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Nested Support Vector Machines
Gyemin Lee, Student Member, IEEE, and Clayton Scott, Member, IEEE

Abstract

The one-class and cost-sensitive support vector machines (SVMs) are state-of-the-art machine learn-

ing methods for estimating density level sets and solving weighted classification problems, respectively.

However, the solutions of these SVMs do not necessarily produce set estimates that are nested as the pa-

rameters controlling the density level or cost-asymmetry are continuously varied. Such a nesting constraint

is desirable for applications requiring the simultaneous estimation of multiple sets, including clustering,

anomaly detection, and ranking problems. We propose new quadratic programs whose solutions give rise

to nested extensions of the one-class and cost-sensitive SVMs. Furthermore, like conventional SVMs,

the solution paths in our construction are piecewise linear in the control parameters, with significantly

fewer breakpoints. We also describe decomposition algorithms to solve the quadratic programs. These

methods are compared to conventional SVMs on synthetic and benchmark data sets, and are shown to

exhibit more stable rankings and decreased sensitivity to parameter settings.

Index Terms

pattern classification, one class support vector machine, cost sensitive support vector machine, nested

set estimation, solution paths.

I. INTRODUCTION

Many statistical learning problems may be characterized as problems of set estimation. In these

problems, the input takes the form of a random sample of points in a feature space, while the desired

output is a subset G of the feature space. For example, in density level set estimation, a random sample

from a density is given and G is an estimate of a density level set. In binary classification, labeled training

data are available, and G is the set of all feature vectors predicted to belong to one of the classes.

In other statistical learning problems, the desired output is a family of sets Gθ with the index θ taking

values in a continuum. For example, estimating density level sets at multiple levels is an important task

G. Lee and C. Scott is with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann

Arbor, MI, 48103 USA e-mail: {gyemin, cscott}@eecs.umich.edu

November 20, 2008 DRAFT



2

(a) OC-SVM (b) CS-SVM

Fig. 1. Two decision boundaries from the OC-SVM (a) and CS-SVM (b) at two density levels and cost asymmetries. The

shaded regions indicate the density level set estimate at the higher density level and the positive decision set estimate at the

lower cost asymmetry, respectively. These regions are not completely contained inside the solid contours corresponding to the

smaller density level or the larger cost asymmetry, hence the two decision sets are not properly nested.

for many problems including clustering [1], outlier ranking [2], minimum volume set estimation [3],

and anomaly detection [4]. Estimating cost-sensitive classifiers at a range of different cost asymmetries

is important for ranking [5], Neyman-Pearson classification [6], transductive anomaly detection [7], and

ROC studies [8].

Support vector machines (SVMs) are powerful nonparametric approaches to set estimation [9]. How-

ever, both the one-class SVM for level set estimation and the standard two-class SVM for classification do

not produce set estimates that are nested as the parameter controlling the density level or, respectively,

misclassification cost is varied. As displayed in Fig. 1, set estimates from the original SVMs are not

properly nested. On the other hand, Fig. 2 shows nested counterparts obtained from our proposed methods

(see Section III, IV). Since the true sets being estimated are in fact nested in these two applications,

estimators that enforce the nesting constraint will not only avoid nonsensical solutions, but should also be

more accurate and less sensitive to parameter settings and perturbations of the training data. One way to

generate nested SVM classifiers is to train a cost-insensitive SVM and simply vary the offset. However,

this often leads to inferior performance as demonstrated in [8].

In this paper, we develop nested variants of the one-class and two-class SVMs by incorporating nesting

constraints into the dual quadratic programs defining these methods. Decomposition algorithms for solving

the modified duals are also presented. Like the solution paths for the conventional SVMs [10], [8], [11],

the nested SVM solution paths are also piecewise linear in the control parameters, but require far fewer
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(a) Nested OC-SVM (b) Nested CS-SVM

Fig. 2. Five decision boundaries from the Nested OC-SVM (a) and Nested CS-SVM (b) at five different density levels and

cost asymmetries, respectively. These decision boundaries from the Nested SVMs do not cross each other, unlike the decision

boundaries from the original SVMs (OC-SVM and CS-SVM). Therefore, the corresponding set estimates are properly nested.

breakpoints. We compare our nested paths to the unnested paths on synthetic and benchmark data sets.

We also quantify the degree to which standard SVMs are unnested, which is often quite high.

A. Motivating Applications

With the multiple set estimates from the nested SVMs over density levels or cost asymmetries, the

following applications are envisioned.

Ranking : In the bipartite ranking problem [12], we are given labeled examples from two classes, and

the goal is to construct a score function that rates new examples according to their likelihood of belonging

to the positive class. Cost-Sensitive SVMs (CS-SVMs) can be applied to this problem by varying the cost

parameter, but the resulting sets are not nested, and therefore produce ambiguous rankings. Similarly,

One-Class SVMs (OC-SVMs) can be applied to ranking the examples in an unlabeled dataset from

an unknown density. In both cases, nested SVMs will make the score functions unambiguous and less

sensitive to perturbations of the data. See Section V-C for further discussion.

Clustering : Clusters may be defined as the connected components of a density level set. The level

at which the density is thresholded determines a tradeoff between cluster number and cluster coverage.

Varying the level from 0 to ∞ yields a “cluster tree” [13] that depicts the bifurcation of clusters into

disjoint components and gives a hierarchical representation of cluster structure. Therefore, a cluster tree

can be estimated by training a OC-SVM at all values of the density level parameter.
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Anomaly Detection : Anomaly detection aims to identify deviations from the normal data when

combined observations of normal and anomalous data are given. Scott and Kolaczyk [4] and Scott and

Blanchard [7] present approaches to classifying the contaminated, unlabeled data by solving multiple

level set estimation and multiple cost-sensitive classification problems, respectively.

II. BACKGROUND ON CS-SVM AND OC-SVM

In this section, we will overview two SVM variants and show how they can be used to learn set

estimates. To establish notation and basic concepts, we briefly review the SVM.

Suppose that we have a random sample {(xi, yi)}Ni=1 where xi ∈ Rd is a feature vector in and

yi ∈ {−1,+1} is its class. Conceptually, the SVM builds decision sets in two steps. First, each data

point is mapped via a nonlinear map x 7→ Φ(x) into a high dimensional space H generated by a positive

definite kernel k : Rd × Rd → R. This kernel corresponds to an inner product in H through k(x,x′) =

〈Φ(x),Φ(x′)〉. Second, the mapped data points in H are separated by a hyperplane with maximum margin

(the distance between the hyperplane and its closest data point). If w and b denote the normal vector and

the offset, then the two half-spaces of the hyperplane {Φ(x) : f(x) ≡ 〈w,Φ(x)〉+ b = 0} form positive

and negative decision sets. If data are not linearly separable in H, data points are allowed to be on the

other side of the soft margin (f(x) = ±1) through non-negative slack variables ξi. This can be achieved

by solving

min
w,ξ

λ

2
‖w‖2 +

∑
i

ξi

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, ξi ≥ 0 for ∀i

where λ controls regularization. In this formulation, the offset b is often omitted when Gaussian or

inhomogeneous polynomial kernels are chosen [14]. More detailed discussion on the SVM can be found

in [9].

A. Cost-Sensitive SVM

The SVM above, which we call the cost-insensitive SVM (CI-SVM) without offset, penalizes errors

in both classes equally. However, there are many applications where the numbers of data samples from

each class are not balanced, or false positives and false negatives incur different costs. The cost-sensitive

SVM (CS-SVM) handles this issue by controlling the cost asymmetry between false positives and false

negatives [15].
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Let I+ = {i : yi = +1} and I− = {i : yi = −1} denote the two index sets, and γ denote the cost

asymmetry. Then the CS-SVM solves

min
w,ξ

λ

2
‖w‖2 + γ

∑
I+

ξi + (1− γ)
∑
I−

ξi (1)

s.t. yi〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0 for ∀i

where w is the normal vector of the hyperplane. When γ = 1
2 , the CS-SVM reduces to the CI-SVM.

