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Nested Support Vector Machines
Gyemin Lee, Student Member, IEEE, and Clayton Scott, Member, IEEE

Abstract—One-class and cost-sensitive support vector machines
(SVMs) are state-of-the-art machine learning methods for es-
timating density level sets and solving weighted classification
problems, respectively. However, the solutions of these SVMs
do not necessarily produce set estimates that are nested as the
parameters controlling the density level or cost-asymmetry are
continuously varied. Such nesting not only reflects the true sets
being estimated, but is also desirable for applications requiring
the simultaneous estimation of multiple sets, including clustering,
anomaly detection, and ranking. We propose new quadratic
programs whose solutions give rise to nested versions of one-class
and cost-sensitive SVMs. Furthermore, like conventional SVMs,
the solution paths in our construction are piecewise linear in the
control parameters, although here the number of breakpoints is
directly controlled by the user. We also describe decomposition
algorithms to solve the quadratic programs. These methods are
compared to conventional (non-nested) SVMs on synthetic and
benchmark data sets, and are shown to exhibit more stable rank-
ings and decreased sensitivity to parameter settings.

Index Terms—Cost-sensitive support vector machine (SC-SVM),
machine learning, nested set estimation, one-class support vector
machine (OC-SVM), pattern classification, solution paths.

I. INTRODUCTION

M ANY statistical learning problems may be characterized
as problems of set estimation. In these problems, the

input takes the form of a random sample of points in a feature
space, while the desired output is a subset of the feature space.
For example, in density level set estimation, a random sample
from a density is given and is an estimate of a density level
set. In binary classification, labeled training data are available,
and is the set of all feature vectors predicted to belong to one
of the classes.

In other statistical learning problems, the desired output is a
family of sets with the index taking values in a continuum.
For example, estimating density level sets at multiple levels is
an important task for many problems including clustering [1],
outlier ranking [2], minimum volume set estimation [3], and
anomaly detection [4]. Estimating cost-sensitive classifiers at
a range of different cost asymmetries is important for ranking
[5], Neyman–Pearson classification [6], semi-supervised nov-
elty detection [7], and ROC studies [8].
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Fig. 1. Two decision boundaries from a one-class SVM (a) and a cost-sensitive
SVM (b) at two density levels and cost asymmetries. The shaded regions indi-
cate the density level set estimate at the higher density level and the positive de-
cision set estimate at the lower cost asymmetry, respectively. These regions are
not completely contained inside the solid contours corresponding to the smaller
density level or the larger cost asymmetry; hence, the two decision sets are not
properly nested.

Support vector machines (SVMs) are powerful nonpara-
metric approaches to set estimation [9]. However, both the
one-class SVM (OC-SVM) for level set estimation and the
standard two-class SVM for classification do not produce set
estimates that are nested as the parameter of the OC-SVM or,
respectively, the misclassification cost of the two-class SVM is
varied. As displayed in Fig. 1, set estimates from the original
SVMs are not properly nested. On the other hand, Fig. 2 shows
nested counterparts obtained from our proposed methods (see
Sections III and IV). Since the true sets being estimated are in
fact nested, estimators that enforce the nesting constraint will
not only avoid nonsensical solutions, but should also be more
accurate and less sensitive to parameter settings and perturba-
tions of the training data. One way to generate nested SVM
classifiers is to train a cost-insensitive SVM and simply vary
the offset. However, this often leads to inferior performance as
demonstrated in [8].

Recently Clémençon and Vayatis [10] developed a method for
bipartite ranking that also involves computing nested estimates
of cost-sensitive classifiers at a finite grid of costs. Their set esti-
mates are computed individually, and nesting is imposed subse-
quently through an explicit process of successive unions. These
sets are then extended to a complete scoring function through
piecewise constant interpolation. Their interest is primarily the-
oretical, as their estimates entail empirical risk minimization,
and their results assume the underlying Bayes classifiers lies in
a Vapnik–Chervonenkis class.

In this paper, we develop nested variants of one-class and
two-class SVMs by incorporating nesting constraints into the
dual quadratic programs associated with these methods. Decom-
position algorithms for solving these modified duals are also
presented. Like the solution paths for conventional SVMs [8],
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Fig. 2. Five decision boundaries from our nested OC-SVM (a) and nested
CS-SVM (b) at five different density levels and cost asymmetries, respectively.
These decision boundaries from nested SVMs do not cross each other, unlike
the decision boundaries from the original SVMs (OC-SVM and CS-SVM).
Therefore, the corresponding set estimates are properly nested.

