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Standard Multiclass Classification

• Pi = (class-conditional) distribution of X given Y = i, on
space X

• Training data

Xi
1
, . . . , Xi

ni

i.i.d.
∼ Pi, i = 1, . . . , L

• Goal: Estimate a good classifier f : X → {1, . . . , L}

• Various performance measures: Classification accuracy, cost-
sensitive risk, minmax, Neyman-Pearson, etc.



Label Noise: Mutual Contamination Model
• Contaminated training data

Xi
1
, . . . , Xi

ni

i.i.d.
∼ P̃i =

L∑

j=1

πijPi, i = 1, . . . , L

• Goals:

— Estimate a good classifier f : X → {1, . . . , L}

— Estimate πij

— Estimate Pi

• Assumptions:

— πij unknown, possibly asymmetric

— Pi unknown, possibly overlapping



Related Label Noise Model
• Assume (X, Y ) jointly distributed

• First generate “clean” (but unobserved) training data drawn
i.i.d from joint distribution

• Replace each true label Y with corrupted label Ỹ according
to

θij = Pr(Ỹ = j |Y = i, X).

• πij and θij related by Bayes rule

• Note: Label noise independent of X — does not encompass
instance-dependent or adversarial label noise



Motivation
• Nuclear particle classification (pure training data unavail-
able)

• Crowdsourcing

• Topic modeling (# topics = # documents)

• Learning from partial labels



Related Work
• Previous work on related topics include:

— Learning from positive and unlabeled data (LPUE)
(Denis et al. 05, Liu et al. 03)

— Co-training (Blum and Mitchell 98)

— Label noise models and noise-tolerant PAC learning
(Angluin and Laird 88, Kearns 93, Aslam and Deactur 96, Cesa-

Bianchi et al. 97, Bshouty et al. 98, Kalai and Servedio 03, Stempfel

and Ralaivola 09, Jabbari 10)

— Some negative results (Long and Servido 10, Manwani and Sas-
try 11)

— Surrogate losses and label noise (Stempfel and Ralaivola 09,
Natarajan et al. 13)



Related Work (2/2)

• Previous theoretical work assumes L = 2

• Generally one or more of the following is assumed:

— P1, P2 have non-overlapping support ( ↔ deterministic target
concept )

— symmetric label noise

— known noise proportions πij/θij

• We do not assume the above here



Maximum Mixture Proportions

• Gived distributions F and H1, . . . , HM , define

κ∗(F |H1, . . . , HM ) = max
{ M∑

i=1

νi

∣∣∣ νi ≥ 0,

M∑

i=1

νi ≤ 1, and

∃ a distribution G s.t.

F =

(
1−

M∑

i=1

νi

)
G+

M∑

i=1

νiHi

}
.

F

G

H2

H1

• We establish a universally consistent estimator κ̂(F̂ | Ĥ1, . . . , ĤM ).
If ν1, . . . , νM achieving κ∗ are unique, these are also consistently es-
timated.

• If G achieving κ∗ in unique, it is called
the residue of F with respect to
H1, . . . ,HM .



Identifiability

• Write P̃ = ΠP where Π = [πij ]

• Theorem: If P1, . . . , PL are jointly irreducible and Π is recov-
erable, then for each �, P� is the residue of P̃� w.r.t. {P̃j , j 
= �}.
Therefore

P̃� = (1− κ�)P� +
∑

j �=�

ν�jP̃j ,

where κ� = κ∗(P̃� | {P̃j , j 
= �}). In addition, κ� < 1, the ν�j are
unique, and

(Π−1)�k = −
ν�k

1− κ�
; (Π−1)�� =

1

1− κ�
.

• Conclusion: κ� can be estimated consistently by κ̂(
̂̃
P �|{

̂̃
P j , j 
= �});

so can ν�j , Π
−1 and finally Π.



Identifiability – Intuition

P1 P2

P3

P̃1

P̃2

P̃3



Consistent Discrimination

• Consistent estimation of Π/Π−1 enables construction of a consistent
discrimination rules using standard techniques (e.g., empirical risk
minimization over a growing sequence of VC classes)

• See poster/paper for details



Joint Irreducibility

• P1, . . . , PL are jointly irreducible if the following equivalent condi-
tions hold:

— If
∑L

i=1 γiPi is a distribution, then γi ≥ 0 for all i.

— For any I ⊂ {1, . . . , L}; 1 ≤ |I| ≤ (L− 1),
for any distribution Q ∈ ConvHull{Pi, i ∈ I},
for any distribution Q′ ∈ ConvHull{Pi, i ∈ I

c},
κ∗(Q |Q′) = 0.

• If P1, . . . , PL are discrete on a finite domain, joint irreducibility is
equivalent to the separability assumption from topic modeling



Recoverability
• Let π� denote the �-th row of Π = [πij ].

• Denote e� = (0, . . . , 0, 1, 0, . . . , 0)

• Π is recoverable if the following equivalent conditions hold:

(a) For every � there exists a decomposition π� = κ�e� + (1− κ�)π
′
�

where κ� > 0 and π′� is a convex combination of πj for j 
= �.

(b) Π is invertible and Π−1 is a matrix with strictly positive diagonal
entries and nonpositive off-diagonal entries.

(c) For each �, the residue of π� with respect to {πj , j 
= �} is e�.

“low noise” “high noise”



Recoverability (2/2)
• Binary case:

Π =

[
π11 π12
π21 π22

]

is recoverable iff π12 + π21 < 1.

• Recoverability guarenteed by common noise background model:



Connections to Other Problems

• Topic modeling: consistent estimation of topics with number of doc-
ument = number of topics

• Learning with partial labels, L = 3. Labels are A = {1, 2}, B =
{1, 3} and C = {2, 3}. Via resampling, can satisfy recoverability
assumption.



Contributions

• Universally consistent estimator for maximum mixing proportions

• Sufficient conditions (joint irreducibility, recoverability) for decontam-
ination of mutually contaminated models

• Consistent estimation of πij

• Consistent discrimination



Consistent Discrimination

• Denote R�(f) = P�(f(X) 
= �) and R̃�j(f) = P̃j(f(X) 
= �)

• Can estimate

R�(f) =
R̃��(f)−

∑
j �=� ν�jR̃j�(f)

1− κ�
.

via

R̂�(f) :=

̂̃
R��(f)−

∑
j �=� ν̂�j

̂̃
Rj�(f)

1− κ̂�
.

• Consistent discrimination rules can be constructed by establishing
probabilistic control of

sup
f∈F

∣∣∣R�(f)− R̂�(f)
∣∣∣

and following standard arguments (e.g., structural risk minimization
over a growing family of VC classes).