In practice this optimization problem is solved via its dual, which depends only on a set of Lagrange

multipliers (one for each xi):

min
α

1
2λ

∑
i

∑
j

αiαjyiyjKi,j −
∑
i

αi (2)

s.t. 0 ≤ αi ≤ 1{yi<0} + yiγ for ∀i.

where Ki,j = k(xi,xj) and α = (α1, α2, . . . , αN ). The indicator function 1{A} returns 1 if the condition

A is true and 0 otherwise.

Once an optimal solution α∗(γ) = (α∗1(γ), . . . , α∗N (γ)) is found, the sign of the decision function

fγ(x) =
1
λ

∑
i

α∗i (γ)yik(x,xi) (3)

determines the class of x. This decision function takes only non-positive values when γ = 0, and

corresponds to (0, 0) in the ROC curve. On the other hand, γ = 1 penalizes only the violations of

positive examples, and corresponds to (1, 1) in the ROC curve.

Bach et al. [8] extended the method of Hastie et al. [10] to the CS-SVM. They showed that α∗i (γ)

are piecewise linear in γ, and derived an efficient algorithm for computing the entire path of solutions

to (2). Thus, a family of classifiers at a range of cost asymmetries can be found with a computational

cost comparable to solving (2) for a single γ.

B. One-Class SVM

The OC-SVM was proposed in [16], [17] to estimate a level set of an underlying probability density

given a data sample from the density. In one-class problems, all the instances are assumed from the same

class, typically the negative class, yi = −1,∀i. The primal quadratic program of the OC-SVM is

min
w,ξ

λ

2
‖w‖2 +

1
N

N∑
i=1

ξi (4)

s.t. 〈w,Φ(xi)〉 ≥ 1− ξi, ξi ≥ 0 for ∀i.
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This problem is again solved via its dual in practice:

min
α

1
2λ

∑
i

∑
j

αiαjKi,j −
∑
i

αi (5)

s.t. 0 ≤ αi ≤
1
N

for ∀i.

Then a solution α∗(λ) = (α∗1(λ), . . . , α∗N (λ)) defines a decision function that determines whether a

point is an outlier or not. Here α∗i (λ) are also shown piecewise linear in λ [11]. From this property,

we can develop a path following algorithm and generate a family of level set estimates with a small

computational cost.

The set estimate conventionally associated with the OC-SVM is given by

Ĝλ = {x :
∑
i

α∗i (λ)k(xi,x) > λ}. (6)

Vert and Vert [18] showed that by modifying this estimate slightly, substituting α∗i (ηλ) for α∗i (λ) where

η > 1, leads to a consistent estimate of the true level set. Regardless of whether η = 1 or η > 1, however,

the obtained estimates are not guaranteed to be nested as we will see in Section V. Note also that when

α∗i (λ) = 1
N , (6) becomes equivalent to set estimation based on kernel density estimation.

III. NESTED CS-SVM

In this section, we develop a nested cost-sensitive SVM, which aims to produce nested positive decision

sets Gγ = {x : fγ(x) > 0} as the cost asymmetry γ varies. Our construction is a two stage process. We

first select a finite number of cost asymmetries 0 = γ1 < γ2 < . . . < γM = 1 a priori and generate a

family of nested decision sets at the preselected cost asymmetries. We achieve this goal by incorporating

nesting constraints into the dual quadratic program of the CS-SVM. Second, we linearly interpolate the

solution coefficients of the finite nested collection to a continuous nested family defined for all γ. As an

efficient method to solve the formulated problem, we present a decomposition algorithm.

A. Finite Family of Nested Sets

Our Nested CS-SVM finds decision functions at cost asymmetries γ1, γ2, . . . , γM simultaneously by

minimizing the sum of duals (2) at each γ and by imposing additional constraints that induce nested

sets. For a fixed λ and preselected cost asymmetries 0 = γ1 < γ2 < · · · < γM = 1, the Nested CS-SVM

November 20, 2008 DRAFT



7

solves

min
α1,...,αM

M∑
m=1

 1
2λ

∑
i

∑
j

αi,mαj,myiyjKi,j −
∑
i

αi,m

 (7)

s.t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm for ∀i,m (8)

yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M for ∀i (9)

where αm = (α1,m, . . . , αN,m) and αi,m is a coefficient for data point xi and cost asymmetry γm. Then

its optimal solution α∗m = (α∗1,m, . . . , α
∗
N,m) defines the decision function fγm(x) = 1

λ

∑
i α
∗
i,myik(xi,x)

and its corresponding decision set Ĝγm = {x : fγm(x) > 0)} for each m. In Section VI, the proposed

quadratic program for the Nested OC-SVM is interpreted as a dual of a corresponding primal quadratic

program.

B. Interpolation

For an intermediate cost asymmetry γ between two cost asymmetries, say γ1 and γ2 without loss of

generality, we can write γ = εγ1 + (1− ε)γ2 for some ε ∈ [0, 1]. Then we define new coefficients α∗i (γ)

through linear interpolation:

α∗i (γ) = εα∗i,1 + (1− ε)α∗i,2. (10)

This is motivated by the piecewise linearity of the Lagrange multipliers of the CS-SVM. Then the positive

decision set at cost asymmetry γ is

Ĝγ = {x : fγ(x) =
1
λ

∑
i

α∗i (γ)yik(xi,x) > 0}. (11)

Proposition 1. The Nested CS-SVM equipped with a kernel such that k(·, ·) ≥ 0 (e.g., Gaussian kernels

or polynomial kernels of even orders) generates nested decision sets. In other words, if 0 ≤ γε < γδ ≤ 1,

then Ĝγε ⊂ Ĝγδ .

Proof: We prove the proposition in three steps. First, we show that sets from (7) satisfy Ĝγ1 ⊂

Ĝγ2 ⊂ · · · ⊂ ĜγM . Second, we show that if γm < γ < γm+1, then Ĝγm ⊂ Ĝγ ⊂ Ĝγm+1 . Finally, we

prove that any two sets from the Nested CS-SVM are nested.

Without loss of generality, we show Ĝγ1 ⊂ Ĝγ2 . Let α∗1 and α∗2 denote the optimal solutions for

γ1 and γ2. Then from k(·, ·) ≥ 0 and (9), we have
∑
i α
∗
i,1yik(xi,x) ≤

∑
i α
∗
i,2yik(xi,x). Therefore,

Ĝγ1 = {x : fγ1(x) > 0} ⊂ Ĝγ2 = {x : fγ2(x) > 0}.
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Next, without loss of generality, we show Ĝγ1 ⊂ Ĝγ ⊂ Ĝγ2 when γ1 ≤ γ ≤ γ2. The linear

interpolation (10) and the nesting constraints (9) imply yiα
∗
i,1 ≤ yiα

∗
i (γ) ≤ yiα

∗
i,2, which, in turn,

leads to
∑
i α
∗
i,1yik(xi,x) ≤

∑
i α
∗
i (γ)yik(xi,x) ≤

∑
i α
∗
i,2yik(xi,x).

Now consider arbitrary 0 ≤ γε < γδ ≤ 1. If γε ≤ γm ≤ γδ for some m, then Ĝγε ⊂ Ĝγδ by the above

results. Thus, suppose this is not the case and assume γ1 < γε < γδ < γ2 without loss of generality.

Then there exist ε > δ such that γε = εγ1 + (1− ε)γ2 and γδ = δγ1 + (1− δ)γ2. Suppose x ∈ Ĝγε . Then

x ∈ Ĝγ2 , hence fγε(x) = 1
λ

∑
i(εα

∗
i,1 + (1− ε)α∗i,2)yik(xi,x) > 0 and fγ2(x) = 1

λ

∑
i α
∗
i,2yik(xi,x) > 0.

