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Abstract. There is great interest in developing imaging-based methods
for diagnosing neuropsychiatric conditions. To this end, multiple data-
sharing initiatives have been launched in the neuroimaging field, where
datasets are collected across multiple imaging sites. While this enables
researchers to study the disorders of interest with substantial sample
size, it also creates new challenges since the data aggregation process in-
troduces various sources of site-specific heterogeneities. To address this
issue, we introduce a multitask structured sparse support vector machine
(SVM) that uses resting state functional connectomes (FCs) as the fea-
tures for predicting diagnostic labels. Specifically, we employ a penalty
that accounts for the following two-way structure that exists in a mul-
tisite FC dataset: (1) the 6-D spatial structure in the FCs captured via
either the GraphNet, fused Lasso, or the isotropic total variation penalty,
and (2) the inter-site structure captured via the multitask `1{`2-penalty.
To solve the resulting high dimensional optimization problem, we intro-
duce an extension to a recently proposed algorithm based on the alter-
nating direction method. The potential utility of the proposed method
is demonstrated on the multisite ADHD-200 dataset.

Keywords: Multitask learning, structured sparsity, support vector ma-
chine, resting-state fMRI, alternating direction method

1 Introduction

In this work, we are interested in a supervised classification problem, where
the goal is to predict the diagnostic status of an individual using functional
connectomes (FCs) derived from resting-state fMRI (rs-fMRI) [4]. Fortunately,
with various data sharing projects emerging in the neuroimaging community [12,
15], we have access to training data of unprecedented sample size. However, such
community-wide collaborative efforts typically involve aggregating data from
multiple imaging sites, which introduces several sources of systematic confounds,
such as variability in the scanner quality, image acquisition protocol, subject
demographics, etc. In order to effectively make use of these multisite datasets, it
is important to train the classifiers in a way that accounts for these site-specific
heterogeneities. To this end, we propose a classification framework that adopts
a multitask learning (MTL) approach [5, 8, 10,13].
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The idea behind MTL is to jointly train multiple tasks in order to improve
classification performance, under the assumption that the tasks are related to
each other in some sense. Recently, MTL methods have been successfully applied
in brain decoding [8,13], where the participants from a multi-subject fMRI study
are treated as the tasks. The underlying assumption here is that the brain regions
that are activated from a stimulus will share similar patterns across different
tasks/subjects. In contrast to these works, the method we propose in this work
treats the sites from which the rs-fMRI scans are collected as the tasks.

2 Material and Methods

To generate the FCs, we used the grid-based parcellation scheme adopted by
Watanabe et al. in [16], which involves 347 nodes defined on the standard MNI
template; Fig. 1 provides a schematic representation of this parcellation scheme.
Each nodes represents a 15mm diameter sphere with 33 voxels, and is placed
throughout the entire brain with a spacing of 18�18�18mm (voxel resolution
is 3�3�3mm). A regional time-series is assigned on each node by spatially av-
eraging the BOLD signals, and FCs of size p�

�
347
2

�
� 60, 031 are obtained by

computing all pairwise Pearson correlations between the time-series of the nodes.

2.1 Supervised Learning and the Multitask Framework

Šuppose we are given K supervised learning tasks, where for each task k� 1, . . . ,
K, we are given nk input/output pairs

 
pxki , y

k
i q
(nk

i�1
P pRp�t�1uqnk . In the con-

text of our work, xki and yki represent the FC and the diagnostic label of the i-th
subject from the k-th site, respectively. The goal is to jointly learn K linear clas-
sifiers of the form fkpxq� signpxwk,xyq, where w1, . . . ,wKPRp are task-specific
weight vectors obtained by solving the following optimization problem:

arg min
w1,...,wKPRp

Ķ

k�1

1

nk

nķ

i�1

`
�
yki

@
wk,xki

D�
�Rpw1, . . . ,wKq .

The first term here is the pooled empirical risk of a convex margin-based loss
` :RÑR� and the second term R :RpKÑR� is a penalty function that enforces
certain kind of structure on the weight vectors. In this work, we employ the hinge-
loss `ptq�maxp1 � t, 0q from the well known support vector machine (SVM)
classifier, although other convex margin-based losses can be used as well.

