
4518 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

Tree Pruning With Subadditive Penalties
Clayton Scott, Member, IEEE

Abstract—In this paper we study the problem of pruning a bi-
nary tree by minimizing, over all pruned subtrees of the given tree,
an objective function that combines an additive cost term with a
penalty term that depends only on tree size. We present algorithms
for general size-based penalties, although our focus is on subaddi-
tive penalties (roughly, penalties that grow more slowly than linear
penalties with increasing tree size). Such penalties are motivated
by recent results in statistical learning theory for decision trees,
but may have wider application as well. We show that the family
of pruned subtrees induced by a subadditive penalty is a subset of
the family induced by an additive penalty. This implies (by known
results about additive penalties) that the family induced by a sub-
additive penalty 1) is nested; 2) is unique; and 3) can be computed
efficiently. It also implies that, when a single tree is to be selected by
cross-validation from the family of prunings, subadditive penalties
will never present a richer set of options than an additive penalty.

Index Terms—Decision trees, nonadditive penalties, subadditive
penalties, tree pruning.

I. INTRODUCTION

TREE-BASED methods are one of the most widely applied
techniques in all of applied mathematics and engineering,

from nonparametric statistics and machine learning to source
coding and multiscale signal and image processing [1]. In this
paper, we focus on pruning trees via complexity regularization,
a task that often occurs in the design of tree-based methods.
Rather than focusing on a specific application or pruning
problem, we present general results that apply in a number of
different settings.

The formal statement of our problem is as follows. In graph
theory a tree is a connected graph without cycles. We consider a
specific kind of tree that we call a rooted binary tree which has
the following properties:

1) there exists a unique node with degree 2;
2) all other nodes have degree 1 or 3.

The degree of a node is the number of edges linking that node to
other nodes (called neighbors). The node with degree 2 is called
the root node. Nodes with degree greater than one are called in-
ternal nodes and nodes with degree 1 are called terminal or leaf
nodes. The depth of a node is the number of edges traversed
along the path between and the root node. Every node except
the root has a parent which is the unique neighbor of whose
depth is one less than ’s. Every internal node has two children
which are the two neighbors of having depth one more than ’s.

Manuscript received August 30, 2004. This work was supported by the
National Science Foundation under Grants CCR-0310889 and CCR-0325571
and by the Office of Naval Research under Grant N00014-00-1-0966. The
Associate Editor coordinating the review of this manuscript and approving it
for publication was Dr. Kenneth E. Barner.

The author is with the Department of Statistics, Rice University, Houston, TX
77005 USA (e-mail: cscott@rice.edu).

Digital Object Identifier 10.1109/TSP.2005.859220

Rooted binary trees are readily envisioned by picturing the root
node at the top of the graph and the remaining nodes “dangling
down” in such a way that parents are above their children and
one child branches left while the other branches right.

The set of leaf nodes of is denoted . The size of a tree
is the number of leaf nodes and denoted . A subtree of is

a subgraph that is a rooted binary tree in its own right. If
is a subtree that contains the root of , we say is a pruned

subtree of and write .
For the remainder of this paper, let be a fixed rooted binary

tree. Let be a functional mapping subtrees of to the positive
reals. Let be a mapping from the positive integers to the pos-
itive reals. We make the following assumptions on and .

1) is monotonically nonincreasing, that is,
.

2) is additive, that is

3) is monotonically increasing, that is,
.

We are interested in algorithms computing and theorems de-
scribing two kinds of pruning problems. The first is

(1)

If multiple trees achieve the minimum, choose to be one with
smallest size. Note that is still not necessarily unique. The
problem of solving (1) will be called single pruning, in contrast
with family pruning, described below.

We refer to and as the cost and penalty of ,
respectively. Conceptually, every is a model that ex-
plains some observed phenomenon. Typically is the
most complicated model while the root node is the simplest.
The idea behind pruning is to find a model that appropriately
balances the complexity of with the fidelity of to an ob-
served phenomenon.