By adding δ
εfγε(x) + (1 − δ

ε )fγ2(x), we have fγδ(x) =
∑
i(δα

∗
i,1 + (1 − δ)α∗i,2)yik(xi,x) > 0. Thus,

Ĝγε ⊂ Ĝγδ .

C. Decomposition Algorithm

The objective function (7) requires optimization over N ×M variables. Due to its large size, standard

quadratic programming algorithms are inadequate. Thus, we develop a decomposition algorithm that

iteratively divides the large optimization problem into subproblems and optimizes the smaller problems.

A similar approach also appears in a multi-class classification algorithm [19], although the algorithm

developed there is substantively different from ours. The decomposition algorithm follows:

1) Choose an example xi from the data set.

2) Optimize coefficients {αi,m}Mm=1 corresponding to xi while leaving other variables fixed.

3) Repeat 1 and 2 until the optimality condition error falls below a predetermined tolerance.

The pseudo code given in Fig. 3 initializes with a feasible solution αi,m = 1{yi<0}+yiγm, ∀i,m. A simple

way of selection and termination is cycling through all the xi or picking xi randomly and stopping after a

fixed number of iterations. However, by checking the Karush-Kuhn-Tucker (KKT) optimality conditions

and choosing xi most violating the conditions [20], the algorithm will converge in far fewer iterations.

In the Appendix, we further discuss the data point selection scheme and termination criterion based on

the KKT optimality condition.

In step 2, the algorithm optimizes a set of variables associated to the chosen data point. Without loss

of generality, let us assume that the data point x1 is chosen and {α1,m}Mm=1 will be optimized while
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fixing the other αi,m. We rewrite the objective function (7) in terms of α1,m:

∑
m

 1
2λ

∑
i

∑
j

αi,mαj,myiyjKi,j −
∑
i

αi,m


=

1
λ

∑
m

1
2
α2

1,mK1,1 + α1,m

∑
j 6=1

αj,my1yjK1,j − λ

+ C

=
1
λ

∑
m

[
1
2
α2

1,mK1,1 + α1,m

(
λy1f1,m − αold

1,mK1,1 − λ
)]

+ C

=
K1,1

λ

∑
m

[
1
2
α2

1,m − α1,m

(
αold

1,m +
λ(1− y1f1,m)

K1,1

)]
+ C

where αold
1,m and f1,m = 1

λ

(∑
j 6=1 αj,myjK1,j + αold

1,my1K1,1

)
denote the variable and corresponding

output before update. These values can be easily computed from the previous iteration result. C is a

collection of terms that do not depend on α1,m.

Then the algorithm solves the new subproblem with M variables,

min
α1,1,...,α1,M

∑
m

[
1
2
α2

1,m − α1,mα
new
1,m

]
(12)

s.t. 0 ≤ α1,m ≤ 1{y1<0} + y1γm for ∀m (13)

y1α1,1 ≤ y1α1,2 ≤ · · · ≤ y1α1,M (14)

where αnew
1,m = αold

1,m + λ(1−y1f1,m)
K1,1

is the solution if feasible. This subproblem is much smaller and can

be solved via standard quadratic program solvers.

IV. NESTED OC-SVM

In this section, we present a nested extension of the OC-SVM. The Nested OC-SVM estimates a family

of nested level sets over a continuum of levels λ. Our approach here parallels the approach developed for

the CS-SVM. First, we will introduce an objective function for nested set estimation, and will develop

analogous interpolation and decomposition algorithms for the Nested OC-SVM.
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Input: {(xi, yi)}Ni=1, {γm}Mm=1

Initialize:

αi,m ← 1{yi<0} + yiγm for ∀i,m

repeat

Choose a data point xi.

Compute:

fi,m ←
1
λ

∑
j

αj,myjKi,j ,∀m

αnew
i,m ← αi,m +

λ(1− fi,m)
Ki,i

,∀m

Update {αi,m}Mm=1 with the solution of the subproblem:

min
αi,1,...,αi,M

∑
m

[
1
2
α2
i,m − αi,mαnew

i,m

]
s.t. 0 ≤ αi,m ≤ 1{yi<0} + yiγm for ∀m

yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M

until Accuracy conditions are satisfied

Output: Ĝγm = {x :
∑
i αi,myik(xi,x) > 0} for ∀m

Fig. 3. Decomposition algorithm for the Nested Cost-Sensitive Support Vector Machine. Specific strategies for data point

selection and termination, based on the KKT conditions, are given in the Appendix.

A. Finite Family of Nested Sets

For M different density levels of interest λ1 > λ2 > · · · > λM > 0, the Nested OC-SVM solves the

following optimization problem

min
α1,...,αM

M∑
m=1

 1
2λm

∑
i

∑
j

αi,mαj,mKi,j −
∑
i

αi,m

 (15)

s.t. 0 ≤ αi,m ≤
1
N

for ∀i,m (16)

αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM
for ∀i (17)

where αm = (α1,m, . . . , αN,m) and αi,m corresponds to data point xi at level λm. Its optimal solution

α∗m = (α∗1,m, . . . , α
∗
N,m) determines a level set estimate Ĝλm = {x : fλm(x) > 1} where fλm(x) =
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1
λm

∑
i α
∗
i,mk(xi,x). In practice, we can choose λ1 and λM to cover the entire range of interesting values

of density level (see Section V-B, Appendix C). In Section VI, the proposed quadratic program for the

Nested OC-SVM is interpreted as a dual of a corresponding primal quadratic program.

B. Interpolation and Extrapolation

We construct a density level set estimate at an intermediate level λ between two preselected levels,

say λ1 and λ2. At λ = ελ1 + (1− ε)λ2 for some ε ∈ [0, 1], we set

α∗i (λ) = εα∗i,1 + (1− ε)α∗i,2.

It is motivated by the piecewise linearity of the OC-SVM solutions in λ. For λ > λ1 or λ < λM , we set

α∗i (λ) = α∗i,1 or α∗i (λ) = α∗i,M for ∀i, respectively. Then the level set estimate becomes

Ĝλ = {x :
∑
i

α∗i (λ)k(xi,x) > λ}. (18)

The level set estimates generated from above process are shown to be nested in the next Proposition.

Proposition 2. The Nested OC-SVM with a Gaussian kernel generates nested density level set estimates.

Therefore, if 0 < λε < λδ <∞, then Ĝλε ⊃ Ĝλδ .

Proof: We prove the proposition in three steps. First, we show that sets from (15) satisfy Ĝλ1 ⊂

Ĝλ2 ⊂ · · · ⊂ ĜλM . Second, the interpolated set (18) is shown to satisfy Ĝλm ⊂ Ĝλ ⊂ Ĝλm+1 when

λm > λ > λm+1. Finally, we prove the claim for any two sets from the Nested OC-SVM.

Without loss of generality, we first show Ĝλ1 ⊂ Ĝλ2 . Let λ1 > λ2 denote two density levels chosen a

priori, and α∗1 and α∗2 denote their corresponding optimal solutions. From (17), we have
∑
i
α∗i,1
λ1
k(xi,x) ≤∑

i
α∗i,2
λ2
k(xi,x), so the two estimated level sets are nested Ĝλ1 ⊂ Ĝλ2 .

Next, without loss of generality, we prove Ĝλ1 ⊂ Ĝλ ⊂ Ĝλ2 for λ1 > λ > λ2. From (17), we have
α∗i,1
λ1
≤ α∗i,2

λ2
and

α∗i,1
λ1

=
λ
α∗i,1
λ1

λ
=
εα∗i,1 + (1− ε)λ2

λ1
α∗i,1

λ

≤
εα∗i,1 + (1− ε)α∗i,2

λ
=
α∗i (λ)
λ

≤
ελ1
λ2
α∗i,2 + (1− ε)α∗i,2

λ
=
λ
α∗i,2
λ2

λ
=
α∗i,2
λ2

.

Hence, fλ1(x) ≤ fλ(x) ≤ fλ2(x).