[11], [12], nested SVM solution paths are also piecewise linear
in the control parameters, but require far fewer breakpoints.
We compare our nested paths to the un-nested paths on syn-
thetic and benchmark data sets. We also quantify the degree to
which standard SVMs are un-nested, which is often quite high.
The Matlab implementation of our algorithms is available at
http://www.eecs.umich.edu/~cscott/code/nestedsvm.zip. A pre-
liminary version of this work appeared in [13].

A. Motivating Applications

With the multiple set estimates from nested SVMs over den-
sity levels or cost asymmetries, the following applications are
envisioned.

Ranking: In the bipartite ranking problem [14], we are given
labeled examples from two classes, and the goal is constructing
a score function that rates new examples according to their like-
lihood of belonging to the positive class. If the decision sets
are not nested as cost asymmetries or density levels varies, then
the resulting score function leads to ambiguous ranking. Nested
SVMs will make the ranking unambiguous and less sensitive to
perturbations of the data. See Section VI-C for further discus-
sion.

Clustering: Clusters may be defined as the connected com-
ponents of a density level set. The level at which the density is
thresholded determines a tradeoff between cluster number and
cluster coverage. Varying the level from 0 to yields a “cluster
tree” [15] that depicts the bifurcation of clusters into disjoint
components and gives a hierarchical representation of cluster
structure.

Anomaly Detection: Anomaly detection aims to identify
deviations from nominal data when combined observations of
nominal and anomalous data are given. Scott and Kolaczyk [4]
and Scott and Blanchard [7] present approaches to classifying
the contaminated, unlabeled data by solving multiple level set
estimation and multiple cost-sensitive classification problems,
respectively.

II. BACKGROUND ON CS-SVM AND OC-SVM

In this section, we will overview two SVM variants and show
how they can be used to learn set estimates. To establish notation
and basic concepts, we briefly review SVMs.

Suppose that we have a random sample where
is a feature vector and is its class. An

SVM finds a separating hyperplane with a normal vector in a
high-dimensional space by solving

s.t.

where is a regularization parameter and is a non-
linear function that maps each data point into generated
by a positive semi-definite kernel .
This kernel corresponds to an inner product in through

. Then, the two half-spaces of the
hyperplane form positive
and negative decision sets. Since the offset of the hyperplane
is often omitted when Gaussian or inhomogeneous polynomial
kernels are chosen [16], it is not considered in this formulation.
More detailed discussion on SVMs can be found in [9].

A. Cost-Sensitive SVM

The SVM above, which we call a cost-insensitive SVM (CI-
SVM), penalizes errors in both classes equally. However, there
are many applications where the numbers of data samples from
each class are not balanced, or false positives and false negatives
incur different costs. The cost-sensitive SVM (CS-SVM) han-
dles this issue by controlling the cost asymmetry between false
positives and false negatives [17].

Let and denote
the two index sets, and denote the cost asymmetry. Then a
CS-SVM solves

s.t. (1)

where is the normal vector of the hyperplane. When ,
CS-SVMs reduce to CI-SVMs.

In practice, this optimization problem is solved via its dual,
which depends only on a set of Lagrange multipliers (one for
each )

s.t. (2)

where and . The in-
dicator function returns 1 if the condition is true and
0 otherwise. Since there is no offset term, a linear constraint

does not appear in the dual.
Once an optimal solution is

found, the sign of the decision function

(3)
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determines the class of . If , then this decision func-
tion takes only non-positive values when , and corre-
sponds to (0,0) in the ROC. On the other hand, penal-
izes only the violations of positive examples, and corresponds
to (1,1) in the ROC.

Bach et al. [8] extended the method of Hastie et al. [11] to
the CS-SVM. They showed that are piecewise linear in

, and derived an efficient algorithm for computing the entire
path of solutions to (2). Thus, a family of classifiers at a range
of cost asymmetries can be found with a computational cost
comparable to solving (2) for a single .

B. One-Class SVM

The OC-SVM was proposed in [18], [19] to estimate a level
set of an underlying probability density given a data sample
from the density. In one-class problems, all the instances are
assumed from the same class. The primal quadratic program of
the OC-SVM is

s.t. (4)

This problem is again solved via its dual in practice:

s.t. (5)

This formulation is equivalent to the more common
parametrization [18], and is more convenient for our pur-
poses. We also note that the OC-SVM can be solved by setting

and in the CS-SVM. However, our path
algorithm for the OC-SVM, which varies , is not a special
case of our path algorithm for the CS-SVM, which varies
while holding fixed.