For brevity, we define a functional LpY kXkwkq :�
°nk

i�1 `py
k
i xw

k,xki yq which
aggregates the empirical loss from the k-th task, where Xk PRnk�p de-
notes the design matrix for the k-th task and Y k P t�1unk�nk is defined as
Y k :� diagpyk1 , . . . , y

k
nk
q. Also for conciseness, let w PRpK denote the vector ob-

tained by stacking the weight vectors twkuKk�1 together. In this work, we focus on

convex penalty functions of the form: Rpwq� γ
°K
k�1 R1pw

kq�λR2pwq, where
γ, λ¥ 0 are hyperparameters. Thus the objective function can be written as:

arg min
wPRKp

Ķ

k�1

1

nk
LpY kXkwkq � γ

Ķ

k�1

R1pw
kq � λR2pwq . (1)
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Fig. 1: The brain parcellation scheme adopted in this work. The green regions
represent (pseudo)-spherical nodes each encompassing 33 voxels.

The first penalty R1 allows us to encode prior knowledge about the intra-task
structure of the data. While various penalties such as GraphNet (GN), fused
Lasso (FL), and isotropic total variation (TV) have been applied successfully in
the fMRI literature [1,6,9,16], these penalties by themselves do not account for
the inter-task structure of the dataset (FL is also known as anisotropic total vari-
ation). Thus a second penalty R2 is included in (1), which allows us incorporate
a notion of “task-relatedness” by enforcing some form of structure on w.

For the intra-task penalty R1, following the recent work of [16], we account for
the 6-D spatial structure of FCs (defined by pairs of points in 3-D) by employing
either the GN or FL penalty, which can be expressed in the following form:

R1pw
kq�

1

q

��Cwk
��q
q
�

#
GraphNet if q � 2

Fused Lasso if q � 1 ,

where C denotes a 6-D finite differencing matrix. The idea behind GN and FL
is to promote spatial contiguity by penalizing the differences among neighboring
coordinates of the FC. Similarly, the TV penalty, which is a rotationally invariant
counterpart of the FL penalty, can also be used to encourage spatial contiguity;
see [9] for its closed form expression.

2.2 Structured Sparsity with Group Variable Selection

We propose to integrate the structured sparsity framework introduced in [16]
with the popular multitask `1{`2-penalty [5, 10]. Specifically, for the inter-task
penalty R2, we use R2pwq�

°p
j�1 }wj}2, which is the so-called `1{`2-penalty.

Here wj PRK is a vector formed by stacking the j-th weight vector coefficients
across the K tasks. This penalty has the appealing group variable selection prop-
erty [5, 10], which promotes learning features that are relevant across all sites,
thereby simplifying interpretation of the selected features. At the same time,
the actual weights associated with a given correlation can vary across site, in
contrast to training a single classifier over a pooled dataset.

2.3 Optimization Algorithm

To solve the proposed large scale optimization problem, we apply the alternating
direction method of multipliers (ADMM) algorithm [2] introduced in [16], but
with a minor modification. The complete algorithm is outlined in Alg. 1. We
note that this section focuses on GN and FL, but the ADMM algorithm for TV
differs only in line 5 of Alg. 1, but the details are omitted for lack of space.
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Alg. 1 ADMM for Multitask Structured Sparse SVM

1: Initialize variables, assign hyperparameters λ, γ ¥ 0
2: repeat

3: for k � 1, . . . ,K do
4: wk Ð ppXkqTXk�2Ipq

�1
 
pY kXkqT

�
vk1�uk1

� �
vk2�uk2

�
�AT

�
vk4�uk4

� (
� solve using matrix inversion Lemma

5: vk3 Ð

#
apply Equation (3) if q� 1 (FL)

ρpγB � ρIq�1 rCpvk4 � uk3q if q� 2 (GN)