Now consider arbitrary λδ > λε > 0. By construction, we can easily see that Ĝλδ ⊂ Ĝλε ⊂ Ĝλ1

for λδ > λε > λ1, and ĜλM ⊂ Ĝλδ ⊂ Ĝλε for λM > λδ > λε. Thus we only need to consider the
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case λ1 > λδ > λε > λM . Since above results imply Ĝλδ ⊂ Ĝλε if λδ > λm > λε for some m, we

can safely assume λ1 > λδ > λε > λ2 without loss of generality. Then there exist δ > ε such that

λδ = δλ1 + (1− δ)λ2 and λε = ελ1 + (1− ε)λ2. Suppose x ∈ Ĝλδ . Then x ∈ Ĝλ2 and∑
i

(δα∗i,1 + (1− δ)α∗i,2)k(xi,x) > λδ (19)

∑
i

α∗i,2k(xi,x) > λ2. (20)

By ε
δ× (19) + (1− ε

δ )× (20), we have
∑
i(εα

∗
i,1 + (1− ε)α∗i,2)k(xi,x) > λε. Thus, Ĝλδ ⊂ Ĝλε .

C. Decomposition Algorithm

We also use a decomposition algorithm to solve (15). The general steps are the same as explained

in Section III-C for the Nested CS-SVM. Fig. 4 shows the outline of the algorithm. In the algorithm, a

feasible solution αi,m = 1
N for ∀i,m is used as an initial solution.

Here we present how we can divide the large optimization problem into a collection of smaller problems.

Suppose that the data point x1 is selected and its corresponding coefficients {α1,m}Mm=1 will be updated.

Writing the objective function only in terms of α1,m, we have

∑
m

 1
2λm

∑
i

∑
j

αi,mαj,mKi,j −
∑
i

αi,m


=
∑
m

 1
2λm

α2
1,mK1,1 + α1,m

 1
λm

∑
j 6=1

αj,mK1,j − 1

+ C

=
∑
m

[
1

2λm
α2

1,mK1,1 + α1,m

(
f1,m −

αold
1,m

λm
K1,1 − 1

)]
+ C

=K1,1

∑
m

[
1

2λm
α2

1,m −
α1,m

λm

(
αold

1,m +
λm(1− f1,m)

K1,1

)]
+ C

where αold
1,m and f1,m = 1

λm

(∑
j 6=1 αj,mK1,j + αold

1,mK1,1

)
denote the variable from the previous iteration

step and the corresponding output, respectively. C is a constant that does not affect the solution.

Then we obtain the reduced optimization problem of M variables,

min
α1,1,...,α1,M

∑
m

[
1

2λm
α2

1,m −
α1,m

λm
αnew

1,m

]
(21)

s.t. 0 ≤ α1,m ≤
1
N

for ∀m (22)

α1,1

λ1
≤ α1,2

λ2
≤ · · · ≤ α1,M

λM
(23)

where αnew
1,m = αold

1,m + λm(1−f1,m)
K1,1

. Notice that αnew
1,m becomes the solution if it is feasible. This reduced

optimization problem can be solved through standard quadratic program solvers.
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Input: {xi}Ni=1, {λm}Mm=1

Initialize:

αi,m ←
1
N

for ∀i,m

repeat

Choose a data point xi.

Compute:

fi,m ←
1
λm

∑
j

αj,mKi,j , ∀m

αnew
i,m ← αi,m +

λm(1− fi,m)
Ki,i

, ∀m

Update {αi,m}Mm=1 with the solution of the subproblem:

min
αi,1,...,αi,M

∑
m

[
1

2λm
α2
i,m −

αi,m
λm

αnew
i,m

]
s.t. 0 ≤ αi,m ≤

1
N

for ∀m

αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM

until Accuracy conditions are satisfied

Output: Ĝλm = {x :
∑
i αi,mk(xi,x) > λm} for ∀m

Fig. 4. Decomposition algorithm for the Nested One-Class Support Vector Machine.

V. EXPERIMENTS AND RESULTS

In order to compare the algorithms described above, we experimented on 13 benchmark data sets

available online 1. Their brief summary is provided in Fig. 5. Each feature is standardized with zero

mean and unit variance. The first eleven data sets are randomly permuted 100 times and divided into

training and test sets, and the last two data sets are permuted 20 times. In all of our experiments, we used

the Gaussian kernel k(x,x′) = exp
(
−‖x−x′‖2

2σ2

)
and searched for the bandwidth σ over 20 logarithmically

spaced points from davg/15 to 10 davg where davg is the average distance between training data points.

This control parameter is selected via 5-fold cross validation on the first 10 permutations, then the average

of these values is used to train the remaining permutations.

1http://ida.first.fhg.de/projects/bench/
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Data set dim Ntrain Ntest

banana 2 400 4900

breast-cancer 9 200 77

diabetes 8 468 300

flare-solar 9 666 400

german 20 700 300

heart 13 170 100

ringnorm 20 400 7000

thyroid 5 140 75

titanic 3 150 2051

twonorm 20 400 7000

waveform 21 400 4600

image 18 1300 1010

splice 60 1000 2175

Fig. 5. Description of data sets. dim is the number of features, and Ntrain and Ntest are the numbers of training and test

examples.

Each algorithm generates a family of decision functions and set estimates. From these sets, we construct

a ROC curve and compute its area under the curve (AUC). We use the AUC averaged across permutations

to compare the performance of algorithms. As shown in Fig. 1, however, the set estimates from the CS-

SVM or the OC-SVM are not properly nested, and cause ambiguity particularly in ranking applications.

In Section V-C, we measure this violation of the nesting by defining the ranking disagreement of two

rank scoring functions. Then in Section V-D, we combine this ranking disagreement and the AUC, and

compare the algorithms over multiple data sets using the Wilcoxon signed ranks test and the Friedman

test as suggested in [21].

A. Two-class Problems

The CI-SVM, CS-SVM, and Nested CS-SVM are compared in two-class problems. For the Nested

CS-SVM, we set M = 5 and solved (7) at cost asymmetries γ = (0, 0.25, 0.50, 0.75, 1).

In two-class problems, we also searched for the regularization parameter λ over 10 logarithmically

space points from 0.1 to λmax where λmax is

λmax = max

max
i

∑
j∈I+

yiyjKi,j , max
i

∑
j∈I−

yiyjKi,j

 .
Values of λ > λmax do not produce different solutions in the CS-SVM (see Appendix C).
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Data Set CI CS NCS

banana 0.9598 (± 0.0028 ) 0.9505 (± 0.0098 ) 0.9630 (± 0.0039 )

breast-cancer 0.7029 (± 0.0553 ) 0.7332 (± 0.0543 ) 0.7315 (± 0.0562 )

diabetes 0.8298 (± 0.0160 ) 0.8291 (± 0.0169 ) 0.8258 (± 0.0170 )

flare-solar 0.6481 (± 0.0339 ) 0.6586 (± 0.0404 ) 0.5802 (± 0.0476 )

german 0.7885 (± 0.0250 ) 0.7963 (± 0.0245 ) 0.7888 (± 0.0245 )

heart 0.9067 (± 0.0253 ) 0.9088 (± 0.0272 ) 0.9074 (± 0.0277 )

ringnorm 0.9988 (± 0.0001 ) 0.9825 (± 0.0029 ) 0.9556 (± 0.0119 )

thyroid 0.9897 (± 0.0093 ) 0.9620 (± 0.0370 ) 0.9541 (± 0.0378 )

titanic 0.6102 (± 0.0693 ) 0.5990 (± 0.0698 ) 0.5978 (± 0.0708 )

twonorm 0.9977 (± 0.0001 ) 0.9977 (± 0.0001 ) 0.9977 (± 0.0003 )

waveform 0.9661 (± 0.0035 ) 0.9699 (± 0.0023 ) 0.9677 (± 0.0031 )

image 0.9930 (± 0.0022 ) 0.9918 (± 0.0023 ) 0.9858 (± 0.0042 )

splice 0.9578 (± 0.0036 ) 0.9508 (± 0.0039 ) 0.9519 (± 0.0045 )

Fig. 6. Comparison of AUC between the Cost-Insensitive (CI), the Cost-Sensitive (CS), and the Nested CS-SVM.