A solution defines a decision
function that determines whether a point is an outlier or not.
Here, are also piecewise linear in [12]. From this prop-
erty, we can develop a path following algorithm and generate
a family of level set estimates with a small computational cost.
The set estimate conventionally associated with the OC-SVM is
given by

(6)

Vert and Vert [20] showed that by modifying this estimate
slightly, substituting for where , (6) leads
to a consistent estimate of the true level set when a Gaussian
kernel with a well-calibrated bandwidth is used. Regardless of
whether or , however, the obtained estimates are
not guaranteed to be nested as we will see in Section VI. Note
also that when , (6) is equivalent to set estimation
based on kernel density estimation.

III. NESTED CS-SVM

In this section, we develop the nested cost-sensitive SVM
(NCS-SVM), which aims to produce nested positive decision
sets as the cost asymmetry varies.
Our construction is a two stage process. We first select a finite
number of cost asymmetries a
priori and generate a family of nested decision sets at the prese-
lected cost asymmetries. We achieve this goal by incorporating
nesting constraints into the dual quadratic program of CS-SVM.
Second, we linearly interpolate the solution coefficients of the
finite nested collection to a continuous nested family defined for
all . As an efficient method to solve the formulated problem,
we present a decomposition algorithm.

A. Finite Family of Nested Sets

Our NCS-SVM finds decision functions at cost asymmetries
simultaneously by minimizing the sum of duals

(2) at each and by imposing additional constraints that induce
nested sets. For a fixed and preselected cost asymmetries

, an NCS-SVM solves

(7)

s.t. (8)

(9)

where and is a coefficient
for data point and cost asymmetry . Then its optimal
solution defines the decision function

and its corresponding
decision set for each . In
Section VII, the proposed quadratic program for NCS-SVMs
is interpreted as a dual of a corresponding primal quadratic
program.

B. Interpolation

For an intermediate cost asymmetry between two cost
asymmetries, say and without loss of generality, we can
write for some . Then we define
new coefficients through linear interpolation

(10)

Then the positive decision set at cost asymmetry is

(11)

This is motivated by the piecewise linearity of the Lagrange
multipliers of the CS-SVM, and is further justified by the fol-
lowing result.

Proposition 1: The nested CS-SVM equipped with a kernel
such that (e.g., Gaussian kernels or polynomial ker-
nels of even orders) generates nested decision sets. In other
words, if , then .
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Proof: We prove the proposition in three steps. First, we
show that sets from (7) satisfy .
Second, we show that if , then

. Finally, we prove that any two sets from the NCS-SVM
are nested.

Without loss of generality, we show . Let
and denote the optimal solutions for and . Then
from and (9), we have

. Therefore,
.

Next, without loss of generality, we show
when . The linear interpolation (10) and
the nesting constraints (9) imply

, which, in turn, leads to
.

Now consider arbitrary . If
for some , then by the

above results. Thus, suppose this is not the case and as-
sume without loss of generality. Then
there exist such that and

. Suppose . Then ;
hence,
and . By adding

, we have
. Thus, .

The assumption that the kernel is positive can in some cases
be attained through preprocessing of the data. For example, a
cubic polynomial kernel can be applied if the data support is
shifted to lie in the positive orthant, so that the kernel function
is in fact always positive.

C. Decomposition Algorithm

The objective function (7) requires optimization over
variables. Due to its large size, standard quadratic programming
algorithms are inadequate. Thus, we develop a decomposition
algorithm that iteratively divides the large optimization problem
into subproblems and optimizes the smaller problems. A similar
approach also appears in a multi-class classification algorithm
[21], although the algorithm developed there is substantively
different from ours. The decomposition algorithm follows.

1) Choose an example from the data set.
2) Optimize coefficients corresponding to

while leaving other variables fixed.
3) Repeat 1 and 2 until the optimality condition error falls

below a predetermined tolerance.
The pseudocode given in Fig. 3 initializes with a feasible solu-
tion . A simple way of selec-
tion and termination is cycling through all the or picking

randomly and stopping after a fixed number of iterations.
However, by checking the Karush–Kuhn–Tucker (KKT) opti-
mality conditions and choosing most violating the conditions
[22], the algorithm will converge in far fewer iterations. In the
Appendix, we provide a detailed discussion of the data point
selection scheme and termination criterion based on the KKT
optimality conditions.

In step 2, the algorithm optimizes a set of variables associ-
ated to the chosen data point. Without loss of generality, let us

Fig. 3. Decomposition algorithm for a nested cost-sensitive SVM. Specific
strategies for data point selection and termination, based on the KKT condi-
tions, are given in the Appendix.

assume that the data point is chosen and will be
optimized while fixing the other . We rewrite the objective
function (7) in terms of

where and
denote the output and the variable preceding the update.

These values can be easily computed from the previous iteration
result. is a collection of terms that do not depend on .

