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Standard Multiclass Classification

e P, = (class-conditional) distribution of X given Y = 4, on
space X

e Training data
Xi,.., XL "R R, i=1,...,L

e Goal: Estimate a good classifier f: X — {1,...,L}

e Various performance measures: Classification accuracy, cost-
sensitive risk, minmax, Neyman-Pearson, etc.



Label Noise: Mutual Contamination Model

e Contaminated training data

Xi, .., X5 "R P = Zm] . i=1,....L

e Goals:

— Estimate a good classifier f: X — {1,..., L}
— Estimate m;;

— Estimate P;
e Assumptions:

— m;; unknown, possibly asymmetric

— P; unknown, possibly overlapping



Related Label Noise Model

Assume (X,Y) jointly distributed

First generate “clean” (but unobserved) training data drawn
i.i.d from joint distribution

Replace each true label Y with corrupted label Y according
to

~

mi; and 0;; related by Bayes rule

Note: Label noise independent of X — does not encompass
instance-dependent or adversarial label noise



Motivation

e Nuclear particle classification (pure training data unavail-
able)

e Crowdsourcing
e Topic modeling (# topics = # documents)

e Learning from partial labels



Related Work

e Previous work on related topics include:

— Learning from positive and unlabeled data (LPUE)
(Denis et al. 05, Liu et al. 03)

— (Co-training (Blum and Mitchell 98)

— Label noise models and noise-tolerant PAC learning
(Angluin and Laird 88, Kearns 93, Aslam and Deactur 96, Cesa-
Bianchi et al. 97, Bshouty et al. 98, Kalai and Servedio 03, Stempfel
and Ralaivola 09, Jabbari 10)

— Some negative results (Long and Servido 10, Manwani and Sas-
try 11)

— Surrogate losses and label noise (Stempfel and Ralaivola 09,
Natarajan et al. 13)



Related Work (2/2)

e Previous theoretical work assumes L = 2
e Generally one or more of the following is assumed:

— Py, P, have non-overlapping support ( <> deterministic target
concept )

— symmetric label noise

— known noise proportions 7;;/6;;

e We do not assume the above here



Maximum Mixture Proportions

o Gived distributions F' and H, ..., Hy;, define

M M
KJ*(F’Hl,...,HM):maX{ZVZ‘ ViZO,ZVigl, and
i=1 i=1

1 a distribution G s.t.

M M
1=1 1=1

e If G achieving £* in unique, it is called
the residue of F' with respect to

Hy,...,Hy.
o We establish a universally consistent estimator #(F | Hi, ..., Ha).
If v1,...,v) achieving k* are unique, these are also consistently es-

timated.



Identifiability

e Write P = IIP where II = [7045]

e Theorem: If P,..., P are jointly irreducible and II is recov-
erable, then for each ¢, P, is the residue of P, w.r.t. {P;,j # ¢}.
Therefore

ﬁg = (1 — /ig)Pg + Z ngﬁj,
j#e

where ky = K*(ﬁg|{ﬁj,j # (}). In addition, x, < 1, the vy; are
unique, and

1
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e Conclusion: ky can be estimated consistently by //%(IBEHIBJ-,]’ #0});
so can vy, II71 and finally II.



Identifiability — Intuition




Consistent Discrimination

e Consistent estimation of II/II™! enables construction of a consistent
discrimination rules using standard techniques (e.g., empirical risk
minimization over a growing sequence of VC classes)

e See poster/paper for details



Joint Irreducibility

e P,...,P; are jointly irreducible if the following equivalent condi-
tions hold:

— If Zle v; P; is a distribution, then ~; > 0 for all i.
— Forany I C {1,...,L}; 1 <|I| < (L -1),

for any distribution @) € ConvHull{P;,: € I},

for any distribution @’ € ConvHull{ P;,i € ¢},

K (Q|Q') =0.

o If P,,..., P, are discrete on a finite domain, joint irreducibility is
equivalent to the separability assumption from topic modeling



Recoverability
e Let 7, denote the ¢-th row of Il = [m;,].
e Denote ey = (0,...,0,1,0,...,0)
e II is recoverable if the following equivalent conditions hold:

(a) For every ¢ there exists a decomposition wy = kpep + (1 — kg)
where ky > 0 and 7}, is a convex combination of 7, for j # /.

(b) ITis invertible and II™! is a matrix with strictly positive diagonal
entries and nonpositive off-diagonal entries.

(c) For each ¢, the residue of m, with respect to {m;,j # ¢} is ey.
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“low noise”

“high noise”



Recoverability (2/2)
e Binary case:

T11 712
II =
21 T22

is recoverable iff w15 + 31 < 1.

e Recoverability guarenteed by common noise background model:




Connections to Other Problems

e Topic modeling: consistent estimation of topics with number of doc-
ument = number of topics

e Learning with partial labels, L = 3. Labels are A = {1,2}, B =
{1,3} and C' = {2,3}. Via resampling, can satisfy recoverability
assumption.




Contributions

e Universally consistent estimator for maximum mixing proportions

e Sufficient conditions (joint irreducibility, recoverability) for decontam-
ination of mutually contaminated models

e Consistent estimation of m;;

e Consistent discrimination




Consistent Discrimination

o Denote Ry(f) = Py(f(X) # £) and Ry;(f) = P;(f(X) # £)

e Can estimate

~

_ Reo(f) — > iz VeiRie(f)

Ry(f)

1— Ry
via R ~
~ Rﬁﬁ(f) T Zj;éﬁ ﬁﬁjRjE(f)
Rg(f) e 1 — /’%E :

e Consistent discrimination rules can be constructed by establishing
probabilistic control of

sup |Re(f) — Ru(f)
feF

and following standard arguments (e.g., structural risk minimization
over a growing family of VC classes).



