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Abstract

Flow cytometry is a technique for rapidly quantifying physical and chemical properties of large num-
bers of cells. In clinical applications, flow cytometry data must be manually “gated” to identify cell
populations of interest. Because multiple, iterative gates are often required to identify and characterize
these populations, several researchers have investigated statistical methods for automating this process,
most of them falling under the framework of unsupervised learning and mixture model fitting. We view
the problem as one of transfer learning, which can leverage existing datasets previously gated by ex-
perts, while accounting for biological variation, to automatically gate a new flow cytometry dataset. We
illustrate our proposed method by automatically gating lymphocytes from peripheral blood samples.
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1 Introduction

Flow cytometry is a technique widely used in many clinical and biomedical laboratories for rapid cell analysis
Shapiro| (1994); Brown and Wittwer| (2000). It plays an important role in the diagnosis of diseases such as
acute leukemia, chronic lymphoproliferative disorders and malignant lymphomas. While flow cytometry is
used in other contexts, our motivation is hematopathology, the study of blood-related diseases.

Mathematically, a flow cytometry dataset can be represented as a collection D = {xi}fil, where ¢ indexes
individual cells, and x; is a d-dimensional attribute vector recording physical and chemical attributes of the
ith cell. The measured attributes include the cell’s size, surface complexity, and a variety of features related
to the expression levels of different antigens. The number of cells N can range from 10,000 to 1,000,000
(order of magnitude). The dimension d ranges from 7-12 in most clinical applications and 15-20 in some
research applications. In clinical settings, each dataset corresponds to a particular patient, where the cells
are typically drawn from a peripheral blood, lymph node, or bone marrow sample.

To make a diagnosis, a pathologist will use a computer to visualize different two-dimensional scatter plots
of a flow cytometry dataset. Figure [I] shows examples of such scatter plots for two different patients. The
attributes in these datasets are denoted here only by their abbreviations (FS, SS, CD45, etc.) for simplicity.
These plots illustrate the presence of several clusters of cells within each dataset. They also illustrate the
variation of measured data from one patient to another. This variation arises from both biological (e.g.,
health condition) and technical (e.g., instrument calibration) sources.
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Depending on the illness being screened for, the pathologist will typically visualize one type of cell in
particular. For example, in the diagnosis of leukemias, lymphocytes are known to be relevant. By visualizing
different two-dimensional scatter plots, the pathologist makes a diagnosis based on the shape, range, and
other distributional characteristics of these cells. Therefore, a necessary preprocessing step is to label every
cell as belonging to the cell type of interest or not, a process known as “gating.” This amounts to the
assignment of binary labels y; € {—1,1},i = 1,..., N, to every cell. In Figure [I] the lymphocytes are
indicated by an alternate color/shading. Without gating, cells of other types will overlap with the targeted
cell type in the two-dimensional scatter plots used for diagnosis. After gating, only the cells of interest are
visualized.

This paper concerns the automation of gating. Unfortunately, in clinical settings gating is still performed
manually. It is a labor-intensive task in which a pathologist or technologist visualizes the data from different
two-dimensional scatter plots, and uses special software to draw a series of boundaries (“gates”), each of
which eliminates a portion of the cells outside of the desired type. In many clinical settings, several “gating”
decisions, all currently manual, are required to “purify” a population of interest. For example, one might
first draw a series of bounding line segments on pairwise plots of FS, SS and CD45 to select all “cells,” which
eliminates spurious attribute vectors arising from dead cells, air bubbles, etc. Next, gating on (restricting to)
cells, the same three attributes can be used to identify lymphocytes. Finally, a CD20 vs. CD10 plot, gated
on lymphocytes, may be used to select B-cell lymphocytes for further analysis. Unfortunately, because of the
aforementioned variation in data, this process is difficult to quantify in terms of a small set of simple rules.
Instead, the person performing gating must utilize specialized domain knowledge together with iterative
refinement. Since modern clinical laboratories can see dozens of cases per day, it would be highly desirable
to automate this process.