Then the algorithm solves the new subproblem with vari-
ables

s.t.
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where is the solution
if feasible. This subproblem is much smaller and can be solved
efficiently via standard quadratic program solvers.

IV. NESTED OC-SVM

In this section, we present a nested extension of OC-SVM.
The nested OC-SVM (NOC-SVM) estimates a family of nested
level sets over a continuum of levels . Our approach here par-
allels the approach developed for the NCS-SVM. First, we will
introduce an objective function for nested set estimation, and
will develop analogous interpolation and decomposition algo-
rithms for the NOC-SVM.

A. Finite Family of Nested Sets

For different density levels of interest
, an NOC-SVM solves the following optimization

problem:

(12)

s.t. (13)

(14)

where and corresponds
to data point at level . Its optimal solution

determines a level set estimate
, where .

In practice, we can choose and to cover the entire
range of interesting values of density level (see Section VI-B,
Appendix C). In Section VII, this quadratic program for the
NOC-SVM is interpreted as a dual of a corresponding primal
quadratic program.

B. Interpolation and Extrapolation

We construct a density level set estimate at an intermediate
level between two preselected levels, say and . At

for some , we set

For , we extrapolate the solution by setting
for . These are motivated by the facts that the OC-SVM

solution is piecewise linear in and remains constant for
as presented in Appendix C. Then the level set estimate becomes

(15)

The level set estimates generated from the above process are
shown to be nested in the next Proposition.

Proposition 2: The nested OC-SVM equipped with a kernel
such that (in particular, a Gaussian kernel) generates

nested density level set estimates. That is, if ,
then .

Proof: We prove the proposition in three steps. First, we
show that sets from (12) satisfy .
Second, the interpolated set (15) is shown to satisfy

when . Finally, we prove the
claim for any two sets from the NOC-SVM.

Without loss of generality, we first show . Let
denote two density levels chosen a priori, and and

denote their corresponding optimal solutions. From (14), we
have , so the two
estimated level sets are nested .

Next, without loss of generality, we prove
for . From (14), we have
and

Hence, .
Now consider arbitrary . By construction, we

can easily see that for ,
and for . Thus, we only
need to consider the case . Since above
results imply if for some , we can
safely assume without loss of generality.
Then there exist such that and

. Suppose . Then and

(16)

(17)

By , we have
. Thus, .

The statement of this result focuses on the Gaussian kernel
because this is the primary kernel for which the OC-SVM has
been successfully applied.

C. Decomposition Algorithm

We also use a decomposition algorithm to solve (12). The
general steps are the same as explained in Section III-C for the
NCS-SVM. Fig. 4 shows the outline of the algorithm. In the
algorithm, a feasible solution for is used as
an initial solution.

Here, we present how we can divide the large optimization
problem into a collection of smaller problems. Suppose that
the data point is selected and its corresponding coefficients
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Fig. 4. Decomposition algorithm for a nested one-class SVM. Specific strate-
gies for data point selection and termination, based on the KKT conditions, are
given in the Appendix.

will be updated. Writing the objective function only
in terms of , we have

where and
denote the variable from the previous iteration step and the cor-
responding output, respectively. is a constant that does not
affect the solution.

Then we obtain the reduced optimization problem of vari-
ables

(18)

s.t. (19)

(20)

where . Notice that
becomes the solution if it is feasible. This reduced optimiza-
tion problem can be solved through standard quadratic program
solvers.

V. COMPUTATIONAL CONSIDERATIONS

Here, we provide guidelines for breakpoint selection and dis-
cuss the effects of interpolation.

A. Breakpoint Selection

The construction of an NCS-SVM begins with the selection
of a finite number of cost asymmetries. Since the cost asym-
metries take values within the range [0,1], the two breakpoints

and should be at the two extremes so that and
. Then the rest of the breakpoints can be

set evenly spaced between and .
On the other hand, the density levels for NOC-SVMs should

be strictly positive. Without covering all positive reals, however,
and can be chosen to cover practically all the density

levels of interest. The largest level for the NOC-SVM is set
as described in Appendix C where we show that for ,
the CS-SVM and OC-SVM remain unchanged. A very small
number greater than 0 is set for . Then the NOC-SVM is
trained on evenly spaced breakpoints between and .

In our experiments, we set the number of breakpoints to be
for NCS-SVMs and for NOC-SVMs. These

values were chosen because increasing the number of break-
points had diminishing AUC gains while causing training
time increases in our experiments. Thus, the cost asymmetries
for the NCS-SVM are (0, 0.25, 0.5, 0.75, 1) and the density
levels for NOC-SVM are 11 linearly spaced points from

to .