6: vk1ÐProx`{pρnkq

�
Y kXkwk�uk1

�
� Proxτ`ptq :�

#
t if t ¡ 1
1 if 1� τ¤t¤ 1
t�τ if t   1� τ

7: vk4 Ð
� rC 1 rC�Ip̃

��1� rC 1rvk3 � uk3s�Awk�uk4
�

� solve using FFT

8: end for

9: for j � 1, . . . , p do
10: v2,j Ð vsoftλ{ρ pwj � u2,jq � vsoftτ ptq:�maxp1� τ

}t}2
, 0q t, t PRK

11: end for

12: for k � 1, . . . ,K do � dual variable update

13: uk1 Ð uk1 � Y kXkwk � vk1
14: uk2 Ð uk2 �wk � vk2

15: uk3 Ð uk3 � vk3 � rCvk4
16: uk4 Ð uk4 �Awk � vk4
17: end for

18: until stopping criterion is met

To apply Alg. 1, we employ the data augmentation�masking strategy that
was proposed in [16]. In brief, the idea behind this method is that as it stands,
the ADMM algorithm for solving the objective function (1) with the GN, FL, or
TV penalty will require the inversion of the Laplacian matrix CTC, which is pro-
hibitively large. Thus we rewrite the GN/FL penalty as R1pw

kq�}B rCAwk}qq ,

where A is an augmentation matrix, rC is the finite differencing matrix for the
augmented wk, and B is a diagonal masking matrix that ensures the penalty
remains unaffected, i.e., }B rCAwk}qq �}Cwk}qq. This results in a new Laplacian

matrix rCT rC, which possesses a special structure known as block-circulant with
circulant-blocks, whose matrix inverse can be evaluated efficiently via the fast
Fourier Transform (FFT) (line 7, Alg. 1; see [16] for more details).

Using this augmentation�masking strategy, we can rewrite the objective as:

min
w

Ķ

k�1

1

nk
LpY kXkwkq�

γ

q

Ķ

k�1

��B rCAwk
��q
q
�λ

p̧

j�1

}wj}2 ,

which can be converted into the following canonical ADMM form [2]:

min
twk,vk

1 ,v
k
2 ,v

k
3 ,v

k
4u

Ķ

k�1

1

nk
Lpvk1q �

γ

q

Ķ

k�1

��Bvk3
��q
q
� λ

p̧

j�1

}v2,j}2

s.t. Y kXkwk�vk1,w
k�vk2,

rCvk4�vk3,Awk�vk4 @k� 1, . . . ,K. (2)
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It is straightforward to show that the above two problems are equivalent, and
Alg. 1 follows from applying the standard ADMM iteration on (2). We emphasize
that all the updates in Alg. 1 can be carried out efficiently in analytical form.
For example, line 5 in Alg. 1 is a simple diagonal matrix inversion in the case of
GN, and for the FL case we have the following closed form update:�

vk3
�
s
Ð

#
softγ{ρ

�� rCpvk4 � uk3q
�
s

	
if Bs,s � 1� rCpvk4 � uk3q

�
s

if Bs,s � 0,
(3)

where softτ ptq:�maxp1� τ
|t|
, 0q � t denotes the soft-threshold operator and r�ss in-

dexes the s-th element of a vector. Finally, we note Proxτ`ptq in line 6 is an
elementwise update corresponding to the proximal operator of the hinge-loss.

3 Experiments

The ADHD-200 Dataset. We used the publicly available ADHD-200 competi-
tion dataset [15], which contains rs-fMRI scans of subjects diagnosed as either
typically developing (TD) or with ADHD. The dataset is collected across seven
sites and consists of two parts: a training set and a validation test set (Brown site
excluded from our study as the subject labels are not released). Analyses were
limited to participants with: (1) MPRAGE anatomical images with consistent
near-full brain coverage with successful registration; (2) complete phenotypic in-
formation for main phenotypic variables (diagnosis, age, handedness); (3) mean
framewise displacement (FD) within two standard deviation (SD) of the sample
mean; (4) full IQ within two SDs of the ADHD-200 sample mean. After applying
these sample selection criteria, we analyzed resting state scans from 628 indi-
viduals (TD�416, ADHD�212) in the training set and 106 subjects (TD�65,
ADHD�41) in the test set. Functional images were reconstructed, slice-time
corrected, motion corrected, and co-registered to the MNI space using SPM8.