One of the earliest and perhaps most widely known exam-
ples of this kind of pruning problem comes from the method
of classification and regression trees (CART) of Breiman et al.
[2]. In CART, a training dataset is given, where
are feature vectors and the response variables satisfy

for classification and for regression. The
training data are used to construct an initial tree that “over-
fits” the training data (for example, classifying every training
sample correctly), and the purpose of pruning is to select a tree

that generalizes to accurately predict the correct for
unlabeled observed in the future.

1053-587X/$20.00 © 2005 IEEE

SCOTT: TREE PRUNING WITH SUBADDITIVE PENALTIES 4519

For classification trees, each node is assigned a class
label by majority vote over the training samples reaching
and is taken to be the empirical error

Here denotes the indicator function. For regression trees each
is assigned the empirical average (or perhaps some more

general function of the samples in)

and is the average empirical squared error

For a penalty CART uses where is some
constant. Additional examples of costs and penalties for tree
structured source coding may be found in [3].

In many applications it is not known precisely how to cali-
brate with respect to so as to achieve an optimal pruning.
In such cases it is customary to introduce a tuning parameter ,
solve

(2)

for several different values of , and choose the best by cross-
validation. This is the second pruning problem we consider in
this paper.

Since is in general finite, it follows that there exist con-
stants and pruned subtrees

such that

Because is increasing, it follows that ,
although these trees are not nested in general (see Section II
for further discussion). We refer to as the family of
prunings of with respect to and . The problem of com-
puting these subtrees and thresholds is called family pruning.
Note that in single pruning, no generality is gained by intro-
ducing a scalar multiplier of , for such a scalar may simply
be absorbed into .

A. Motivation

Single and family pruning have been studied extensively in
the case where is additive, by which we mean
for some (for family pruning it suffices to take).
Additive penalties are by far the most popular choice for ,
owing in large part to the existence of computationally efficient
algorithms (which we review) for computing and the family
of prunings of . Moreover, the family of prunings satisfies the
desirable properties that the trees are unique and nested. In
many cases, however, the choice of an additive penalty appears
to have no other grounding besides computational convenience.

Several theoretical results, many of them recent, suggest that
subadditive penalties may be more appropriate than additive
penalties for certain applications. Roughly speaking, subaddi-
tive penalties are penalties that grow more slowly than additive
penalties as a function of tree size (a precise definition is given

in Section IV). For example, for de-
fines a subadditive penalty. Barron [4] demonstrates risk bounds
that, when applied to classification or regression trees, imply a
penalty of . Mansour and McAllester [5], Nobel [6],
and Scott and Nowak [7] also derive risk bounds for classifica-
tion trees with . Mansour and McAllester [5] and
Langford [8] derive penalties for classification trees that vary
between and . Meanwhile, classifica-
tion risk bounds for additive penalties are only known for the
special “zero error” case (when the optimal classifier is correct
with probability one) and under the more general but still quite
restrictive “identifiability” assumption of Blanchard et al. [9]. In
summary, subadditive penalties appear to have a much stronger
theoretical foundation than additive ones in certain settings, es-
pecially classification. See [10] for further discussion.

Additive penalties naturally arise in estimation problems
that employ a squared-error or loss function. For example,
in regression, the squared bias grows linearly with degrees
of freedom in a linear model. In classification, however, the
probability of error can be expressed by an loss function.
It thus seems reasonable to expect that nonadditive penalties
would be more appropriate from a theoretical point of view for
applications that use a non- loss function, such as source
coding with an distortion.

B. Overview

The purpose of this paper is to present algorithms and rele-
vant properties for single and family pruning with nonadditive,
and in particular subadditive, penalties. One of our main results
is that the family of prunings generated by a subadditive penalty
is a subset of the family of prunings generated by the additive
penalty. Positive implications of this fact are that subadditive
families are nested and unique. It also leads to a simple algo-
rithm for generating the family. A negative implication, how-
ever, is that when a tree is to be selected from the family of
prunings by cross-validation (a very common strategy [2]), sub-
additive penalties never provide a richer class of options than
the additive penalty.