B. Effects of Interpolation

Nested SVMs are trained on a finite number of cost asymme-
tries or density levels and then the solution coefficients are lin-
early interpolated over a continuous range of parameters. Here
we illustrate the effectiveness of the linear interpolation scheme
of nested SVMs using the two-dimensional banana data set.

Consider two sets of cost asymmetries,
and , with different numbers of break-
points for the NCS-SVM. Let denote the linearly inter-
polated solution at from the solution of the NCS-SVM with

, and let denote the solution from the NCS-SVM with
. Fig. 5 compares these two solution coefficients and

. The box plots Fig. 5(a) shows that values of
tend to be very small. Indeed, for most , the in-

terquartile range on these box plots is not even visible. Regard-
less of these minor discrepancies, what is most important is that
the resulting decision sets are almost indistinguishable as illus-
trated in Fig. 5(c) and (e). Similar results can be observed in the
NOC-SVM as well from Fig. 5(b)-(f). Here, we consider two
sets of density levels with 11 breakpoints and with 16 break-
points between and .
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Fig. 5. Simulation results depicting the impact of interpolation on the coef-
ficients and final set estimates. See Section V-B for details. (a) � �� � �
� �� �; (b) � �� � � � �� �; (c) � �� �� ��; (d) � �� �� ��;
(e) � �� �� ��; (f) � �� �� ��.

C. Computational Complexity

According to Hastie et al. [11], the (non-nested) path
following algorithm has breakpoints and complexity

, where is the maximum number of
points on the margin along the path. On the other hand, our
nested SVMs have a controllable number of breakpoints .
To assess the complexity of the nested SVMs, we make a
couple of assumptions based on experimental evidence. First,
our experience has shown that the number of iterations of the
decomposition algorithm is proportional to the number of data
points . Second, we assume that the subproblem, which has

variables, can be solved in operations. Furthermore,
each iteration of the decomposition algorithm also involves a
variable selection step. This involves checking all variables for
KKT condition violations (as detailed in the Appendices), and
thus entails operations. Thus, the computation time
of nested SVMs are . In Section VI-E, we
experimentally compare the run times of the path following
algorithms to our methods.

Fig. 6. Description of data sets. ��� is the number of features, and� and
� are the numbers of training and test examples.

VI. EXPERIMENTS AND RESULTS

In order to compare the algorithms described above, we ex-
perimented on 13 benchmark data sets available online1 [23].
Their brief summary is provided in Fig. 6. Each feature is stan-
dardized with zero mean and unit variance. The first eleven data
sets are randomly permuted 100 times (the last two are per-
muted 20 times) and divided into training and test sets. In all
of our experiments, we used the Gaussian kernel

and searched for the bandwidth over
20 logarithmically spaced points from to , where

is the average distance between training data points. This
control parameter is selected via fivefold cross validation on the
first ten permutations, then the average of these values is used
to train the remaining permutations.

Each algorithm generates a family of decision functions and
set estimates. From these sets, we construct an ROC and com-
pute its area under the curve (AUC). We use the AUC averaged
across permutations to compare the performance of algorithms.
As shown in Fig. 1, however, the set estimates from CS-SVMs
or OC-SVMs are not properly nested, and cause ambiguity par-
ticularly in ranking. In Section VI-C, we measure this viola-
tion of the nesting by defining the ranking disagreement of two
rank scoring functions. Then in Section VI-D, we combine this
ranking disagreement and the AUC, and compare the algorithms
over multiple data sets using the Wilcoxon signed ranks test as
suggested in [24].

A. Two-Class Problems

CS-SVMs and NCS-SVMs are compared in two-class prob-
lems. For NCS-SVMs, we set and solved (7) at uni-
formly spaced cost asymmetries .

In two-class problems, we also searched for the regularization
parameter over ten logarithmically spaced points from 0.1 to

, where is

Values of do not produce different solutions in the
CS-SVM (see Appendix C).

1http://ida.first.fhg.de/projects/bench/.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 12,2010 at 16:53:35 UTC from IEEE Xplore.  Restrictions apply. 



LEE AND SCOTT: NESTED SUPPORT VECTOR MACHINES 1655

Fig. 7. AUC values for the CS-SVM (CS) and NCS-SVM (NCS) in two-class problems, and OC-SVM (OC) and NOC-SVM (NOC) in one-class problems. In
one-class problems, “Positive” indicates that the alternative hypotheses are from the positive class examples in the data sets, and “Uniform” indicated that the
alternative hypotheses are from a uniform distribution.

