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In their original paper on the one-class support vector machine (SVM), Schölkopf
et al. (2001) establish that for separable data, the one-class SVM applied to patterns
x1, . . . ,xn is equivalent to the corresponding “paired SVM”, that is, the standard (two-
class) SVM applied to the paired data (x1, 1), . . . , (xn, 1), (−x1,−1), . . . , (−xn,−1).
In this context, x1, . . . ,xn are said to be separable if the paired data are linearly separa-
ble. The authors also state, without proof, that the equivalence holds in the nonsepara-
ble case provided some hard-to-classify data points are removed. This note establishes
a general equivalence for nonseparable data that does not require modification of the
data.

1 The One-Class SVM
The one-class SVM, as introduced by Schölkopf et al. (2001), takes as input unlabeled
data x1, . . . ,xn and a parameter 0 ≤ ν ≤ 1, and returns parameters (w, ρ) solving

min
w,ξ,ρ>0

1
2
‖w‖2 +

1
νn

n∑

i=1

ξi − ρ (1)

s.t. 〈w,xi〉 ≥ ρ− ξi, ξi ≥ 0 for i = 1, 2, . . . , n

The resulting classifier is given by x 7→ sgn{〈w,x〉 − ρ}. Here 〈·, ·〉 denotes the
standard dot product. For the purpose of comparison with the two-class and paired
SVMs, it is convenient to express the one-class SVM as the solution of an alternative
quadratic program, namely,

min
w,ξ

1
2
‖w‖2 + C

n∑

i=1

ξi (2)

s.t. 〈w,xi〉 ≥ 1− ξi, ξi ≥ 0 for i = 1, 2, . . . , n

The corresponding classifier is x 7→ sgn{〈w,x〉 − 1}. The equivalence between (1)
and (2) is given by the following result, which was established by Lee and Scott (2007).

Proposition 1. If (1) results in ρ > 0, then (2) with C = 1
νnρ leads to the same

classifier.
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2 The Paired SVM
The paired SVM is a special case of the standard (two-class) SVM. The standard SVM
takes as input a parameter C > 0 and labeled training data (x1, y1), . . . , (xn, yn),
where xi are feature vectors and yi = ±1 are labels, and returns (w, b) solving

min
w,b,ξ

1
2
‖w‖2 + C

n∑

i=1

ξi (3)

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0 for i = 1, 2, . . . , n

These parameters define the linear classifier x 7→ sgn{〈w,x〉+ b}.
In the paired SVM, there are unlabeled feature vectors x1, . . . ,xn. These are used

to form labeled data (x1, 1), . . . , (xn, 1), (−x1,−1), . . . , (−xn,−1), which are then
given to the standard SVM as input. By substitution, the paired SVM hyperplane solves

min
w,b,ξ

1
2
‖w‖2 + C

n∑

i=1

(ξi + ξi+n) (4)

s.t. 〈w,xi〉+ b ≥ 1− ξi, for i = 1, 2, . . . , n (5)
〈w,xi〉 − b ≥ 1− ξi+n, for i = 1, 2, . . . , n (6)
ξi ≥ 0, ξi+n ≥ 0, for i = 1, 2, . . . , n

Because of symmetry, the above quadratic program can be simplified somewhat. There
is always a solution of (4) with b = 0.

Proposition 2. If (w, b) is a solution of (4), then so is (w, 0).

Proof. Suppose (w, b, ξ) is optimal and b 6= 0. Without loss of generality, assume
b > 0. Since b > 0, it must be true that ξi ≤ ξi+n for all i. Consider the following
cases at the given optimum for each i: (I) (5) and (6) are both strict inequalities; (II)
(5) and (6) are both equalities; (III) (5) is a strict inequality and (6) is an equality; (IV)
(6) is a strict inequality and (5) is an equality.

For i satisfying (I), by the KKT conditions, ξi = ξi+n = 0 and therefore 〈w,xi〉 >
1 + b > 1. Hence, for all b′ ∈ [0, b), (w, b′, ξ) still satisfies the constraints for xi. The
conclusion follows by taking b′ = 0. For i satisfying (II), we have ξi+n = ξi+2b, from
which we deduce ξi+n > ξi and ξi+n ≥ 2b. Replacing b, ξi, and ξi+n by b′, ξi +b−b′,
and ξi+n − b + b′, for any b′ ∈ [0, b), the constraints on xi are still satisfied, and
the corresponding term in the objective function remains unchanged. The conclusion
follows by taking b′ = 0.

For case (III), we consider two sub-cases: (IIIa) ξi+n = 0, (IIIb) ξi+n > 0. For i
satisfying case (IIIa), 〈w,xi〉 = 1 + b > 1, and therefore (5) and (6) remain valid if
we replace b by any b′ ∈ [0, b). The conclusion follows by taking b′ = 0. Case (IIIb)
cannot occur. To see this, suppose it does occur for some i. Assume for the moment
that (IIIb) occurs for only one i. By the KKT conditions, ξi = 0. Also, subtracting (6)
from (5) we obtain ξi+n < 2b. We can obtain a feasible point with a smaller objective
function value by replacing b with any b′ ∈ (max{0, 1 − 〈w,xi〉, b − ξi+n}, b) and
ξi+n with ξ′i+n = ξi+n − b + b′. By the previous cases, changing b in this manner
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does not affect the validity of the other constraints. If (IIIb) holds for more that one i,
the above argument still applies, where now the lower bound on b′ is maximized over
these indicies.

Case (IV) cannot occur. To see this, suppose it does occur. The KKT conditions
applied to (6) imply ξi+n = 0 and 〈w,xi〉 > 1 + b. Then (5) implies 1 + 2b <
〈w,xi〉+ b = 1− ξi ≤ 1, contradicting b > 0.

By this result, it suffices to consider the following quadratic program:

min
w,ξ

1
2
‖w‖2 + C

n∑

i=1

(ξi + ξi+n) (7)

s.t. 〈w,xi〉 ≥ 1− ξi, ξi ≥ 0 for i = 1, 2, . . . , n

〈w,xi〉 ≥ 1− ξi+n, ξi+n ≥ 0 for i = 1, 2, . . . , n

This amounts to the so-called SVM without offset, applied to the paired data.

3 The Connection
The equivalence between the one-class SVM and the paired SVM is now evident.

Proposition 3. w is optimal for (2) with parameter C if and only if w is optimal for
(7) with parameter C/2.

Proof. The proof follows easily from the observation that, at the optimum of (7), the
slack variables ξi and ξi+n must be equal.
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