Because of this need, several researchers have tackled the auto-gating problem. This is evidenced by a
recent survey on flow cytometry analysis methods, which revealed that more than 70% of studies focus on
automated gating techniques [Bashashati and Brinkman| (2009). The vast majority of approaches rely on a
clustering/mixture modeling, using a parametric representation for each cell type, together with unsupervised
learning (usually an EM algorithm) to fit the model parameters|Boedigheimer and Ferbas| (2008); |Chan et al.
(2008)); Lo et al.| (2008); [Pyne et al. (2009). The mixture modeling approach has a number of difficulties,
however. One is that the clusters are typically not elliptical, meaning complex parametric models must be
employed, such as skewed Gaussians, leading to challenging inference problems. Another limitation is that
clustering is a harder problem than the one that needs to be solved, in the same sense that determining a
decision boundary is easier than estimating a density. Finally, these algorithms are unsupervised, and do
not fully leverage expert knowledge.

We propose to view auto-gating as a kind of transfer learning problem. In particular, we assume that
a collection of expert-gated datasets are available. Although different datasets have different distributions,
there is enough similarity, (e.g., lymphocytes show low levels of SS while expressing high levels of CD45)
that this expert knowledge can be transferred to the new dataset. Our basic approach is to train a classifier
on each expert-gated dataset, and to summarize these classifiers to form a baseline classifier. This baseline
is then adapted to the new dataset by optimizing a “low-density separation” criterion. The transfer learning
problem we study is, to our knowledge, a new one, although it has similarities to previously studied transfer
learning problems, as well as multi-task learning. These connections are reviewed below.

The rest of the paper is structured as follows. Section [2| gives the problem statement. Related work
is described in Section Our methodology is described in Section 4l and in Section [5| we describe the
application of our methods to the gating of lymphocytes in peripheral blood samples. Some concluding
remarks are given in Section [6}

2 Problem Setup

There are M labeled datasets Dy, = {(xm,i, ymyi)}fvz”i, m=1,---, M, each a random sample from a distri-
bution P,,. D,, corresponds to the mth flow cytometry dataset and its labels are determined by experts.
There is also an unlabeled dataset 7 = {xt)i}fv:tl, a random sample from a new distribution P; corresponding



Case 7 Case 7 Case 7 Case 7 Case 7
1000 1000 1000 1000 1000
u
% s & &m0 ‘ 0O 500 0 s00f, 0 500
w @] :
o 0 o A, T 0l - o
0 500 1000 0 500 1000 0 500 1000 0 500 1000 i 500 1000
FS 55 CD3 CD3 CDh4
Case 12 Casge 12 Case 12 Case 12 Case 12
1000 1000 1000 1000 1000
w0 » .
% s : 2 &m0 0O 500 e 0O 500 0O 500 1
0 0 gl gl & pks
0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
FS 55 CcD3 CcD3 CD4

Figure 1: Clinicians analyze flow cytometry data using a series of scatter plots on pairs of attributes. The
distribution of cell populations differs from patient to patient, and changes after treatments. Lymphocytes, a
type of white blood cell, are marked dark (blue) and others are marked bright (green). These were manually
selected by a domain expert.

to a new flow cytometry dataset. The labels {y; ;}2*; are not observed. The goal is to assign labels {7 ;}~,
to 7T so that the misclassification rate is minimized. All the distributions are different, but defined on the
same space R x {—1,+1}.

While there are obvious connections to transfer learning (discussed in the next section), this problem
might also be described as a supervised learning problem called set prediction. Whereas in traditional
supervised learning, the inputs are vectors and the outputs are scalar labels, here the inputs are distributions
(random samples), and the outputs are subsets of Euclidean space (subsamples). Given several examples
of distributions and corresponding subsets, the goal is to generalize to predict the subsets associated with
previously unseen distributions.

3 Related Work

As a transfer learning problem, our problem is characterized by having multiple source domains (the expert-
gated datasets), and a single target domain (the unlabeled dataset). In addition, using the taxonomy of [Pan
and Yang| (2010)), our setting can be described as follows:

(1) the source and target domains are different, because the marginal distributions of x are different,
(2) the source and target tasks are different, because each dataset requires a different gating,

(3) there are no labeled examples in the target domain.
To the best of our knowledge, previous work has not addressed this combination of characteristics. Many
previous works fall under the heading of inductive transfer learning, where at least a few labels are given for
the target domain |Ando and Zhang| (2005); Rettinger et al| (2006). In transductive transfer learning, and
the related problems of sample selection bias and covariate shift, the source and target tasks are assumed to
be the same |Arnold et al| (2007).

