Decontamination of Mutually Contaminated Models

Gilles Blanchard and Clay Scott

Standard Multiclass Classification

- $P_i = ($ class-conditional) distribution of X given Y = i, on space \mathcal{X}
- Training data

$$X_1^i, \dots, X_{n_i}^i \stackrel{i.i.d.}{\sim} P_i, \qquad i = 1, \dots, L$$

- **Goal:** Estimate a good classifier $f : \mathcal{X} \to \{1, \dots, L\}$
- Various performance measures: Classification accuracy, costsensitive risk, minmax, Neyman-Pearson, etc.

Label Noise: Mutual Contamination Model

• Contaminated training data

$$X_{1}^{i}, \dots, X_{n_{i}}^{i} \stackrel{i.i.d.}{\sim} \tilde{P}_{i} = \sum_{j=1}^{L} \pi_{ij} P_{i}, \qquad i = 1, \dots, L$$

- Goals:
 - Estimate a good classifier $f: \mathcal{X} \to \{1, \dots, L\}$
 - Estimate π_{ij}
 - Estimate P_i
- Assumptions:
 - $-\pi_{ij}$ unknown, possibly asymmetric
 - $-P_i$ unknown, possibly overlapping

Related Label Noise Model

- Assume (X, Y) jointly distributed
- First generate "clean" (but unobserved) training data drawn i.i.d from joint distribution
- Replace each true label Y with corrupted label \tilde{Y} according to

$$\theta_{ij} = \Pr(\tilde{Y} = j \mid Y = i, X).$$

- π_{ij} and θ_{ij} related by Bayes rule
- Note: Label noise independent of X does not encompass instance-dependent or adversarial label noise

Motivation

- Nuclear particle classification (pure training data unavailable)
- Crowdsourcing
- Topic modeling (# topics = # documents)
- Learning from partial labels

Related Work

- Previous work on related topics include:
 - Learning from positive and unlabeled data (LPUE) (Denis et al. 05, Liu et al. 03)
 - Co-training (Blum and Mitchell 98)
 - Label noise models and noise-tolerant PAC learning (Angluin and Laird 88, Kearns 93, Aslam and Deactur 96, Cesa-Bianchi et al. 97, Bshouty et al. 98, Kalai and Servedio 03, Stempfel and Ralaivola 09, Jabbari 10)
 - Some negative results (Long and Servido 10, Manwani and Sastry 11)
 - Surrogate losses and label noise (Stempfel and Ralaivola 09, Natarajan et al. 13)

Related Work (2/2)

- Previous theoretical work assumes L = 2
- Generally one or more of the following is assumed:
 - P_1 , P_2 have non-overlapping support (\leftrightarrow deterministic target concept)
 - symmetric label noise
 - known noise proportions π_{ij}/θ_{ij}
- We do not assume the above here

Maximum Mixture Proportions

• Gived distributions F and H_1, \ldots, H_M , define

$$\kappa^{*}(F \mid H_{1}, \dots, H_{M}) = \max \left\{ \sum_{i=1}^{M} \nu_{i} \mid \nu_{i} \geq 0, \sum_{i=1}^{M} \nu_{i} \leq 1, \text{ and} \right.$$

$$\exists \text{ a distribution } G \text{ s.t.}$$

$$F = \left(1 - \sum_{i=1}^{M} \nu_{i} \right) G + \sum_{i=1}^{M} \nu_{i} H_{i} \right\}.$$

$$\bullet \text{ If } G \text{ achieving } \kappa^{*} \text{ in unique, it is called the residue of } F \text{ with respect to} H_{1}, \dots, H_{M}.$$

• We establish a **universally consistent** estimator $\hat{\kappa}(\hat{F} | \hat{H}_1, \dots, \hat{H}_M)$. If ν_1, \dots, ν_M achieving κ^* are unique, these are also consistently estimated.

