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Cost-Sensitive Classification
e Random triple (X,Y,C)

o X = pattern, feature vector
oY € {—1,1}, class label

o C' > 0, misclassification cost

e Example-dependent costs:

o (' may depend on X and Y



Example

e Mailing to request charitable contributions

o v = cost of mailing a donation request
o X = feature vector associated to potential recipient

o / = amount donated

—> Y =sign(Z — ~)
C=|Z—1l

e Equivalent variables: Given, Y and C

o Fix any v € R

o Set
L, [ v+C Y =41
|l v-C, ifY=-1



Formal Setting

e Given
(X,Z2) e X xR
(X, Z)~P
veR

e Decision function
f:X—R
e Target risk

R(f) = Ex,z)~p [|Z — VI1{px)(2-)<0}]
\ . ~— _J/
loss




Surrogate Losses

e Surrogate loss
Ly(z,1) = [z — v[¢(sign(z — 7)t)
e Surrogate risk

Ry(f) = Ex.z)~p [Lo(Z; f(X))]

e Example: SVM for example-dependent costs

¢(a) = max(0,1 — a) @
f(z) = (w,z)
data (z1,21),-..,(Tn, 2n) \

A 1 —
min Z{jwl]* + = 37 Lo(zi, (w,2:)
1=1

(Zadrozny et al., Brefeld et al., 2003)




Surrogate Regret (Excess Risk) Bounds

For all f: X — R,

R(f) — R* < 0(Ry(f) — Ry)

Questions:

e When do such bounds exist?

e What assumptions are needed on the distribution, if
any”?

Previous work: Zhang (2004a,b), Bartlett et al. (2006),
Steinwart (2007), Tewari and Bartlett (2007), Reid and
Williamson (2011), ...



Target Regret (based on 0/1 loss)
Lemma: For all f: X — R,
R(f) - R* =Ex [1{Sign(f(X))#sign(h(X)—7)}|h(X ) =7 |]

where h(x
h(z) =E|Z|X = x| @)

e Optimal rule: f(z) = h(z) — v _—
e Special case: If Z € {0,1} and v = %, then
h(x) =n(x) = P(Z=1|X =)

— cost-insensitive classification



Basic Bound

R¢(f) =ExEzx [(Z - 7)1{ZZW}¢(f(X)) + (v — Z)1{2<7}¢(—f(Xm
=Ex [Cy(X, f(X))]

where
Cop(z,t) :=n1(x)p(t) + n_1(z)p(—1) { conditional risk
M (z) = Ezix=o|(Z = 7)1{z>+}]
N-1(2) == Ezx=[(v = Z2)1{z<}]
pr— 1 - 1 f
Hy(z) t:t(h(;zr)lify)SO Cy(z,1) in Cop(z,1)
o (€) = inf Hy(x) Extension of
wi|h(@) =]z Bartlett et al. (2006)

Theorem: ¢3*(R(f) — R*) < Ry(f) — R}



Inverting the Basic Bound: Hinge Loss
Theorem: If ¢(a) = max(0,1 — a), then
g (€) = e

and
R(f) ~ R* < Ry(f) - R}

for all f and all distributions of (X, Z)



Inverting the Basic Bound: Other Losses

For other losses, need to control spread of 7| X =«

(A) Z|X = z has variance 02 < 0% < 00

(B) Z| X = x is subGaussian

h(z)

Theorem: For exponential, logistic, and squared error losses,

e Under (A), ¢ (e) > c'e3 for € small

e Under (B), ¥} (¢) > c'¢* for € small



Detalls

Lemma:

cs 1) = T xXr i nl(x)
HE(@) = () + 1-1(x) (m@)m_l(x))

cost-sensitive cost-insensitive

where
m (1‘) = ]EZ|X=:U[<Z - V)I{sz}]
N-1(x) = Ez\x=2[(v = Z2)1{z<y}]

Condition on ¢ (Zhang, 2004): For some s > 1,¢ > 0

1 Hg!(n)
melal, |n- ;| <eH

Examples
e (s=1) hinge

e (s = 2) exponential, logistic, squared error




Conclusions

e Hinge loss:

R(f) ~ R < Ry(f) ~ R}
e Exponential, logistic, squared error ..., depends on noise

Bounded variance: R(f) — R* C(Ry(f) — 32)1/3
subGaussian: R(f) — R* < C(Ry(f) — 32)1/2

IA

e Extension to asymmetric (non-margin) losses
e Faster rates under Polonik’s low noise assumption
e Suggests new algorithms, e.g., boosting, based on different losses

e Future work: Consistency, rates