Fig. 8. Effect of kernel bandwidth � on the performance (AUC). The AUC is
evaluated when the alternative class is from the positive class in the data sets (a)
and from a uniform distribution (b). The NOC-SVM is less sensitive to � than
the OC-SVM.

We compared the described algorithms by constructing
ROCs and computing their AUCs. The results are collected in
Fig. 7. More statistical treatments of these results are covered
in Section VI-D.

B. One-Class Problems

For the NOC-SVM, we selected 11 density levels spaced
evenly from (see Appendix C)
to . Among the two classes available in each
data set, we chose the negative class for training. Because the
bandwidth selection step requires computing AUCs, we simu-
lated an artificial second class from a uniform distribution. For
evaluation of the trained decision functions, both the positive
examples in the test sets and a new uniform sample were used
as the alternative class. Fig. 7 reports the results for both cases
(denoted by Positive and Uniform, respectively).

Fig. 8 shows the AUC of the two algorithms over a range of
. Throughout the experiments on one-class problems, we ob-

served that the NOC-SVM is more robust to the kernel band-
width selection than the OC-SVM. However, we did not observe
similar results on two-class problems.

C. Ranking Disagreement

The decision sets from the OC-SVM and the CS-SVM are
not properly nested, as illustrated in Fig. 1. Since larger
means higher density level, the density level set estimate of the
OC-SVM is expected to be contained within the density level

set estimate at smaller . Likewise, larger in the CS-SVM
penalizes misclassification of positive examples more; thus, its
corresponding positive decision set should contain the deci-
sion set at smaller , and the two decision boundaries should
not cross. This undesired nature of the algorithms leads to
non-unique ranking score functions.

In the case of the CS-SVM, we can consider the following
two ranking functions:

(21)

For the OC-SVM, we consider the next pair of ranking functions

(22)

In words, ranks according to the first set containing a point
and ranks according to the last set containing the point. In

either case, it is easy to see .
In order to quantify the disagreement of the two ranking func-

tions, we define the following measure of ranking disagreement:

which is the proportion of data points ambiguously ranked, i.e.,
ranked differently with respect to at least one other point. Then

if and only if and induce the same ranking.
With these ranking functions, Fig. 9 reports the ranking

disagreements from the CS-SVM and OC-SVM. In the table,
refers to the ranking disagreement of the CS-SVM, and

and , respectively, refer to the ranking disagreement of the
OC-SVM when the second class is from the positive samples
and from an artificial uniform distribution. As can be seen in
the table, for some data sets the violation of the nesting causes
severe differences between the above ranking functions.

D. Statistical Comparison

We employ the statistical methodology of Demšar [24] to
compare the algorithms across all data sets. Using the Wilcoxon
signed ranks test, we compare the CS-SVM and the NCS-SVM
for two-class problems, and the OC-SVM and the NOC-SVM
for one-class problems.
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Fig. 9. Measure of disagreement of the two ranking functions from the
CS-SVM and OC-SVM. The meaning of each subscript is explained in the text.
� and � are defined in (21) and (22).

Fig. 10. Comparison of the AUCs of the two-class problem algorithms:
CS-SVM (CS) and NCS-SVM (NCS) using the Wilcoxon signed ranks test
(see text for detail.) The test statistic � is greater than the critical difference 9;
hence, no significant difference is detected in the test.

Fig. 11. Comparison of the OC-SVM (OC) and NOC-SVM (NOC). In the one-
class problems, both cases of alternative hypothesis are considered. Here, no
significant difference is detected.

The Wilcoxon signed ranks test is a non-parametric method
testing the significance of differences between paired observa-
tions, and can be used to compare the performances between
two algorithms over multiple data sets. The difference between
the AUCs from the two algorithms are ranked ignoring the
signs, and then the ranks of positive and negative differences
are added. Figs. 10 and 11, respectively, report the comparison
results of the algorithms for two-class problems and one-class
problems. Here, the numbers under NCS or NOC denote the
sums of ranks of the data sets on which the nested SVMs
performed better than the original SVMs; the values under CS
or OC are for the opposite. is the smaller of the two sums. For
a confidence level of and 13 data sets, the difference
between algorithms is significant if is less than or equal
to 9 [25]. Therefore, any significant performance difference
between the CS-SVM and the NCS-SVM was not detected in
the test. Likewise, no difference between the OC-SVM and the
NOC-SVM was detected.

However, the AUC alone does not highlight the ranking
disagreement of the algorithms. Therefore, we merge the AUC
and the disorder measurement, and consider
for algorithm comparison. Fig. 12 shows the results of the
Wilcoxon signed-ranks test using this combined performance
measure. From the results, we can observe clearly the perfor-
mance differences between algorithms. Since the test statistic

Fig. 12. Comparison of the algorithms based on the AUC along with the
ranking disagreement. Left: CS-SVM and NCS-SVM. Right: OC-SVM
and NOC-SVM. � is less than the critical value 9; hence, the nested SVMs
outperform the original SVMs.