We compared the described algorithms by constructing ROC curves and computing their AUC. Since

the CI-SVM only corresponds to a single point on the ROC curve, we shifted its offset from −∞ to ∞

and extended to a whole ROC curve. The results are collected in Fig. 6.

B. One-class Problems

For the Nested OC-SVM, we selected 11 density levels spaced evenly from λ1 = 1
N maxi

∑
jKi,j (see

Appendix C) to λ11 = 10−6. Among the two classes available in each dataset, we chose the negative

examples for training. Since the second class was unavailable at training time, we simulated an artificial

second class from a uniform distribution. For evaluation of the trained decision functions, both the positive

samples in the test sets and the uniform samples were used as the alternative class. Fig. 7 reports the

experiment results for both cases (denoted by Positive and Uniform, respectively).

Fig. 8 shows the AUC of the two algorithms over a range of σ. Throughout the experiments on one-

class problems, we observed that the nested OC-SVM is more robust to the kernel bandwidth selection

than the OC-SVM. However, we did not observe the similar results on two-class problems.

C. Ranking disagreement

The decision sets from the OC-SVM and the CS-SVM are not properly nested. Fig. 1 illustrates

examples of two set estimates violating nesting condition. Since larger λ means higher density level,
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Positive Uniform

Data Set OC NOC OC NOC

banana 0.9192 (± 0.0096 ) 0.9300 (± 0.0072 ) 0.9065 (± 0.0037 ) 0.9114 (± 0.0031 )

breast-cancer 0.6477 (± 0.0621 ) 0.6545 (± 0.0617 ) 0.9763 (± 0.0067 ) 0.9766 (± 0.0067 )

diabetes 0.7224 (± 0.0237 ) 0.7324 (± 0.0229 ) 0.9961 (± 0.0019 ) 0.9961 (± 0.0019 )

flare-solar 0.6017 (± 0.0429 ) 0.6014 (± 0.0438 ) 0.9985 (± 0.0006 ) 0.9984 (± 0.0006 )

german 0.6268 (± 0.0313 ) 0.6268 (± 0.0312 ) 0.9911 (± 0.0032 ) 0.9911 (± 0.0032 )

heart 0.7767 (± 0.0373 ) 0.7828 (± 0.0367 ) 0.9861 (± 0.0050 ) 0.9863 (± 0.0051 )

ringnorm 0.9970 (± 0.0003 ) 0.9970 (± 0.0003 ) 1.0000 (± 0.0000 ) 1.0000 (± 0.0000 )

thyroid 0.9867 (± 0.0090 ) 0.9871 (± 0.0084 ) 0.9999 (± 0.0001 ) 0.9999 (± 0.0001 )

titanic 0.6021 (± 0.0686 ) 0.5883 (± 0.0627 ) 0.7619 (± 0.0514 ) 0.7653 (± 0.0419 )

twonorm 0.9105 (± 0.0116 ) 0.9126 (± 0.0099 ) 1.0000 (± 0.0000 ) 1.0000 (± 0.0000 )

waveform 0.7520 (± 0.0192 ) 0.7622 (± 0.0171 ) 1.0000 (± 0.0000 ) 1.0000 (± 0.0000 )

image 0.8720 (± 0.0392 ) 0.8542 (± 0.0393 ) 1.0000 (± 0.0000 ) 1.0000 (± 0.0000 )

splice 0.4165 (± 0.0095 ) 0.4158 (± 0.0095 ) 0.5537 (± 0.0121 ) 0.5545 (± 0.0080 )

Fig. 7. Comparison of AUC of algorithms on one-class problem. Unnested One-Class SVM and Nested OC-SVM are compared.

Left columns are the cases when the alternative hypotheses are from the positive class samples in the data sets, and right columns

are when the alternative hypotheses are from uniform distributions.
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Fig. 8. The effect of kernel bandwidth σ on the performance (AUC). The Nested OC-SVM is less sensitive to σ than the

OC-SVM.
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the density level set estimate of the OC-SVM is expected to be contained within the density level set

estimate at smaller λ. Likewise, larger γ in the CS-SVM penalizes misclassification of positive examples

more; thus, its corresponding positive decision set should properly contain the decision set at smaller

γ, and the two decision boundaries should not cross. This undesired nature of the algorithms leads to

non-unique ranking score functions.

In the case of the CS-SVM, we can consider the following two ranking functions:

s+(x) = 1− min
{γ:fγ(x)≥0}

γ, s−(x) = 1− max
{γ:fγ(x)≤0}

γ. (24)

For the OC-SVM, we consider the next pair of ranking functions,

s+(x) = max
{λ:x∈Ĝλ}

λ, s−(x) = min
{λ:x∈Ĝλ}

λ. (25)

In words, s+ ranks according to the first set containing a point x and s− ranks according to the last set

containing the point. In either case, it is easy to see s+(x) ≥ s−(x).

In order to quantify the disagreement of the two ranking functions, we define the following measure

of ranking disagreement:

d(s+, s−) =
1
N

∑
i

max
j 6=i

I{(s+(xi)−s+(xj))(s−(xi)−s−(xj))<0}, (26)

which is the proportion of data points ambiguously ranked, i.e., ranked differently with respect to at least

one other point. Then d(s+, s−) = 0 if and only if s+ and s− induce the same ranking.

With these ranking functions, Fig. 9 reports the ranking disagreements from the CS-SVM and the

OC-SVM. In the table, d2 refers to the ranking disagreement of the CS-SVM, and d1 and du respectively

refer to the ranking disagreement of the OC-SVM when the second class is from the positive samples

and from an artificial uniform distribution. As can be seen in the table, for some data sets the violation

of the nesting causes severe difference between the above ranking functions.

D. Statistical comparison

We employ the statistical methodology of Demšar [21] to compare the algorithms across all data sets.

For two-class problems, we use the Friedman test to compare the CI-SVM, CS-SVM, and Nested CS-

SVM. For one-class problems, we use the Wilcoxon signed ranks test and compare the OC-SVM and

the Nested OC-SVM.

The Friedman test is a non-parametric method for testing the significance of differences between more

than two sample means. Algorithms are ranked for each data set, and their average ranks are compared

(rank 1 for the best). Fig. 10 reports the average ranks of the three algorithms on the benchmark data sets
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Data set d2(s+, s−) d1(s+, s−) du(s+, s−)

banana 0.0243 0.4984 0.3896

breast-cancer 0.0134 0.2529 0.0933

diabetes 0.1193 0.0206 0.0012

flare-solar 0.3003 0.6572 0.1989

german 0.0191 0.0000 0.0000

heart 0.0053 0.0002 0.0000

ringnorm 0.2447 0.0000 0.0000

thyroid 0.0023 0.0191 0.0003

titanic 0.0000 0.2500 0.2310

twonorm 0.0068 0.0006 0.0005

waveform 0.0789 0.0021 0.0011

image 0.3079 0.2766 0.0479

splice 0.1055 0.0000 0.0000

Fig. 9. The measure of disagreement of the two ranking functions from the CS-SVM and the OC-SVM. The meaning of each

subscript is explained in the text. s+ and s− are defined in (24) and (25).

CI CS NCS FF

1.77 1.77 2.46 2.28

Fig. 10. Comparison of the AUCs of the three algorithms: Cost-Insensitive (CI), Cost-Sensitive (CS), and Nested CS-SVM

(NCS) using the Friedman Test. The Friedman test compares the average ranks of algorithms. The critical difference of FF is

3.40 at α = 0.05. Therefore, no significant difference is detected.

along with a test statistic FF . Under the null hypothesis of no significant differences among the algorithms,

FF is distributed approximately according to an F-distribution with (3−1) and (3−1)(13−1) degrees of

freedom. The critical value of F (2, 24) for a confidence level α = 0.05 is 3.40, so a significant difference

between the algorithms was not detected by the Friedman test.