Another closely related area is multi-task learning Thrun| (1996); (Caruana) (1997)); Evgeniou and Pontil
(2004). However, our problem contrasts to this line of studies in the sense that our ultimate goal is achieving
high performance for the target task only, and not the source tasks. It would be natural, however, to
extend our problem to the case where there are multiple unlabeled target datasets, which might be called
“transductive set prediction.”

Toedling et al.| (2006) explore using support vector machines (SVMs) for flow cytometry datasets from
multiple patients. They form a single large dataset by merging all the source datasets, and train a classifier



Algorithm 1 Baseline Classifier

Input: source task data D,, for m = 1,--- , M, regularization parameters {C,, }}_,

: for m=1to M do
2 (W, by) < SVM(D,,, Cr)
3: end for
4: Robust Mean:
(wo, bo) + Algorithm 2({(Wum, bm)}m)

Output: (wg,by) or fo(x)= (wg,x)+ bo

—_

on this dataset. However, due to its large size of the combined dataset, the training requires demanding
computational and memory resources. Furthermore, this approach ignores the variability among multiple
datasets and treats all the datasets as arising from the same distribution. This reduces the problem to
standard single-task supervised learning.

4 Algorithm

We describe our approach to the problem. In this section, we show how our algorithm summarizes knowledge
from the source data and adapts it to the new task.

4.1 Baseline Classifier for Summarizing Expert Knowledge

We suppose that the knowledge contained in the source tasks can be represented by a set of decision functions
fi,-+ 5 fur- The sign of a decision function f,,, provides a class prediction of a data point x: § = sign(fmn(x)).
Each f,, is separately learned from each of the M source datasets. Then these decision functions form the
pool of knowledge.

In the present work, we consider linear decision functions of the form f(x) = (w,x) 4+ b. This decision
function defines a hyperplane {x : f(x) = 0} with a normal vector w € R? and a bias b € R.

The SVM is among the most widely used methods for learning a linear classifier [Scholkopf and Smola
(2002). It finds a separating hyperplane based on the maximal margin principle. We use the SVM to fit a
decision function f,, or a hyperplane (w,,, b,;,) to the mth source dataset D,,. Training of a SVM needs a
regularization parameter C,, that can be set individually for each source task.

We devise a baseline classifier fo = (wg,x) + by, where (wq,bp) is the mean of (W,,,b;,,). Instead of
the simple mean, Algorithm [I] uses a robust mean to prevent fy from being unduly influenced by atypical
variations among datasets. Algorithm [2| presents the robust estimator as formulated in |(Campbell (1980).
Here 1 is a weight function corresponding to a robust loss, and we use the Huber loss function. Note that
we also robustly estimate the covariance of the w,,,, which is used below in Section {4.2.3

The learning of fy does not involve T at all. Thus, it is not expected to provide a good prediction for
the target task. Next we describe a way to adapt this baseline classifier to the target data based on the
low-density separation principle.

4.2 Transferring Knowledge to Target Task

Low-density separation is a concept used extensively in machine learning. This notion forms the basis of
many algorithms in clustering analysis, semi-supervised classification, novelty detection and transductive
learning. The underlying intuition is that the decision boundaries between clusters or classes should pass
through regions where the marginal density of x is low. Thus, our approach is to adjust the hyperplane
parameters so that it passes through a region where the marginal density of 7 is low.



Algorithm 2 Robust Mean and Covariance

Input: (w,,,b,,) form=1--- M

1: Concatenate: w,, < [Wp,,by], Vm

2: Initialize: u < mean(u,,), C « cov(uy,)
3: repeat

b dy e (U — )T C (1, — )

5. Wy < Y(dm)/dm

6: 2 WU

Update: pu™" < S

Crew >om wfn'(um'z_:‘:yz;;:)flllm_unew)T
7: until Stopping conditions are satisfied

Output: p = [wq,bg], Cop=C(1:d,1:4d)

Algorithm 3 Shift Compensation

Input: hyperplane (w,b), source task data {D,,}M_,, target task data T

m=1>

—_

21— (W, X ;) + b, Vi

2: for m=1to M do

3 Zmy & (W, X)) + b, Vi

4 ey argmax, KDE(z,2;) * KDE(z, 2p,;)
5: end for

6

: b« b—median(e,)