Fig. 13. Average training times (s) for the CS-SVM, NCS-SVM, OC-SVM,
and NOC-SVM on benchmark data sets. This result is based on our implemen-
tation of solution path algorithms for the CS-SVM and OC-SVM.

is smaller than the critical difference 9, the NCS-SVM out-
performs the CS-SVM. Likewise, the performance difference
between the OC-SVM and the NOC-SVM is also detected by
the Wilcoxon test for both cases of the second class. Therefore,
we can conclude that the nested algorithms perform better than
their un-nested counterparts.

E. Run Time Comparison

Fig. 13 shows the training times for each algorithm. The
results for the CS-SVM and OC-SVM are based on our Matlab
implementation of solution path algorithms [8], [12] available
at http://www.eecs.umich.edu/~cscott/code/svmpath.zip. We
emphasize here that our decomposition algorithm relies on
Matlab’s quadprog function as the basic subproblem solver,
and that this function is in no way optimized for our particular
subproblem. A discussion of computational complexity was
given in Section V-C.

VII. PRIMAL OF NESTED SVMs

Although not essential for our approach, we can find a primal
optimization problem of the NCS-SVM if we think of (7) as a
dual problem

s.t.
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The derivation of (7) from this primal can be found in [26]. Note
that the above primal of the NCS-SVM reduces to the primal of
the CS-SVM (1) when .

Likewise, the primal corresponding to the NOC-SVM is

s.t.

(23)

which also boils down to the primal of the OC-SVM (4) when
.

With these formulations, we can see the geometric meaning
of and . For simplicity, consider (23) when

s.t.

Here, when lies between the hyperplane
and the origin, and when

the point lies between and the origin where we used
to denote , a hyperplane in

. Note that from the nesting structure, the hyperplane
is located between and .

Then we can show that
is the distance between the point and the hyperplane

.

VIII. CONCLUSION

In this paper, we introduced a novel framework for building a
family of nested support vector machines for the tasks of cost-
sensitive classification and density level set estimation. Our ap-
proach involves forming new quadratic programs inspired by the
cost-sensitive and one-class SVMs, with additional constraints
that enforce nesting structure. Our construction generates a fi-
nite number of nested set estimates at a preselected set of param-
eter values, and linearly interpolates these sets to a continuous
nested family. We also developed efficient algorithms to solve
the proposed quadratic problems. Thus, the NCS-SVM yields a
family of nested classifiers indexed by cost asymmetry , and
the NOC-SVM yields a family of nested density level set esti-
mates indexed by density level . Unlike the original SVMs,
which are not nested, our methods can be readily applied to
problems requiring multiple set estimation including clustering,
ranking, and anomaly detection.

In experimental evaluations, we found that non-nested SVMs
can yield highly ambiguous rankings for many datasets, and
that nested SVMs offer considerable improvements in this
regard. Nested SVMs also exhibit greater stability with respect
to model selection criteria such as cross-validation. In terms
of area under the ROC (AUC), we found that enforcement of
nesting appears to have a bigger impact on one-class problems.

However, neither cost-sensitive nor one-class classification
problems displayed significantly different AUC values between
nested and non-nested methods.

The statistical consistency of our nested SVMs is an inter-
esting open question. Such a result would likely depend on the
consistency of the original CS-SVM or OC-SVM at fixed values
of or , respectively. We are unaware of consistency results
for the CS-SVM at fixed [27]. However, consistency of the
OC-SVM for fixed has been established [20]. Thus, suppose

are (non-nested) OC-SVMs at a grid of points.
Since these estimators are each consistent, and the true levels
sets they approximate are nested, it seems plausible that for a
sufficiently large sample size, these OC-SVMs are also nested.
In this case, they would be feasible for the NOC-SVM, which
would suggest that the NOC-SVM estimates the true level sets at
least as well, asymptotically, at these estimates. Taking the grid
of levels to be increasingly dense, the error of the interpo-
lation scheme should also vanish. We leave it as future work to
determine whether this intuition can be formalized.

APPENDIX A
DATA POINT SELECTION AND TERMINATION

CONDITION OF NCS-SVM

On each round, the algorithm in Fig. 3 selects an example ,
updates its corresponding variables , and checks the
termination condition. In this appendix, we employ the KKT
conditions to derive an efficient variable selection strategy and
a termination condition of NCS-SVM.