This paper is organized as follows. In Section II, we study
pruning with general size-based penalties. We give explicit al-
gorithms for single pruning and family pruning and provide a
geometric framework for interpreting the family of prunings.
This section brings together several known results and perspec-
tives, adds a few new insights, and sets the stage for our later dis-
cussion of subadditive penalties. In Section III, we review algo-
rithms and properties related to pruning with additive penalties.
In Section IV, we define dominating and subadditive penalties
and prove a general theorem about nested families of prunings.
We also explore in more detail the implications of this theorem
as outlined above. Section V reports conclusions, including a
discussion of possible extensions to other strategies for pruning
trees.

II. GENERAL SIZED-BASED PENALTIES

We first present a general algorithm for single pruning when
is arbitrary. This algorithm applies even if is not neces-

sarily increasing. The algorithm should not be considered novel;

4520 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

its key components have appeared previously in other guises, as
discussed below.

For each , define to be a pruned subtree
(there may be more than one) minimizing subject

to . These trees are referred to as minimum cost trees.
Observe that

(3)

is a solution to (1). In other words, it suffices to construct the
sequence and minimize the objective function over this col-
lection. For the remainder of the paper, fix choices of when-
ever is not unique.

A. Computing Minimum Cost Trees

Since is binary it has 1 internal nodes. Let the nodes of
be indexed 1 through 2 1 in such a way that children have

a larger index than their parents. (We refer to nodes and their
indices interchangeably.) Let denote the subtree rooted at
node and containing all of ’s descendants in (thus).
Let and denote the left and right children of node ,
respectively. If and are pruned subtrees of and ,
let denote the pruned subtree of having and
as its left and right subtrees, respectively. Finally, let denote
the pruned subtree of having minimum cost among all pruned
subtrees of with leaf nodes.

The algorithm for computing minimum cost trees is
based on the following fact: if we know and
for and , it is
a simple matter to find , . For each

, there exist , with such that
. This follows from additivity of . More-

over, if , then .

We may then set , where , mini-

mize over all , such that ,
, and . Note that , are

determined by exhaustive search.
This step may be applied at each level of , working from

the bottom up, and leads to an algorithm for computing the
minimum cost trees, and hence for determining . The com-
plete algorithm is presented in Fig. 1. The computational com-
plexity of computing the minimum cost trees is . This
was proved by Bohanec and Bratko [11]. The algorithm takes
longer to run when is more balanced. If is maximally lop-
sided, e.g., all right children are terminal nodes, the algorithm
computes the minimum cost trees in operations.

The procedure described above for determining minimum
cost trees is essentially the dual of the algorithm described in
[11]. They considered the problem of finding the pruned sub-
tree with smallest size among all pruned subtrees with empirical
error below a certain threshold. This procedure was apparently
known to the CART authors. As reported in [11], “Breiman . . .
did implement such an algorithm for optimal pruning; he was
satisfied that it worked, but no further development was done,
and the algorithm was not published.” Subsequently, a some-
what more efficient implementation for the same problem was
presented in [12]. As far as we know, this paper is the first to

Fig. 1. An algorithm for computing minimum cost trees. The limits for the
innermost “For” loop ensure that i, j satisfy i + j = k, 1 � i � jT j, and
1 � j � jT j.

point out the use of minimum cost trees for single pruning with
general size-based penalties.

B. Geometric Aspects of Family Pruning

In this section, we introduce a geometric picture that leads to a
general algorithm for family pruning with size-based penalties.
To each , associate the function defined
by . In this way each pruned subtree
maps to a line with -intercept and slope , as shown
in Fig. 2. Define

Clearly has the form

for some constants and sub-
trees , . Moreover, if is monotonically
increasing, implies . These
observations are summarized as follows.