Output: b

4.2.1 Preprocessing

The ranges of each attribute are manually determined by an operator in a way that is specific to each
dataset. While operators attempt to minimize this source of technical variation, datasets invariably differ
by shifting (and possible scaling) along coordinate axis. Rather than aligning all datasets via some global
d-dimensional shift/scale transformation, it is sufficient for our purposes to align datasets in the direction of
the baseline normal vector wq. Specifically, for each dataset, we compute a kernel density estimate (KDE)
of the projection onto wy. Then, we align the target data to each source dataset using maximum cross-
correlation (denoted by x in Algorithm [3]), and modify the baseline bias by the median of these shifts. This
new bias b will serve as the initial bias when adapting the baseline to 7.

4.2.2 Varying Bias

We first describe adapting the bias variable to the unlabeled target data T based on low-density separa-
tion. The process is illustrated in Algorithm

To assess whether a linear decision boundary is in a low density region, we count data points near the
hyperplane. As the hyperplane moves, this number will be large in a high density region and small in a
low density region. In particular, we define a margin, as in SVMs, to be a region of a fixed distance from a
hyperplane, say A, and count data points within this margin. We use A = 1. Given a hyperplane (w,b),

basic linear algebra shows that <“'H"’;>”+b is the signed distance from x to the hyperplane. Hence, computing

Z 1{\<w,xt,i>+b\ N

lTwli



Algorithm 4 Bias Update
Input: hyperplane (w,b), target task data T

1: Compute: zi < (W,xy;) +b, Vi
2: Build a Grid:  s; < sort (z;)

3: for j =1 to N; do

4 ¢y Zil{\zi—sﬂ

Tl

<1}

end for

h < kernel bandwidth ({(s;,cj)};)
Smooth:  p(2) = >, ¢jkn(z, s;)
z* < gradient descent (p(z), 0)
b — b —z*

Output: 0" or fp(x) = (w,x) + b"e?

Algorithm 5 Kernel Bandwidth
Input: grid points and counts {(sg, cx)}

1: N Zk Ck
2: S % Zk SkCL
R . 1/2
35 (v Seenlsn —9?)
4 h«+0.9-5-N~/°
Output: h

over a range of b followed by locating a minimizer near the baseline hyperplane gives the desired solution.
Algorithm 4] implements this on a grid of biases {s;} and builds >, ¢; (2 — s;) where ¢ is the Dirac delta.
The grid points and the counts at each grid point are denoted by s; and c;.

Before searching for the minimizing bias, we smooth these counts over the grid by convolving with a

lz—z"|?

Gaussian kernel ky(z,2") = \/217;,, exXp (_ ohZ ) The bandwidth i controls the smoothness of the kernel.

This operation yields a smooth function p(z) = >_, ¢jkn(z,s;). Running a gradient descent algorithm on
this smoothed function p(z) returns a local minimum near 0 if initialized at 0 (the second parameter in Line
8).

To facilitate a streamlined process for practical use, we automatically select the kernel bandwidth h as
shown in Algorithm [5| This kernel choice is motivated from the rule of thumb for kernel density estimation
suggested in |Silverman| (1986]).

4.2.3 Varying Normal Vector

We can also adjust the normal vector of a hyperplane. Given a hyperplane having a normal vector w, we
let the updated normal vector be of the form w™* = w + a;v; where v; is the direction of change and a; is
the amount of the change. Thus, the new normal vector is from an affine space spanned by v;.

Now we explain in detail the ways of choosing v; and a;. We find a direction of change from the
robust covariance matrix of the normal vectors wq, -+, wj; obtained from Algorithm [2| We choose the first
principal eigenvector for v; after making it orthogonal to wy, the baseline classifier normal vector, because
changes in the direction of wy do not affect the decision boundary.

To determine the amount of change a;, we proceed similarly to the method used to update the bias. We
count the number of data points inside the margin as the normal vector varies by a regular increment in the



Algorithm 6 Normal Vector Update
Input: hyperplane (w,b), direction of change v;, target task data T
1: for a;, = —0.5 to 0.5 step 0.01 do

2: W < W 4+ ap Ve
Cr D 1{‘ (Wi x4,) b

Faci | <1
3: end for
4: h < kernel bandwidth ( {(ag, ck)}r )
5. Smooth:  g(a) < >, ckkn(a, ax)
6: a¢ < gradient descent (g(a), 0)
7. WY — W ap vy
Output: w™®

direction of v;. Filtering with a Gaussian kernel smooths these quantities over the range of variation. Then
a gradient descent algorithm can spot a; that leads to a low density solution near the baseline hyperplane.
Algorithm [6] summarizes this process.