We use the KKT conditions to find the necessary conditions
of the optimal solution of (7). Before we proceed, we define

for and for for notational
convenience. Then the Lagrangian of the quadratic program is

where and for . At the global min-
imum, the derivative of the Lagrangian with respect to van-
ishes

(24)

where, recall, and we introduced
auxiliary variables for and for

. Then we obtain the following set of constraints from
the KKT conditions:

(25)

(26)
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Fig. 14. Optimality conditions of NCS-SVM when � � � . (Upper: � � �� �� � � � �� � �, lower: � � � .) Assuming � are optimal, � and � are
solved as above from the KKT conditions. Empty entries indicate cases that cannot occur.

Fig. 15. Optimality conditions of NCS-SVM when � � � . (Upper: � � �� � � � �� , lower: � � �.)

(27)

(28)

(29)

(30)

(31)

Since (7) is a convex program, the KKT conditions are also
sufficient [22]. That is, , , and satisfying (25)–(31)
is indeed optimal. Therefore, at the end of each iteration, we as-
sess a current solution with these conditions and decide whether
to stop or to continue. We evaluate the amount of error for by
defining

An optimal solution makes these quantities zero. In practice,
when their sum decreases below a predetermined toler-
ance, the algorithm stops and returns the current solution. If not,
the algorithm chooses the example with the largest and con-
tinues the loop.

Computing involves unknown variables and [see
(24)], whereas can be easily computed from the known
variables . Figs. 14 and 15 are for determining these

and . These tables are obtained by first assuming the current
solution is optimal and second solving and such
that they satisfy the KKT conditions. Thus, depending on the
value between its upper and lower bounds, and
can be simply set as directed in the tables. For example, if

, then we find and by referring Fig. 14 iteratively
from down to . If , we use Fig. 15 and
iterate from up to . Then the obtained takes a
nonzero value only when the assumption is false and the current
solution is suboptimal.

APPENDIX B
DATA POINT SELECTION AND TERMINATION

CONDITION OF NOC-SVM

As in NCS-SVM, we investigate the optimality condition of
NOC-SVM (12) and find a data point selection method and a
termination condition.

With a slight modification, we rewrite (12)

s.t.

(32)
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Fig. 16. Optimality conditions of NOC-SVM. (Upper: � � �� �� � � � �� � �, and lower:� �� .) Empty entries indicate cases that cannot occur.

We then use the KKT conditions to find the necessary conditions
of the optimal solution of (32). The Lagrangian is

where and for . At the global min-
imum, the derivative of the Lagrangian with respect to van-
ishes

(33)

where, recall, . Then, from the
KKT conditions, we obtain the following set of constraints for

:

(34)

(35)

(36)

(37)

(38)

(39)

Since (32) is a convex program, the KKT conditions are suf-
ficient [22]. That is, , , and satisfying (34)–(39) is
indeed optimal. Therefore, at the end of each iteration, we as-
sess a current solution with these conditions and decide whether

to stop or to continue. We evaluate the amount of error for by
defining

An optimal solution makes these quantities zero. In practice,
when their sum decreases below a predetermined toler-
ance, the algorithm stops and returns the current solution. If not,
the algorithm chooses the example with the largest and con-
tinues the loop.

Computing involves unknown variables and [see
(33)], whereas can be easily computed from the known
variables . Fig. 16 are for determining these and .
These tables are obtained by first assuming the current solution

is optimal and secondly solving and such that
they satisfy the KKT conditions. Thus, depending on the value

between its upper and lower bounds, and can be
simply set by referring Fig. 16 iteratively from down to

. Then the obtained takes a nonzero value only when
the assumption is false and the current solution is not optimal.

APPENDIX C
MAXIMUM VALUE OF OF CS-SVM AND OC-SVM

In this appendix, we find the values of the regularization pa-
rameter over which OC-SVM or CS-SVM generate the same
solutions.

First, we consider OC-SVM. The decision function of
OC-SVM is and
forms the margin. For sufficiently large , every data point
falls inside the margin . Since the KKT optimality
conditions of (4) imply for the data points such that

, we obtain for . Therefore,
if the maximum row sum of the kernel matrix is denoted as

, then for any , the
optimal solution of OC-SVM becomes for .

Next, we consider the regularization parameter of in
the formulation (1) of CS-SVM. The decision function of
CS-SVM is , and the margin
is . Thus, if is sufficiently large, all the data
points are inside the margin and satisfy . Then

for
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because for all the data points such that
from the KKT conditions. For a given , let

Then for , the solution of CS-SVM be-
comes for . Therefore, since

for all ,
values of generate the same solu-
tions in CS-SVM.
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