Proposition 1: If is monotonically increasing in , then
there exist constants and
pruned subtrees , , with

, such that whenever .
This picture also provides us with an algorithm for deter-

mining the and . Observe that each must be a minimum
cost tree . Therefore

Clearly where is the smallest such that
. Now observe that, assuming , and intersect

at the point

SCOTT: TREE PRUNING WITH SUBADDITIVE PENALTIES 4521

Fig. 2. Hypothetical plots of f (�) = �(S) + ��(jSj) as a function of �
for all S T . Pruned subtrees coinciding with the minimum of these functions
(shown in bold) over a range of � minimize the pruning criterion for those �.

Therefore, if , then , where

If multiple minimize the right-hand side, let be the
smallest. Furthermore, we have

The algorithm is summarized in Fig. 3. This is the first algorithm
of which we are aware for family pruning with a general size-
based penalty.

We also highlight a property inherent in the definition of
that will be of use later.

Lemma 1: If , then . If ,
then .

A second geometric picture due to Chou et al. [3], who con-
sider only additive or affine penalties, offers essentially equiva-
lent insights into the family of prunings of . Consider the set
of points , as de-
picted in Fig. 4. The point corresponding to (the root of)
is furthest down and to the right. The point corresponding to
is furthest up and to the left (assuming). Moreover, the
points corresponding to , , are the vertices of
the lower boundary of the convex hull of , listed counterclock-
wise. Thus, is the negative of the slope of the line segment
connecting to . The algorithm described above
for generating and can now be rederived in this setting
by starting with and successively learning faces of the lower
boundary of the convex hull of in a counterclockwise fashion.

III. ADDITIVE PENALTIES

When for some , there exist faster
algorithms for single and family pruning than those described
in the previous section. Moreover, the optimally pruned trees
satisfy certain nice properties. The material in this section is
taken from [2, ch. 10].

Fig. 3. An algorithm generating the family of prunings and associated
thresholds for an arbitrary increasing penalty.

Fig. 4. Hypothetical plot of points (�(S);�(S)) for all S T . The family of
prunings corresponds to the vertices of the lower boundary of the convex hull,
and the (negative) slopes between vertices correspond to the thresholds � .

When is known, may be computed by a simple
bottom-up procedure. In particular, denoting

we have for leaf nodes and for internal nodes

or

This last fact follows easily by additivity of and and by in-
duction on . This leads to an algorithm for computing

, much faster than the more general algorithm de-
scribed previously. Moreover, can be shown to be unique
[2].

Breiman et al. [2] also prove the following theorem about the
family of prunings generated by an additive penalty.

Theorem 1 (Breiman et al.): If , then there exist
weights and subtrees

4522 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

such that whenever
.

In particular, the result is an improvement over Proposition 1
because the family of prunings is nested. We refer to the family

in Theorem 1 as the CART trees.
The nesting property leads to an algorithm for finding these

weights and subtrees [2], [3]. The algorithm has a worst case
running time of , the worst case being when is un-
balanced. However, when is balanced (i.e., when the depth
of is proportional to , then the algorithm runs in time

. This yields an improvement (relative to the al-
gorithm in Fig. 3) for many problems, such as those in signal
and image processing, where the initial tree is often balanced.

The proof of Theorem 1 given by [2] is algebraic; an alterna-
tive geometric proof is given by [3]. These authors also extend
the theorem to affine costs and penalties. A separate algebraic
account may be found in [13].

IV. SUB-ADDITIVE PENALTIES

In this, the main section of this paper, we introduce subad-
ditive penalties and show that for such penalties, the family of
prunings is a subset of the CART trees. Thus, these trees are also
unique, nested, and may be computed using the CART trees. To
our knowledge, the results in his section are new, as is the fol-
lowing definition.

Definition 1: Let and be two increasing penalties. We
say dominates , denoted , if, for all positive
integers , we have

(4)

If and , we say is subadditive.
An important example of a subadditive penalty is the square

root penalty . To see that this is indeed subadditive,
observe that for

where .
More generally, the following result characterizes a large

class of penalties with .
Proposition 2: Let , be real valued, twice differentiable,

increasing functions on (0,), and for , set
and . Let be a positive real

number. If and
for all , then (4) is satisfied for all real numbers

. Therefore, if , then .