The Wilcoxon signed ranks test is a non-parametric method testing the significance of differences

between paired observations, and can be used to compare the performances between two algorithms over

multiple data sets. Fig. 11 reports the comparison results of the algorithms. The difference values between

the AUCs from the two algorithms are ranked ignoring the signs, and then the ranks of positive (and

respectively negative) differences are added. Here the numbers of right column denote the sums of ranks

of the data sets on which the Nested OC-SVM performed better than the OC-SVM; the left column is

for the opposite. T is the smaller of the two sums. For a confidence level of α = 0.05 and 13 data

sets, the difference between algorithms is significant if T is less than or equal to 17 [22]. Therefore, any
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OC NOC T

Positive 35 56 35

Uniform 21.5 69.5 21.5

Fig. 11. Comparison of Unnested and Nested OC-SVM using the Wilcoxon signed ranks test. In the evaluation of the unlabeled

problems, both the cases of alternative hypothesis are accounted. Left (right) column is the sums of the ranks of the data sets

on which the OC-SVM (Nested OC-SVM) outperforms the Nested OC-SVM (OC-SVM). T is the smaller of the two sums. For

α = 0.05, the difference is significant if T ≤ 17.

CI CS NCS FF

1.46 2.77 1.77 10.53

OC NOC T

Positive 5 86 5

Uniform 0 91 0

Fig. 12. Comparison of algorithms based on the AUC along with the disorder measure. Left: Friedman Test on Cost-Insensitive

(CI), Cost-Sensitive (CS), and Nested CS-SVM (NCS). Right: Wilcoxon Signed-Ranks Test on Unnested and Nested OC-SVM.

significant performance difference between the OC-SVM and the Nested OC-SVM was not detected in

the test.

However, the AUC alone does not highlight the ranking disagreement of the algorithms. Therefore, we

merge the AUC and the disorder measurement, and consider AUC−d(s+, s−) for algorithm comparison.

Fig. 12 shows the results of the Friedman test and the Wilcoxon signed-ranks test using this combined

performance measure. From the results, we can observe clearly the performance differences between

algorithms. The Friedman test shows that the performance difference exists between algorithms because

FF is greater than the critical value 3.40. After the Friedman test, we proceed with a post-hoc, Nemenyi

test, to find which algorithms actually differ. The critical difference of the Nemenyi test is 0.92 for three

algorithms and a confidence level α = 0.05. If the average ranks differ more than this critical value, then

the performance of two algorithms is significantly different. Thus, the Nested CS-SVM and the CI-SVM

outperforms the CS-SVM. The performance difference between the OC-SVM and the Nested OC-SVM

is also detected by the Wilcoxon test since the test statistic T is smaller than the critical difference 17

for both cases of the second class. Therefore, we can conclude that the nested algorithms perform better

than their unnested counterparts.
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VI. CONNECTIONS AND INTERPRETATIONS

We can find a primal optimization problem of the Nested CS-SVM if we think (7) is a dual problem:

min
{wm},{ξi,m}

M∑
m=1

λ
2
‖wm‖2 + γm

∑
I+

ξi,m + (1− γm)
∑
I−

ξi,m

 (27)

s.t.
M∑
k=m

〈wk,Φ(xi)〉 ≥
M∑
k=m

(1− ξi,k) for i ∈ I+, ∀m

m∑
k=1

〈wk,Φ(xi)〉 ≤ −
m∑
k=1

(1− ξi,k) for i ∈ I−,∀m

ξi,m ≥ 0 for ∀i,m.

In the appendix, we show that this is indeed the primal by deriving (7) from (27). Note that (27) reduces

to the primal of the CS-SVM (1) for M = 1.

Likewise, we can also derive the primal form of the Nested OC-SVM:

min
{wm},{ξi,m}

M∑
m=1

[
λm
2
‖wm‖2 +

1
N

∑
i

ξi,m

]
(28)

s.t.
M∑
k=m

λk〈wk,Φ(xi)〉 ≥
M∑
k=m

λk(1− ξi,m) for ∀i,m

ξi,m ≥ 0 for ∀i,m,

which also boils down to the primal of OC-SVM (4) when M = 1.

With these formulations, we can see the geometric meaning of w and ξ. For simplicity, consider (28)

when M = 2:

min
{wm},{ξi,m}

λ2

2
‖w2‖2 +

1
N

∑
i

ξi,2 +
λ1

2
‖w1‖2 +

1
N

∑
i

ξi,1 (29)

s.t. 〈λ2w2,Φ(xi)〉 ≥ λ2(1− ξi,2) for ∀i

〈λ2w2 + λ1w1,Φ(xi)〉 ≥ λ2(1− ξi,2) + λ1(1− ξi,1) for ∀i

ξi,m ≥ 0 for ∀i,m.

Here ξi,1 > 0 when xi lies between the hyperplane Pλ2w2+λ1w1
λ2+λ1

and the origin, and ξi,2 > 0 when the point

lies between Pw2 and the origin where we used Pw to denote {Φ(x) : 〈w,Φ(x)〉 = 1}, a hyperplane

in H. Note that from the nesting structure, the hyperplane Pλ2w2+λ1w1
λ2+λ1

is located between Pw1 and Pw2 .

Then we can show that λ1ξi,1+λ2ξi,2
‖λ1w1+λ2w2‖ is the distance between the point xi and the hyperplane Pλ2w2+λ1w1

λ2+λ1

.
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VII. CONCLUSION

In this paper, we introduced a novel framework for building a family of nested sets for the tasks of

density level set estimation or cost-sensitive classification. Our approach is based on the large margin

principle and does not rely on direct density estimation. The key step involves forming new quadratic

programs with constraints imposing nesting structure. Our construction generates a finite number of nested

set estimates at a set of preselected parameters, and linearly interpolates these sets to a continuous nested

family. We also developed efficient algorithms to solve the proposed quadratic problems. Therefore, the

Nested OC-SVM yields a family of nested density level set estimates indexed by density level λ, and

the Nested CS-SVM yields a family of nested classifiers indexed by cost asymmetry γ. These results

sharply contrast to the outputs of the original SVMs that are not nested. Hence, the usefulness of the

nested SVMs is obvious because their outcomes can be readily applied to many applications requiring

multiple set estimations including clustering, ranking, and anomaly detection.

We also investigated the CS-SVM and OC-SVM for ranking problems. Ranking functions driven by

the CS-SVM and OC-SVM can be benefited from non-parallel directions in kernel feature space unlike

previous approaches employing a fixed direction with a varying offset. We demonstrated that the ranking

score functions from the original SVMs can cause ranking disagreements, while their nested extensions

generate consistent ranking functions.

APPENDIX A

DATA POINT SELECTION AND TERMINATION CONDITION OF THE NESTED CS-SVM

On each round, the algorithm in Fig. 3 selects an example xi, updates its corresponding variables

{αi,m}Mm=1, and checks the termination condition. In this appendix, we employ the KKT conditions to

derive an efficient variable selection strategy and a termination condition.