Experimental Results. To assess the validity of the proposed method, we com-
pared the performance of various SVM-based classifiers using the ADHD-200
dataset, where resting-state FCs were produced using the parcellation scheme
described in Sec. 2. For the intra-task penalty R1, we compared four different
regularization schemes: Elastic-net (EN) [5] with R1pwq � 1

2
}w}

2
2, GN, FL, and

TV. For the inter-task penalty R2, we compared three different approaches:

1. Pooled `1: a single classifier is trained on the entire ADHD-200 dataset
(R2pwq� }w}1 with w PRp as K � 1).

2. Single-task `1{`1: equivalent to training separately across sites due to the
separability of the penalty across sites (R2pwq�

°p
j�1 }wj}1q.

3. Multitask `1{`2: jointly train the classifiers by solving (1).

The regularization parameters tλ, γu are tuned by conducting a 5-fold cross-
validation (CV) on the training set over the following two-dimensional grid:
λ, γPt2�13, 2�12, . . ., 2�3u. The final weight vector estimate is obtained by re-
training the classifiers on the entire training set using the tλ, γu values
that maximized the CV classification accuracy; for validation, we predicted
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the labels of the test set subjects using this weight vector. All methods
were solved using ADMM with the algorithm terminated when the condition��wnew �wold

��
2
¤ 5�10�3�

��wold
��
2

was met or the iteration count reached 400.
To evaluate the quality of the classifiers, we analyzed the following set of

performance measures for both the 5-fold CV and the validation test set results:

– Classification accuracy (ACC)
– Area under the ROC curve (AUC)
– Balanced score rate (BSR) � (sensitivity+specificity){2
– Stability score (Stab.) � a measure of feature selection stability (see [1,14])
– P-value (PVAL) computed from binomial test.

– Sparsity level (SP%) � 100 � |# non-zero features|
pK

The AUC and BSR are analyzed since ACC by itself can be misleading when
the dataset labels are imbalanced (ACC, AUC, and BSR are averaged across the
tasks); the ROC curves are constructed by varying the threshold of the classifiers.
Stability score is a measure introduced in [14] which quantifies the stability of
the features selected across the CV folds (see [1, 14] for its precise definition).
Classifier performance on the test set was compared to random guessing via a
binomial test based on a binomial distribution Bpp,nq with p�0.5 and n�109
samples, with PVAL evaluated via an one-sided binomial test [7]; the alternative
approach of permutation test was not pursued due to its severe computational
cost. Finally, sparsity level is the fraction of features selected in the final model.

Table 1 presents the classification results from the 5-fold CV and validation
on the test-set, and Fig. 1 displays the corresponding ROC curves. These re-
sults demonstrate that training a single classifier via the “pooling” approach
yields the worst performance in terms of accuracy, AUC, and BSR, suggesting
that blindly aggregating the datasets across different sites can be problematic
for accurate disease classification. Comparison between the single-task and the
multitask approaches shows that the `1{`2-penalized approach yields superior
performance in terms of AUC, although no striking difference can be observed
in terms of accuracy and BSR.

In addition to the performance gain with the `1{`2-penalty, the set of weight
vector estimates tŵkuKk�1 all share a common support of length p with this mul-
titask approach. This is invaluable for interpretation, as the selected features
can be viewed as edges that are informative across all sites. For visualization,
we grouped the indices of this support according to the network parcellation
scheme proposed by Yeo et al. in [17], and reshaped them into a 347�347 sym-
metric matrix with zeroes on the diagonal. The resulting support matrices for
the EN+`1{`2 and the FL+`1{`2-penalized SVM are presented in Fig. 3 (re-
sults for GN+`1{`2 and TV+`1{`2 were very similar to FL+`1{`2). An interest-
ing observation here is that the support structure from the FL+`1{`2-penalized
SVM shows concentrated connectivity patterns in the intra-frontoparietal (6-6)
and the intra-default network (7-7) regions; Fig. 3 provides a brain space
representation of these connections (figures generated using BrainNet Viewer,
www.nitrc.org/projects/bnv/). These network regions are frequently reported
to exhibit disrupted connectivity patterns in resting state studies of ADHD [3],
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Table 1: The classification results from the 5-fold CV and the validation test-set.