Proof: The proof has two main steps. First, we prove the
result for the special case ; then we use the first step
to establish the general case by reparameterizing .

Assume for now that . Then, by assumption,
and for . Let .

Note that (4) is equivalent to

(5)

which can be seen by writing
, for and simplifying. Also

note that and are monotonically increasing from the as-
sumption on the first derivative. By the fundamental theorem
of calculus, ,
where we use the concavity of in the last step. Similarly,

. Summarizing, we
have shown

which by (5) implies the theorem for this special case.
Now consider the general case. Define and

. Now , while
, which is provided

. In addition, and

which is if . Thus, we may apply the previous case
to and . For all real numbers , we have

By taking , , and , and by mono-
tonicity of , we conclude

which is what we wanted to show.
The following corollary gives a concrete example of a family

of penalties to which Proposition 2 applies.
Corollary 1: Let , and set and
. If , then . Hence, if , then is

subadditive.
Proof: Define and . For

Furthermore, for

Now apply Proposition 2.

SCOTT: TREE PRUNING WITH SUBADDITIVE PENALTIES 4523

Further examples of dominating and subadditive penalties
may be derived from the following result.

Proposition 3: If , , and satisfy the hypothesis of
Proposition 2, then so do , ,
and where is any twice
differentiable function such that for all .

Proof: Observe that for any

A. Main Result

For and , define

By Proposition 1, there exist scalars and
, and subtrees and ,

such that:

1) ;
2) ;
3) ;
4) .

Theorem 2: With the notation defined above, if and
are two increasing penalties such that , then

. In other words, for each ,
there exists such that .

An immediate application of the theorem is an alternate algo-
rithm for pruning using a subadditive penalty. Let
and let denote the CART trees. These may be com-
puted efficiently by the algorithm of [2] or [3]. By Theorem 2,
if is subadditive, then is one of these . Therefore

This last minimization may be solved by exhaustive search over
the CART trees. We are unaware of a more direct way
to do single pruning for subadditive penalties.

The theorem also implies a new algorithm for family pruning
when is subadditive. The procedure is exactly like the one
described in Fig. 3, except that one only needs to consider (see
line 3 of the main loop) such that

for some

Thus it is not necessary to compute all minimum cost trees, only
the CART trees, which can often be done more efficiently.

We have two distinct algorithms for computing the family
of prunings induced by a subadditive penalty. Both algorithms
have worst case running time . The first algorithm, dis-
cussed in Section II, is slower when is more balanced, but
prunes totally lopsided trees in time. The second algo-
rithm, just discussed, is slower when is unbalanced, and runs
in time when is balanced. Conceivably, one
could devise a test that determines how balanced a tree is in
order to choose which of the two algorithms would be faster on
a given tree.

Other properties for pruning with subadditive penalties
follow from Theorem 2 and known results about the CART
trees. For example, pruning with a subadditive penalty always
produces unique pruned subtrees, and the family of pruned
subtrees is nested.

Families of prunings are useful when the appropriate family
member needs to be chosen by cross-validation. When this is
the case, Theorem 2 implies that subadditive penalties will never
provide a richer class of options than an additive penalty.

Finally, we remark that the proof of Theorem 2 only requires
to be nonincreasing, not necessarily additive. The theorem may
also be of practical use in this more general setting.

B. Proof of Theorem 2

We require the following lemma. Recall that for , we
define

Lemma 2: Let , , be positive integers with .
The following are equivalent:

1) ;
2) ;
3) .

The three statements are also equivalent if we replace by ,
, , or .

Proof: A straightforward calculation establishes

The lemma follows from these identities and the fact that is
increasing.

The lemma may also be established by geometric considera-
tions. Consider the three points defined by ,

, , respectively (see Section II-B). Note that is above
and to the left of , which is above and left of . Then
is the negative slope of the line segment connecting and ,
and similarly for the other two combinations of points. Then the
statements in 1)–3) are all true if and only if is strictly above
the line connecting and . Similarly, all three statements
hold with equality if and only if lies on the line joining and

, and so on.