Identifiability

- Write $\widetilde{P} = \Pi P$ where $\Pi = [\pi_{ij}]$
- Theorem: If P_1, \ldots, P_L are jointly irreducible and Π is recoverable, then for each ℓ , P_ℓ is the residue of \widetilde{P}_ℓ w.r.t. $\{\widetilde{P}_j, j \neq \ell\}$. Therefore

$$\widetilde{P}_{\ell} = (1 - \kappa_{\ell})P_{\ell} + \sum_{j \neq \ell} \nu_{\ell j} \widetilde{P}_{j},$$

where $\kappa_{\ell} = \kappa^*(\widetilde{P}_{\ell} | \{\widetilde{P}_j, j \neq \ell\})$. In addition, $\kappa_{\ell} < 1$, the $\nu_{\ell j}$ are unique, and

$$(\Pi^{-1})_{\ell k} = -\frac{\nu_{\ell k}}{1 - \kappa_{\ell}}; \qquad (\Pi^{-1})_{\ell \ell} = \frac{1}{1 - \kappa_{\ell}}.$$

• Conclusion: κ_{ℓ} can be estimated consistently by $\widehat{\kappa}(\widehat{\widetilde{P}}_{\ell}|\{\widehat{\widetilde{P}}_{j}, j \neq \ell\});$ so can $\nu_{\ell j}, \Pi^{-1}$ and finally Π .

Identifiability – Intuition

Consistent Discrimination

- Consistent estimation of Π/Π^{-1} enables construction of a consistent discrimination rules using standard techniques (e.g., empirical risk minimization over a growing sequence of VC classes)
- See poster/paper for details

Joint Irreducibility

- P_1, \ldots, P_L are **jointly irreducible** if the following equivalent conditions hold:
 - If $\sum_{i=1}^{L} \gamma_i P_i$ is a distribution, then $\gamma_i \ge 0$ for all *i*.
 - For any $I \subset \{1, \ldots, L\}; 1 \leq |I| \leq (L-1),$ for any distribution $Q \in \text{ConvHull}\{P_i, i \in I\},$ for any distribution $Q' \in \text{ConvHull}\{P_i, i \in I^c\},$ $\kappa^*(Q | Q') = 0.$
- If P_1, \ldots, P_L are **discrete** on a finite domain, joint irreducibility is equivalent to the **separability** assumption from topic modeling

Recoverability

- Let π_{ℓ} denote the ℓ -th row of $\Pi = [\pi_{ij}]$.
- Denote $e_{\ell} = (0, \dots, 0, 1, 0, \dots, 0)$
- Π is **recoverable** if the following equivalent conditions hold:
 - (a) For every ℓ there exists a decomposition $\pi_{\ell} = \kappa_{\ell} e_{\ell} + (1 \kappa_{\ell}) \pi'_{\ell}$ where $\kappa_{\ell} > 0$ and π'_{ℓ} is a convex combination of π_j for $j \neq \ell$.
 - (b) Π is invertible and Π^{-1} is a matrix with strictly positive diagonal entries and nonpositive off-diagonal entries.
 - (c) For each ℓ , the residue of π_{ℓ} with respect to $\{\pi_j, j \neq \ell\}$ is e_{ℓ} .

Recoverability (2/2)

• Binary case:

$$\Pi = \begin{bmatrix} \pi_{11} & \pi_{12} \\ \pi_{21} & \pi_{22} \end{bmatrix}$$

is recoverable iff $\pi_{12} + \pi_{21} < 1$.

• Recoverability guarenteed by **common noise background model:**

Connections to Other Problems

- Topic modeling: consistent estimation of topics with number of document = number of topics
- Learning with partial labels, L = 3. Labels are $A = \{1, 2\}, B = \{1, 3\}$ and $C = \{2, 3\}$. Via resampling, can satisfy recoverability assumption.

Contributions

- Universally consistent estimator for maximum mixing proportions
- Sufficient conditions (joint irreducibility, recoverability) for decontamination of mutually contaminated models
- Consistent estimation of π_{ij}
- Consistent discrimination

Consistent Discrimination

- Denote $R_{\ell}(f) = P_{\ell}(f(X) \neq \ell)$ and $\widetilde{R}_{\ell j}(f) = \widetilde{P}_{j}(f(X) \neq \ell)$
- Can estimate

$$R_{\ell}(f) = \frac{\widetilde{R}_{\ell\ell}(f) - \sum_{j \neq \ell} \nu_{\ell j} \widetilde{R}_{j\ell}(f)}{1 - \kappa_{\ell}}$$

via

$$\widehat{R}_{\ell}(f) := \frac{\widehat{\widetilde{R}}_{\ell\ell}(f) - \sum_{j \neq \ell} \widehat{\nu}_{\ell j} \widehat{\widetilde{R}}_{j\ell}(f)}{1 - \widehat{\kappa}_{\ell}}.$$

• Consistent discrimination rules can be constructed by establishing probabilistic control of

$$\sup_{f\in\mathcal{F}} \left| R_{\ell}(f) - \widehat{R}_{\ell}(f) \right|$$

and following standard arguments (e.g., structural risk minimization over a growing family of VC classes).