Even though the presented algorithm here confines the varying direction of normal vector to a single
vector vy, we can generalize this to multiple directions. To do this, more than one eigenvector can be chosen
in Step 1 of Algorithm[7] Then the Gram-Schmidt process generates a set of orthonormal vectors that spans
a subspace for a new normal vector. The counting in-margin points in Algorithm [6] can be extended to a
multivariate grid with little difficulty.

4.2.4 Putting It All Together

Once the normal vector is updated, we build a new hyperplane by combining it with an updated bias so
that the hyperplane accords to a low density region of 7. The overall scheme is outlined in Algorithm [7] In
the algorithm, one can repeatedly update the bias and the normal vector of the hyperplane until stopping
conditions are met. A simpler method is fixing the number of iterations. In our experience, running one
round of the loop was sufficient for good solutions.

5 Experiments
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Figure 2: Number of total events and lymphocytes in each of the flow cytometry datasets.

We demonstrate the proposed methods on clinical flow cytometry datasets. Specifically, we apply them
to the problem of detecting lymphocytes from peripheral blood samples. Lymphocytes are kinds of white



Algorithm 7 Set Estimation based on Low-Density Separation

Input: source task data {D,,}}_,, target task data T, regularization parameters {C,, }*_,

1: for m=1to M do
2 (W, bp) < SVM (D, Cr)
3: end for
4: Initialize:
((wo, bp), Cp) « Algorithm ({(Wm, bm)}m)
vo + eig(Cy)
5: Normalize:
wi < wo/[[woll, b < bo/|lwol|
v < orthonormalize v with respect to wy

6: Compensate Shift:
by < Algorithm [3|(wy, by, {Dp.}, T)

7: Update Bias:
by < Algorithm (wt, b, T)

8: repeat

©

Update Normal Vector:
wy < Algorithm [6](wy, by, vi, T)

10:  Update Bias:
by < Algorithm [4(wy, by, T)

11: until Stopping conditions are satisfied

Output: (wy,b:) or f; = (wy,x) + by

blood cells and play a major role in the human immune system. In diagnosing diseases such as leukemias,
identifying these cells is the first step in most clinical analysis.

For the experiments, peripheral blood sample datasets were obtained from 35 normal patients. The
number of events in a dataset ranges from 10,000 to 100,000 with a varying portion of lymphocytes among
them. Ordinary cells as well as dead cells, cell debris and doublets are referred to as events. Figure [2| shows
the number of total events and lymphocytes in each dataset. An event in a dataset has six attributes (known
as FS; SS, CD45, CD4, CD8 and CD3) and a corresponding binary label (41 for lymphocytes and —1 for
others) from the manual gates set by experts (see Figure [1f).

For the experiments, we adopt a leave-one-out setting: choose a dataset as a target task 7, hide its
labels, and treat the other datasets as source tasks D,,. Each of the source task datasets constitutes a
binary classification problem with the goal of predicting the correct labels.

On each source dataset D,,, we trained a SVM classifier f,,, with the LIBSVM package |Chang and Lin
(2001). Throughout the experiments, we fixed all the regularization parameters C,, to 1. Then we applied
the algorithms described in Section [4] and evaluated the prediction accuracy on the unlabeled target dataset
T. The following transfer learning algorithms are considered:

e fp : baseline classifier with no adaptation, referred to as “baseline.”
e f, : classifier adapted to T by varying the bias-only, referred to as “bias.”
e f; : classifier adapted to 7 by varying both the direction and the bias, referred to as “dir. and bias.”

In addition to the above classifiers, we compared the error rates from the following classifiers as points of
reference:

o fpform=1--- M



Each classifier f,, learned from a source dataset D,, is applied straight to the target dataset 7. Note
that this emulates a supervised learning setup with a train sample D,, and a test sample 7 while
implicitly assuming D,,, and 7 are drawn from the same distribution. A box plot in Figure [3] displays
the range of results with some ‘+’ indicating extreme values. Table [l numbers f5¢!  the best of the
34 error rates.

e Oracle

We also applied the standard SVM with the true labels of the target task data. Its performance is
computed by 5-fold cross validation. This quantity gives us a glimpse of the misclassification rate we
can expect when a sufficient amount of labeled data are available for the target task.
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Figure 3: The error rates of various classifiers on each unlabeled dataset. The box plot corresponds to the
range of results when one of f,, is applied to 7. ‘+’ marks an extreme value that deviates from the others.
The results from f;, ORACLE and the best of f,, are usually indistinguishable.