4524 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

To prove the theorem, first notice that the
smallest such that . The theorem fol-
lows by induction if we can show

. To show this, we suppose it is not
true and arrive at a contradiction. Assume there exists such
that but . Then

for some . Moreover, there exists such that
.

Introduce the notation

for , and . Define , ,
, and . Then . We will

show

thus arriving at our desired contradiction. Denote these inequal-
ities by I1, I2, and I3, respectively.

To establish I1, observe

where the first inequality follows from Lemma 1 and the second
inequality comes from the definition of . Since

, Lemma 2 () implies , establishing I1.
To show I2, assume (otherwise the inequality is trivial).

Note that Lemma 1 implies . Lemma 2 () then
implies I2.

Finally, by Lemma 1, we have . I3 follows from
Lemma 2 ().

V. CONCLUSION

We have presented two polynomial time algorithms for
pruning and generating families of prunings using nonadditive
penalties. The first algorithm applies to arbitrary penalties,
while the second algorithm applies to subadditive penalties.
Both algorithms have a worst case run time of . The
first algorithm achieves the worst case for balanced trees (i.e.,
when depth) and only requires operations
for lopsided trees (e.g., when every left descendant is a leaf
node). The second algorithm has its worst case when is
unbalanced, and runs in time for balanced trees.

The second algorithm is based on a general theorem that, as
a special case, implies that the family of prunings induced by a
subadditive penalty is a subset of the family induced by an ad-
ditive penalty. This implies that subadditive families are unique

and nested. It also implies a negative result: when cross-valida-
tion is to be used to select the best member from a family of prun-
ings, subadditive penalties will never offer a richer set of options
than an additive penalty. It does not imply, however, that subad-
ditive penalties should never be used in conjunction with cross-
validation. In principle it is possible that the extra trees gained
by an additive penalty actually have poorer performance, in
which case it is better to not even consider them as a possibility.

An immediate impact of this work is in the area of classi-
fication tree design. It has recently been shown that subaddi-
tive penalties are more appropriate than an additive penalty for
pruning classification trees (as discussed in the introduction).
The work presented here provides for efficient implementation of
such strategies and characterizes the resulting pruned subtrees.

Future work may ask whether the results of this paper have
analogues for other pruning strategies. Many alternatives to
size-based pruning have been proposed (see [14]–[19] and
references therein), and several of these methods contain tuning
parameters analogous to the weight , which in size-based
pruning controls the tradeoff between cost and penalty. It would
be interesting to know, for example: are there fast algorithms to
compute the entire family of prunings as the tuning parameters
vary, and does the family of pruned subtrees have any properties
such as nestedness?

We briefly comment on two pruning strategies that may be
of interest in this regard. Both are designed for the purpose
of pruning classification trees. The first is called “pessimistic
pruning” and refers to those algorithms that attempt to estimate
the probability of error of a subtree based on its empirical error.
The estimate is then used to decide whether to keep the sub-
tree in a bottom-up pruning algorithm. Although pessimistic
pruning has theoretical support [20], [21], the bounds used to
motivate the selection criterion are often too loose in practice,
and so the introduction of a tuning parameter (weight) becomes
necessary. The second involves minimizing a sum of cost and
penalty, but where the penalty is no longer a function simply
of tree size. Recent developments in statistical learning theory
suggest that penalties favoring unbalanced trees may lead to
improved generalization error [5], [22], [19]. Again, however,
these penalties are based on error bounds that are too loose in
practice, and hence the introduction of a tuning parameter is
again appropriate.

In conclusion, it is quite possible that other machine learning
and signal processing tree-based methodologies employ an ad-
ditive penalty simply for convenience, when perhaps a nonad-
ditive penalty would be more appropriate. We hope this paper
might lead to a reassessment of such problems.

ACKNOWLEDGMENT

The author would like to thank R. Nowak and the anonymous
reviewers for their feedback.

REFERENCES

[1] S. Murthy, “Automatic construction of decision trees from data: A multi-
disciplinary survey,” Data Mining Knowledge Disc., vol. 2, no. 4, pp.
345–389, 1998.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Belmont, CA: Wadsworth, 1984.