We use the KKT conditions to find the necessary conditions of the optimal solution of (7). Before we

proceed, we define αi,0 = 0 for i ∈ I+ and αi,M+1 = 0 for i ∈ I− for notational convenience. Then the

Lagrangian of the quadratic program is

L(α,u,v) =
∑
m

 1
2λ

∑
i

∑
j

αi,mαj,myiyjKi,j −
∑
i

αi,m


+
∑
m

∑
i

ui,m(αi,m − 1{yi<0} − yiγm)

+
∑
m

∑
i∈I+

vi,m(αi,m−1 − αi,m)−
∑
m

∑
i∈I−

vi,m(αi,m − αi,m+1)
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where ui,m ≥ 0 and vi,m ≥ 0 for ∀i,m. At the global minimum, the derivative of the Lagrangian with

respect to αi,m vanishes

∂L
∂αi,m

= yifi,m − 1 + ui,m


−vi,m + vi,m+1 for i ∈ I+

+vi,m−1 − vi,m for i ∈ I−
(30)

= 0

where, recall, fi,m = 1
λ

∑
j αj,myjKi,j and we introduced auxiliary variables vi,M+1 = 0 for i ∈ I+ and

vi,0 = 0 for i ∈ I−. Then we obtain the following set of constraints from the KKT conditions

yifi,m − 1 + ui,m =


vi,m − vi,m+1 for i ∈ I+

−vi,m−1 + vi,m for i ∈ I−
(31)

0 ≤ αi,m ≤ 1{yi<0} + yiγm for ∀i,∀m (32)

yiαi,1 ≤ yiαi,2 ≤ · · · ≤ yiαi,M for ∀i (33)

ui,m
(
αi,m − 1{yi<0} − yiγm

)
= 0 for ∀i,∀m (34)

vi,m(αi,m−1 − αi,m) = 0 for i ∈ I+,∀m (35)

vi,m(αi,m − αi,m+1) = 0 for i ∈ I−,∀m (36)

ui,m ≥ 0, vi,m ≥ 0 for ∀i,m. (37)

Since (7) is a convex program, the KKT conditions are also sufficient [20]. That is, αi,m, ui,m, and

vi,m satisfying (31)-(37) is indeed optimal. Therefore, at the end of each iteration, we assess a current

solution with these conditions and decide whether to stop or to continue. We evaluate the amount of

error for xi by defining

ei =
∑
m

∣∣∣∣∣ ∂L
∂αi,m

∣∣∣∣∣ for ∀i.

An optimal solution makes these quantities zero. In practice, when their sum
∑
i ei decreases below a

predetermined tolerance, the algorithm stops and returns the current solution. If not, the algorithm chooses

the example with the largest ei and continues the loop.

Computing ei involves unknown variables ui,m and vi,m (see (30)), whereas fi,m can be easily computed

from the known variables αi,m. Fig. 13 and Fig. 14 are for determining these ui,m and vi,m. These tables

are obtained by firstly assuming the current solution αi,m is optimal and secondly solving ui,m and vi,m

such that they satisfy the KKT conditions. Thus, depending on the value αi,m between its upper and
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αi,m−1 < αi,m αi,m−1 = αi,m

αi,m < min(γm, αi,m+1) ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(fi,m − 1, 0)

αi,m = γm < αi,m+1 ui,m = max(1− fi,m, 0) -

vi,m = 0 -

αi,m = αi,m+1 < γm ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(fi,m − 1 + vi,m+1, 0)

αi,m = αi,m+1 = γm ui,m = max(1− fi,m − vi,m+1, 0) -

vi,m = 0 -

αi,M−1 < αi,M αi,M−1 = αi,M

αi,M < γM ui,M = 0 ui,M = 0

vi,M = 0 vi,M = max(fi,M − 1, 0)

αi,M = γM ui,M = max(1− fi,M , 0) -

vi,M = 0 -

Fig. 13. The optimality conditions of the Nested CS-SVM when i ∈ I+. (Upper: m = 1, 2, . . . ,M − 1, Lower: m = M .)

Assuming αi,m are optimal, ui,m and vi,m are solved as above from the KKT conditions. Empty entries indicate the cases that

cannot occur.

αi,m+1 < αi,m αi,m+1 = αi,m

αi,m < min(1− γm, αi,m−1) ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(−fi,m − 1, 0)

αi,m = 1− γm < αi,m−1 ui,m = max(1 + fi,m, 0) -

vi,m = 0 -

αi,m = αi,m−1 < 1− γm ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(−fi,m − 1 + vi,m−1, 0)

αi,m = αi,m−1 = 1− γm ui,m = max(1 + fi,m − vi,m−1, 0) -

vi,m = 0 -

αi,2 < αi,1 αi,2 = αi,1

αi,1 < 1− γ1 ui,1 = 0 ui,1 = 0

vi,1 = 0 vi,1 = max(−fi,1 − 1, 0)

αi,1 = 1− γ1 ui,1 = max(1 + fi,1, 0) -

vi,1 = 0 -

Fig. 14. The optimality conditions of the Nested CS-SVM when i ∈ I−. (Upper: m = 2, . . . ,M , Lower: m = 1.)
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lower bounds, ui,m and vi,m can be simply set as directed in the tables. For example, if i ∈ I+, then we

find ui,m and vi,m by referring Fig. 13 iteratively from m = M down to m = 1. If i ∈ I−, we use Fig.

14 and iterate from m = 1 up to m = M . Then the obtained ei takes a non-zero value only when the

assumption is false and the current solution is sub-optimal.

APPENDIX B

DATA POINT SELECTION AND TERMINATION CONDITION OF THE NESTED OC-SVM

As in the Nested CS-SVM, we investigate the optimality condition of the Nested OC-SVM (15) and

find a data point selection method and a termination condition.

With a slight modification, we rewrite (15),

min
α1,...,αM

M∑
m=1

 1
2λm

∑
i

∑
j

αi,mαj,mKi,j −
∑
i

αi,m

 (38)

s.t. αi,m ≤
1
N

for ∀i,m

0 ≤ αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM
for ∀i.

We will use the KKT conditions to find the necessary and sufficient conditions of the optimal solution

of above. The Lagrangian is

L(α,u,v) =
M∑
m=1

 1
2λm

∑
i

∑
j

αi,mαj,mKi,j −
∑
i

αi,m

+
M∑
m=1

∑
i

ui,m(αi,m −
1
N

)

−
∑
i

vi,1
αi,1
λ1

+
∑
i

M∑
m=2

vi,m

(
αi,m−1

λm−1
− αi,m

λm

)
where ui,m ≥ 0 and vi,m ≥ 0 for ∀i,m. The derivative of L with respect to αi,m vanishes

∂L
∂αi,m

= fi,m − 1 + ui,m


−vi,m

λm
+ vi,m+1

λm
for m = 1, . . . ,M − 1

−vi,M
λM

for m = M

(39)

= 0. (40)

where, recall, fi,m = 1
λm

∑
j αj,mKi,j . Then, from the KKT conditions, we obtain the following set of
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λm
λm−1

αi,m−1 < αi,m
λm
λm−1

αi,m−1 = αi,m

αi,m < min( 1
N
, λm
λm+1

αi,m+1) ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(λm(fi,m − 1), 0)

αi,m = 1
N
< λm

λm+1
αi,m+1 ui,m = max(1− fi,m, 0) -

vi,m = 0 -

αi,m = λm
λm+1

αi,m+1 <
1
N

ui,m = 0 ui,m = 0

vi,m = 0 vi,m = max(λm(fi,m − 1 +
vi,m+1
λm

), 0)

αi,m = λm
λm+1

αi,m+1 = 1
N

ui,m = max(1− fi,m − vi,m+1
λm

, 0) -

vi,m = 0 -

λM
λM−1

αi,M−1 < αi,M
λM
λM−1

αi,M−1 = αi,M

αi,M < 1
N

ui,M = 0 ui,M = 0

vi,M = 0 vi,M = max(λM (fi,M − 1), 0)

αi,M = 1
N

ui,M = max(1− fi,M , 0) -

vi,M = 0 -

Fig. 15. The optimality conditions of the Nested OC-SVM. (Upper: m = 1, 2, . . . ,M − 1, and Lower: m = M .)

constraints for xi:

fi,m − 1 + ui,m =


vi,m
λm
− vi,m+1

λm
for m = 1, . . . ,M − 1

vi,M
λM

for m = M

(41)

αi,m ≤
1
N

for ∀m (42)

0 ≤ αi,1
λ1
≤ αi,2

λ2
≤ · · · ≤ αi,M

λM
(43)

ui,m(αi,m −
1
N

) = 0 for ∀m (44)

vi,m(
αi,m−1

λm−1
− αi,m

λm
) = 0 for ∀m (45)

ui,m ≥ 0, vi,m ≥ 0 for ∀m. (46)

Since (38) is a convex program, the KKT conditions are sufficient [20]. Therefore, αi,m, ui,m, and vi,m

satisfying (41)-(46) optimizes the objective function. On each round, the algorithm (Fig. 4) examines a

current solution with these conditions and determines whether or not to stop. We measure the amount of

error for xi by defining

ei =
∑
m

∣∣∣∣∣ ∂L
∂αi,m

∣∣∣∣∣ for ∀i.
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If the sum
∑
i ei decreases below a predetermined tolerance, the algorithm stops and returns the current

solution. If not, the algorithm chooses the data point having the largest ei and continues the iteration.