CV (628 subjects) Test-set (106 subjects)

ACC AUC BSR Stab. ACC AUC BSR PVAL SP%

EN (`1) .689 .687 .630 .277 .557 .617 .476 .143 2.54%
GN (`1) .704 .708 .631 .253 .594 .608 .494 .032 28.88%

FL (`1) .688 .720 .586 .059 .632 .592 .530 .004 64.85%
TV (`1) .701 .715 .620 .005 .623 .608 .521 .007 90.32%

EN (`1{`1) .709 .752 .649 .276 .623 .609 .530 .007 0.28%

GN (`1{`1) .713 .750 .652 .165 .642 .613 .573 .002 67.14%

FL (`1{`1) .715 .750 .659 .329 .632 .634 .547 .004 1.30%
TV (`1{`1) .718 .753 .661 .345 .642 .654 .550 .002 1.61%

EN (`1{`2) .720 .754 .657 .217 .651 .645 .556 .001 0.25%

GN (`1{`2) .720 .766 .657 .320 .642 .668 .546 .002 1.03%

FL (`1{`2) .718 .766 .653 .315 .642 .673 .546 .002 0.79%
TV (`1{`2) .720 .766 .658 .316 .642 .672 .546 .002 0.80%

CV (628 subjects) Test-set (128 subjects)
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Fig. 2: Table 1 classifiers’ ROC (`1{`1-curves omitted to improve curve visibility).

although the accuracies obtained from our classifiers are not at the level where
the selected features can be interpreted as reliable ADHD biosignatures.

Finally, we note that most of the accuracies reported on the validation test-set
in Table 1 exceeded the highest result from the actual ADHD-200 competition
(which was 61.54% [15]). However, there are two major caveats: (1) the results
in this work cannot be directly compared with the official competition results
due to the subject screening procedure we applied on the test set (the criteria
such as the FD-based one is important for avoiding confounds from excessive
head motion), and (2) the participants in the actual competition were required
to predict the labels of 26 subjects from the Brown site, despite the fact that no
training data were provided from this site, making it harder to predict the labels
for these subjects. The second caveat also implies that most MTL methods,
including the `1{`2-penalty employed in this work, cannot be applied since there
are no means to train a weight vector for a task whose data are not provided. An
alternative approach such as transfer learning [11] may be considered for this.
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Table 2: Network parcellation scheme of the brain proposed by Yeo et al. in [17].

Network membership Table (� is “unlabeled”)

1. Visual 2. Somatomotor 3. Dorsal Attention 4. Ventral Attention
5. Limbic 6. Frontoparietal 7. Default 8. Striatum
9. Amygdala 10. Hippocampus 11. Thalamus 12. Cerebellum
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3
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4
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(a) Multitask Elastic-net SVM result
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(b) Multitask Fused Lasso SVM result

Fig. 3: Weight vectors estimated from the EN+`1{`2 and FL+`1{`2-penalized
SVM. Left: support matrices of the selected features (rows/cols grouped by net-
work membership). Right: brain space representation of the selected edges in the
intra-frontoparietal (6-6: blue) and the intra-default network (7-7: red).

4 Conclusion

We presented a multitask structured sparse SVM, a multitask extension to
the connectome-based disease classification method introduced in [16], where
the imaging sites are treated as tasks. Experimental results on the multisite
ADHD-200 dataset suggest that the multitask approach using the `1{`2-penalty
can provide improvement in classification performance over the naive pooling
approach, where a single classifier is trained on the entire multisite dataset.
In addition, the `1{`2-penalty achieved higher AUC scores than the single-task
`1{`1-penalty, and the group variable selection property of the multitask ap-
proach gives a more interpretable model by selecting the same set of features
across sites, which can be visualized compactly in brain space.
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