SCOTT: TREE PRUNING WITH SUBADDITIVE PENALTIES 4525

[3] P. Chou, T. Lookabaugh, and R. Gray, “Optimal pruning with applica-
tions to tree-structured source coding and modeling,” IEEE Trans. In-
form. Theory, vol. 35, pp. 299–315, 1989.

[4] A. Barron, “Complexity regularization with application to artificial
neural networks,” in Nonparametric Functional Estimation and Re-
lated Topics, G. Roussas, Ed. Dordrecht, the Netherlands: Kluwer
Academic, 1991, NATO ASI Series, pp. 561–576.

[5] Y. Mansour and D. McAllester, “Generalization bounds for decision
trees,” in Proc. 13th Annu. Conf. Computational Learning Theory, N.
Cesa-Bianchi and S. Goldman, Eds., Palo Alto, CA, 2000, pp. 69–74.

[6] A. Nobel, “Analysis of a complexity based pruning scheme for classifi-
cation trees,” IEEE Trans. Inform. Theory, vol. 48, pp. 2362–2368, 2002.

[7] C. Scott and R. Nowak, “Dyadic classification trees via structural risk
minimization,” in Advances in Neural Information Processing Systems,
S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA: MIT
Press, 2003, vol. 15.

[8] J. Langford, “Quantitatively tight sample complexity bounds,” Ph.D.
dissertation, Carnegie Mellon Univ., 2002.

[9] G. Blanchard, C. Schäfer, and Y. Rozenholc, “Oracle bounds and exact
algorithm for dyadic classification trees,” in 17th Annu. Conf. Learning
Theory (COLT 2004), J. Shawe-Taylor and Y. Singer, Eds., Heidelberg,
Jul. 1–4, 2004, pp. 378–392.

[10] C. Scott and R. Nowak, “Minimax optimal classification with dyadic
decision trees,” Rice Univ., Tech. Rep. TREE0403, 2004.

[11] M. Bohanec and I. Bratko, “Trading accuracy for simplicity in decision
trees,” Machine Learn., vol. 15, pp. 223–250, 1994.

[12] H. Almuallim, “An efficient algorithm for optimal pruning of decision
trees,” Artif. Intell., vol. 83, pp. 347–362, 1996.

[13] B. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[14] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[15] J. R. Quinlan and R. L. Rivest, “Inferring decision trees using the min-
imum description length principle,” Inform. Comput., vol. 80, no. 3, pp.
227–248, 1989.

[16] J. Mingers, “An empirical comparison of pruning methods for decision
tree induction,” Machine Learn., vol. 4, pp. 227–243, 1989.

[17] F. Esposito, D. Malerba, and G. Semeraro, “A comparitive analysis of
methods for pruning decision trees,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 19, no. 5, pp. 476–491, 1997.

[18] E. Frank, “Pruning decision trees and lists,” Ph.D. dissertation, Dept. of
Computer Science, Univ. of Waikato, Hamilton, New Zealand, 2000.

[19] C. Scott and R. Nowak, “On the adaptive properties of decision trees,”
in Advances in Neural Information Processing Systems, L. K. Saul, Y.
Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, vol. 17.

[20] M. Kearns and Y. Mansour, “A fast, bottom-up decision tree pruning al-
gorithm with near-optimal generalization,” in Proc. 15th Int. Conf. Ma-
chine Learning, J. W. Shavlik, Ed., Madison, WI, 1998, pp. 269–277.

[21] Y. Mansour, “Pessimistic decision tree pruning based on tree size,” in
Proc. 14th Int. Conf. Machine Learning, D. H. Fisher, Ed., Nashville,
TN, 1997, pp. 195–201.

[22] M. Golea, P. Bartlett, W. S. Lee, and L. Mason, “Generalization in deci-
sion trees and DNF: Does size matter?,” in Advances in Neural Informa-
tion Processing Systems. Cambridge, MA: MIT Press, 1998, vol. 10.

