “warping” them non-linearly,
so that the distance calculated is independent of variations
in the warped dimension. For PDFs that denote the graph
statistics distributions, DTW calculates the feature-by-feature
distance independent of variations in the number of buckets,
which can be converted to similarity in many ways, including
s = (1 + d)�1. DTW-based similarity works for both cases
whether two PDFs are of the same or different lengths.

For generality, we integrate DTW and traditional distance-
based methods in the proposed framework and primarily use
DTW similarity in our experiments. Per baseline graph Gi, we
compute the pairwise feature relevance matrix SFi:

SFi(fj ; fl) = s(PDFGi;fj ; PDFGi;fl
) (3)

where PDFGi;fj is the PDF for the jth feature of graph Gi,
and s() is the desired similarity between two distributions.
By definition, the diagonal elements of each relevance matrix



(a) SOCIAL SCIENCE: SOC-SLASHDOT0811 [22] (b) Neuroscience: Functional connectome
Fig. 2: The discrete and continuous PDFs with different bucket sizing, from left to right, the bucket sizing is: 1

10
, 1

100
, 1

10000
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the range of values; “unique” means the unique values in the PDF; “Scott” refers to the bucket sizing computed by Scott’s rule.

are 1. We can obtain the aggregate pairwise feature relevance
matrix as their weighted sum:

SF(fj ; fl) =
PK
i=1 wi � SFi(fj ; fl) (4)

where wi is the weight or ‘importance’ of graph Gi in the
computation, and

PK
i=1 wi = 1.

C. Proposed Model for Domain-Specificity

The last term, �(g;G1; : : : ; Gk), in Eq. (1) couples the
input graph g and the domain knowledge. Unlike prior work
in the literature which focuses on one graph only and assigns
interestingness or anomaly scores to a distribution indepen-
dently of the domain knowledge (e.g., Scagnostics [26]), the
third term aims to find the distributions that bear the most or
fewest number of similarities with other graphs in the domain.

We propose to model the domain specificity with a simple
and intuitive linear formulation, �(g;G1; : : : ; Gk) = fTh,
where hj in h = [h1; h2; : : : ; hF ] is the aggregate relation
score between the jth marginal distributions (e.g., degree) of
g and the baseline graphs Gi. The relation can be set to be
a similarity or a distance measure resulting in an ‘ordinary’
or ‘surprising’ summary (Sec. IV-A). This choice is directly
related to the “0 pit” problem: (i) If h is modeled as similarity,
we need to force the solution of the optimization problem
to make selections by adding constraints on f ; and (ii) If h
is modeled as distance, the last term becomes negative (i.e.,
minimizing the ‘negative’ distance) by setting �3 < 0.

Unlike SF which computes the relevance between different
invariant distributions of a single graph Gi, h focuses on the
relation between equivalent distributions of the input graph g
and the baseline graphs Gi. The aggregate relation between the
input g and the domain is computed as the weighted average
of the relations between all the combinations of g and the
baseline graphs Gi. We use hsj to represent the jth entry of
the relation vector based on similarity:

hsj =
PK
i=1 wi � s(PDFg;fj

; PDFGi;fj
) (5)

Similarly, hd represents the relation vector based on a distance
measure, and is defined equivalently (by replacing s() with a
distance measure d().

IV. EAGLE: PROPOSED ALGORITHM

Our proposed formulation in Optimization Problem 1 cor-
responds to a mixed-integer quadratic programming (MIQP)
problem. The problem of 0–1 integer programming is NP-
complete and the integral constraints bring challenges such
as intractability and poorly-behaved derivatives, which make
algorithms such as gradient descent unwarranted. To solve
these challenges, we first explain how we approximate MIQP
with a sequence of mixed-integer linear programming (MILP),
and then propose two solutions to the “0 pit” problem by
adding application-driven constraints in Section IV-A. We give
the theoretical analysis on complexity in Section IV-B.

Although the l0-norm in Eq. (1) encodes the conciseness
requirement, we relax it by using the l2-norm, which is
mathematically tractable. By rewriting kfk2

2 = fT f and using
the F � F identity matrix IF, the equation takes the form:

arg min
f2f0;1gF�1

fT (�1SF + �2IF)| {z }
Q

f + fT �3h|{z}
r

: (6)

The integer vector f can be expressed as the linear constraint
to Eq. (6) thus obtaining the form of MIQP:

minimize
f

fTQf + rT f

subject to 0 �
PF
i f(i) � F

0 � f(i) � 1; i = 1; : : : ; F:

(7)

We apply the cutting plane method [15] to convert Prob-
lem 7 to a series MILP by introducing a slack variable z:

minimize
f ;z

z + rT f

subject to 0 �
PF
i f(i) � F

0 � f(i) � 1; i = 1; : : : ; F:

fTQf � z � 0; z � 0

(8)

Problem 8 gives the local MILP approximation to Problem 7
at one step. To further approximate the MIQP, we need to itera-
tively solve a series of MILP by updating the linear constraints
until convergence. To update the linear constraints, we denote
f at the tth iteration as ft such that ft = ft�1 + �, where
ft�1 is the vector obtained in the previous iteration and � is a