For each of the datasets, we repeated this experiment and reported their results in Figure [3| and Table

As can be seen in the figure and table, applying one of the f,,, to the target task can result in a wide range
of accuracy. The baseline classifier f; typically improves when we adapt fy by changing the bias variable in
most cases except Case 14 and Case 23. They further improve by adaptively varying both the direction and
the bias. The differences among the f2¢* ORACLE and f; are very small. This reveals that our strategy
can successfully replicate what experts do in the field without labeled training set for the target task.

6 Conclusion

We cast flow cytometry auto-gating as a novel kind of transfer learning problem. By combining existing ideas
from transfer learning, together with a low-density separation criterion for class separation, our approach
can leverage expert-gated datasets for the automatic gating of a new unlabeled dataset.

Although linear classifiers are sufficient to gate lymphocytes in peripheral blood, nonlinear classifiers may
be necessary for other kinds of auto-gating. Our approach accommodates the incorporation of inner-product
kernels, which may offer a solution to such problems. It is also quite likely that several other strategies from
the transfer learning literature can be adapted to this problem.

Biological and technical variation pose challenges for the analysis of many types of biomedical data.
Typically one or both types of variation is accounted for by performing task-independent “normalization”
prior to analysis. Our approach to flow cytometry auto-gating can be viewed as a task-dependent approach.
The application of transfer learning to overcome biological and/or technical variations in other kinds of
biomedical data is an interesting problem for future work.
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Table 1: The error rates (%) of various classifiers on each flow cytometry dataset, with the other 34 treated
as labeled datasets. The results from f; adapted to the unlabeled target data are comparable to the results
from ORACLE trained on labeled target data. For detailed explanations of the experiment setup and the
header, readers are referred to the text.

CASE fo fo fi  fEe*  ORacLE
1 291 3.05 3.17 2.87 2.79
2 5.44 2.09 2.10 2.06 1.71
3 1.66 1.00 0.94 0.91 0.74
4 2.62 2.54 2.67 2.44 2.56
5 1.50 1.40 1.44 1.41 1.58
6 1.84 1.60 1.80 1.62 1.56
7 0.91 0.82 0.77 0.80 0.79
8 0.65 0.60 0.50 0.52 0.47
9 2.19 191 1.83 1.78 1.71
10 2.16 1.09 1.09 1.03 1.03
11 5.11 1.86 1.86 1.77 1.79
12 6.69 1.60 1.63 1.78 1.54
13 1.69 1.63 1.65 1.59 1.64
14 2.29 3.55 0.87 0.71 0.81
15 1.78 1.16 1.22 1.11 1.11
16 3.79 3.19 3.23 2.82 2.83
17 2.75 3.49 3.51 2.47 2.44
18 1.86 1.64 1.67 1.59 1.60
19 3.44 3.45 3.14 2.46 2.29
20 4.48 2.39 2.37 2.56 2.45
21 7.71  6.28 6.30 5.64 5.08
22 1.60 1.81 1.82 1.54 1.42
23 2.89 7.51 1.58 1.61 1.43
24 2.41 2.06 2.06 1.91 1.89
25 2.22 225 2.32 2.04 1.47
26 2.13 1.82 1.83 1.42 1.39
27 11.22 9.02 9.18 8.17 8.72
28 1.68 2.23 2.17 1.56 1.48
29 1.06 0.96 0.97 0.77 0.73
30 1.25 1.24 1.25 1.25 1.24
31 13.46 4.57 4.59 4.80 4.45
32 12.66 2.62 2.62 2.72 2.21
33 4.58 5.74 5.74 2.28 1.77
34 2.10 1.90 1.93 1.79 1.80
35 6.68 5.46 5.49 5.56 5.59

AVG 3.70 2.73 2.49 2.21 2.12

STD ERR 0.54 0.33 0.30 0.26 0.27
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