Computing ei involves unknown variables ui,m and vi,m (see (39)), whereas fi,m can be computed with

ease. In order to infer their values, we firstly assume the current solution αi,m is optimal and secondly

let ui,m and vi,m as in Fig. 15. The second step can be done by computing iteratively from m = M to

m = 1. Then the obtained ei takes a non-zero value only when the assumption is false and the current

solution is not optimal.

APPENDIX C

MAXIMUM VALUE OF λ OF THE CS-SVM AND OC-SVM

In this appendix, we find the values of the regularization parameter λ over which the OC-SVM or

CS-SVM generate the same solutions.

First, we consider the OC-SVM. The decision function of the OC-SVM is fλ(x) = 1
λ

∑
j αjk(xj ,x)

and fλ(x) = 1 forms the margin. For sufficiently large λ, every data point xi falls inside the margin

(fλ(xi) ≤ 1). Since the KKT optimality conditions of (4) imply αi = 1
N for the data points such that

fλ(xi) < 1, we obtain λ ≥ 1
N

∑
jKi,j for ∀i. Therefore, denote the maximum row sum of the kernel

matrix as λOC = maxi 1
N

∑
jKi,j . Then for any λ ≥ λOC , the optimal solution of OC-SVM becomes

αi = 1
N for ∀i.

Next, we consider the regularization parameter λ in (1) of the CS-SVM. The decision function of the

CS-SVM is fγ(x) = 1
λ

∑
j αjyjk(xj ,x), and the margin is yfγ(x) = 1. Thus, if λ is sufficiently large, all

the data points are inside the margin and satisfy yifγ(xi) ≤ 1. Then λ ≥
∑
j∈I+ γyiyjKi,j +

∑
j∈I−(1−

γ)yiyjKi,j for ∀i because αi = 1{yi<0} + yiγ for all the data points such that yifγ(xi) < 1 from the

KKT conditions. For a given γ, let λCS(γ) = maxi
[
γ
∑
j∈I+ yiyjKi,j + (1− γ)

∑
j∈I− yiyjKi,j

]
. Then

for λ > λCS(γ), the solution of the CS-SVM becomes αi = 1{yi<0} + yiγ for ∀i. Therefore, since

λCS(γ) ≤ (1 − γ)λCS(0) + γλCS(1) for all γ ∈ [0, 1], values of λ > max (λCS(0), λCS(1)) generate

the same solutions in the CS-SVM.
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APPENDIX D

DERIVATION OF THE DUAL OPTIMIZATION PROBLEM OF THE NESTED CS-SVM

Here we will show that (27) is the primal of the quadratic program (7) for the Nested CS-SVM. First,

we develop the Lagrangian with dual variables ui,m ≥ 0 and vi,m ≥ 0:

Lp(w, ξ, u, v) =
M∑
m=1

λ
2
‖wm‖2 + γm

∑
i∈I+

ξi,m + (1− γm)
∑
i∈I−

ξi,m

− M∑
m=1

∑
i

vi,mξi,m

−
M∑
m=1

∑
i∈I+

M∑
k=m

ui,m (〈wk,Φ(xi)〉 − (1− ξi,k))

+
M∑
m=1

∑
i∈I−

m∑
k=1

ui,m (〈wk,Φ(xi)〉+ (1− ξi,k))

=
M∑
m=1

λ
2
‖wm‖2 + γm

∑
i∈I+

ξi,m + (1− γm)
∑
i∈I−

ξi,m

− M∑
m=1

∑
i

vi,mξi,m

−
M∑
m=1

∑
i∈I+

m∑
k=1

ui,k (〈wm,Φ(xi)〉 − (1− ξi,m))

+
M∑
m=1

∑
i∈I−

M∑
k=m

ui,k (〈wm,Φ(xi)〉+ (1− ξi,m))

=
M∑
m=1

λ
2
‖wm‖2 + γm

∑
i∈I+

ξi,m + (1− γm)
∑
i∈I−

ξi,m

− M∑
m=1

∑
i

vi,mξi,m (47)

−
M∑
m=1

∑
i

αi,myi (〈wm,Φ(xi)〉 − yi(1− ξi,m))

where the last equality follows by letting

αi,m =


∑m
k=1 ui,k for i ∈ I+∑M
k=m ui,k for i ∈ I−.

(48)

The derivatives with respect to wm and ξi,m vanish

∂Lp
∂wm

= λwm −
∑
i

αi,myiΦ(xi) = 0 (49)

∂Lp
∂ξi,m

= 1{yi<0} + yiγm − vi,m − αi,m = 0. (50)
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Substituting these results (49), (50) into the above Lagrangian (47), we have

Lp =
M∑
m=1

λ

2
‖wm‖2 −

M∑
m=1

∑
i

αi,myi〈wm,Φ(xi)〉+
M∑
m=1

∑
i

αi,m

=
∑
m

− 1
2λ

∑
i

∑
j

αi,mαj,myiyjKi,j +
∑
i

αi,m

 .
Combining the non-negativity of ui,m and vi,m to (48) and (50), the nesting constraints (9) and the box

constraints (8) can be obtained.

APPENDIX E

DERIVATION OF THE DUAL OF THE NESTED OC-SVM

In this appendix, we show that (28) is the primal of the quadratic program (15) for the Nested OC-SVM.

First, we develop the Lagrangian with dual variables ui,m ≥ 0 and vi,m ≥ 0:

Lp(w, ξ, u, v) =
M∑
m=1

[
λm
2
‖w‖2 +

1
N

∑
i

ξi,m

]
−

M∑
m=1

∑
i

vi,mξi,m

−
M∑
m=1

∑
i

M∑
k=m

ui,mλk (〈wk,Φ(xi)〉 − (1− ξi,k))

=
M∑
m=1

[
λm
2
‖w‖2 +

1
N

∑
i

ξi,m

]
−

M∑
m=1

∑
i

vi,mξi,m

−
M∑
m=1

∑
i

m∑
k=1

ui,kλm (〈wm,Φ(xi)〉 − (1− ξi,m))

=
M∑
m=1

[
λm
2
‖w‖2 +

1
N

∑
i

ξi,m

]
−

M∑
m=1

∑
i

vi,mξi,m (51)

−
M∑
m=1

∑
i

αi,m (〈wm,Φ(xi)〉 − (1− ξi,m))

where the last equality follows by letting

αi,m = λm

m∑
k=1

ui,k. (52)

The derivatives with respect to wm and ξi,m vanish

∂Lp
∂wm

= λmwm −
M∑
m=1

∑
i

αi,mΦ(xi) = 0 (53)

∂Lp
∂ξi,m

=
1
N
− vi,m − αi,m = 0. (54)
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Substituting these results (53), (54) in the above Lagrangian (51), we obtain

Lp =
M∑
m=1

λm
2
‖wm‖2 −

M∑
m=1

∑
i

αi,m〈wm,Φ(xi)〉+
M∑
m=1

∑
i

αi,m

=
∑
m

− 1
2λm

∑
i

∑
j

αi,mαj,mKi,j +
∑
i

αi,m

 .
Combining the non-negativity of ui,m and vi,m to (52) and (54), the nesting constraints (17) and the box

constrains (16) can be obtained.
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