Clayton Scott (S’99–M’04) received the A.B.
degree in mathematics from Harvard University,
Cambridge, MA, in 1998 and the M.S. and Ph.D de-
gree in electrical engineering from Rice University,
Houston, TX, in 2000 and 2004.

He is currently a Postdoctoral Associate in Bioin-
formatics in the Department of Statistics, Rice Uni-
versity. His research interests include learning theory,
bioinformatics, wavelets and multiscale analysis, and
statistical signal and image processing.

	toc
	Tree Pruning With Subadditive Penalties
	Clayton Scott, Member, IEEE
	I. I NTRODUCTION
	A. Motivation
	B. Overview

	II. G ENERAL S IZED -B ASED P ENALTIES
	A. Computing Minimum Cost Trees

	Fig.€1. An algorithm for computing minimum cost trees. The limit
	B. Geometric Aspects of Family Pruning
	Proposition 1: If $ \Phi (k)$ is monotonically increasing in k

	Fig. 2. Hypothetical plots of $f_{S}(\alpha)= \rho (S) + \alpha
	Lemma 1: If $k < k_{\ell} $, then $\gamma _{k_{\ell +1},k_{\ell}
	III. A DDITIVE P ENALTIES

	Fig.€3. An algorithm generating the family of prunings and assoc
	Fig.€4. Hypothetical plot of points $(\rho (S), \Phi (S))$ for
	Theorem 1 (Breiman et al.): If $ \Phi (k) = k$, then there exis
	IV. S UB -A DDITIVE P ENALTIES
	Definition 1: Let $ \Phi ^{1}$ and $ \Phi ^{2}$ be two increasin
	Proposition 2: Let f, g be real valued, twice differentiable
	Proof: The proof has two main steps. First, we prove the result

	Corollary 1: Let $\sigma , \tau > 0$, and set $ \Phi ^{1}(k) = k
	Proof: Define $f(x) = x^{\sigma }$ and $g(x)=x^{\tau} $. For $x

	Proposition 3: If f, g, and x_{0} satisfy the hypothesis o
	Proof: Observe that for any $x \geq {\mathtilde {x}}_{0}$ $$\eqa

	A. Main Result
	Theorem 2: With the notation defined above, if $ \Phi ^{1}$ and

	B. Proof of Theorem 2
	Lemma 2: Let a, b, c be positive integers with $a > b > c$
	Proof: A straightforward calculation establishes $$\eqalignno{(

	V. C ONCLUSION
	S. Murthy, Automatic construction of decision trees from data: A
	L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification
	P. Chou, T. Lookabaugh, and R. Gray, Optimal pruning with applic
	A. Barron, Complexity regularization with application to artific
	Y. Mansour and D. McAllester, Generalization bounds for decision
	A. Nobel, Analysis of a complexity based pruning scheme for clas
	C. Scott and R. Nowak, Dyadic classification trees via structura
	J. Langford, Quantitatively tight sample complexity bounds, Ph.D
	G. Blanchard, C. Schäfer, and Y. Rozenholc, Oracle bounds and ex
	C. Scott and R. Nowak, Minimax optimal classification with dyadi
	M. Bohanec and I. Bratko, Trading accuracy for simplicity in dec
	H. Almuallim, An efficient algorithm for optimal pruning of deci
	B. Ripley, Pattern Recognition and Neural Networks . Cambridge,
	J. R. Quinlan, C4.5: Programs for Machine Learning . San Mateo,
	J. R. Quinlan and R. L. Rivest, Inferring decision trees using t
	J. Mingers, An empirical comparison of pruning methods for decis
	F. Esposito, D. Malerba, and G. Semeraro, A comparitive analysis
	E. Frank, Pruning decision trees and lists, Ph.D. dissertation,
	C. Scott and R. Nowak, On the adaptive properties of decision tr
	M. Kearns and Y. Mansour, A fast, bottom-up decision tree prunin
	Y. Mansour, Pessimistic decision tree pruning based on tree size
	M. Golea, P. Bartlett, W. S. Lee, and L. Mason, Generalization i

