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Abstract

We consider the problem of assigning class labels to an unlabeled test data set,
given several labeled training data sets drawn from similar distributions. This
problem arises in several applications where data distributions fluctuate because
of biological, technical, or other sources of variation. We develop a distribution-
free, kernel-based approach to the problem. This approach involves identifying
an appropriate reproducing kernel Hilbert space and optimizing a regularized em-
pirical risk over the space. We present generalization error analysis, describe uni-
versal kernels, and establish universal consistency of the proposed methodology.
Experimental results on flow cytometry data are presented.

1 Introduction

Is it possible to leverage the solution of one classification problem to solve another? This is a ques-
tion that has received increasing attention in recent years from the machine learning community, and
has been studied in a variety of settings, including multi-task learning, covariate shift, and transfer
learning. In this work we study a new setting for this question, one that incorporates elements of the
three aforementioned settings, and is motivated by many practical applications.

To state the problem, let X be a feature space and Y a space of labels to predict; to simplify the
exposition, we will assume the setting of binary classification, Y = {−1, 1} , although the method-
ology and results presented here are valid for general output spaces. For a given distribution PXY ,
we refer to the X marginal distribution PX as simply the marginal distribution, and the conditional
PXY (Y |X) as the posterior distribution.

There are N similar but distinct distributions P (i)
XY on X × Y , i = 1, . . . , N . For each i, there is a

training sample Si = (Xij , Yij)1≤j≤ni of iid realizations of P (i)
XY . There is also a test distribution

PTXY that is similar to but again distinct from the “training distributions” P (i)
XY . Finally, there is a test

sample (XT
j , Y

T
j )1≤j≤nT of iid realizations of PTXY , but in this case the labels Yj are not observed.

The goal is to correctly predict these unobserved labels. Essentially, given a random sample from
the marginal test distribution PTX , we would like to predict the corresponding labels. Thus, when we
say that the training and test distributions are “similar,” we mean that there is some pattern making
it possible to learn a mapping from marginal distributions to labels. We will refer to this learning
problem as learning marginal predictors. A concrete motivating application is given below.

This problem may be contrasted with other learning problems. In multi-task learning, only the
training distributions are of interest, and the goal is to use the similarity among distributions to
improve the training of individual classifiers [1, 2, 3]. In our context, we view these distributions
as “training tasks,” and seek to generalize to a new distribution/task. In the covariate shift problem,
the marginal test distribution is different from the marginal training distribution(s), but the posterior
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distribution is assumed to be the same [4]. In our case, both marginal and posterior test distributions
can differ from their training counterparts [5].

Finally, in transfer learning, it is typically assumed that at least a few labels are available for the
test data, and the training data sets are used to improve the performance of a standard classifier, for
example by learning a metric or embedding which is appropriate for all data sets [6, 7]. In our case,
no test labels are available, but we hope that through access to multiple training data sets, it is still
possible to obtain collective knowledge about the “labeling process” that may be transferred to the
test distribution. Some authors have considered transductive transfer learning, which is similar to
the problem studied here in that no test labels are available. However, existing work has focused on
the case N = 1 and typically relies on the covariate shift assumption [8].

We propose a distribution-free, kernel-based approach to the problem of learning marginal predic-
tors. Our methodology is shown to yield a consistent learning procedure, meaning that the general-
ization error tends to the best possible as the sample sizes N, {ni}, nT tend to infinity. We also offer
a proof-of-concept experimental study validating the proposed approach on flow cytometry data,
including comparisons to multi-task kernels and a simple pooling approach.

2 Motivating Application: Automatic Gating of Flow Cytometry Data

Flow cytometry is a high-throughput measurement platform that is an important clinical tool for the
diagnosis of many blood-related pathologies. This technology allows for quantitative analysis of
individual cells from a given population, derived for example from a blood sample from a patient.
We may think of a flow cytometry data set as a set of d-dimensional attribute vectors (Xj)1≤j≤n,
where n is the number of cells analyzed, and d is the number of attributes recorded per cell. These
attributes pertain to various physical and chemical properties of the cell. Thus, a flow cytometry
data set is a random sample from a patient-specific distribution.

Now suppose a pathologist needs to analyze a new (“test”) patient with data (XT
j )1≤j≤nT . Before

proceeding, the pathologist first needs the data set to be “purified” so that only cells of a certain
type are present. For example, lymphocytes are known to be relevant for the diagnosis of leukemia,
whereas non-lymphocytes may potentially confound the analysis. In other words, it is necessary to
determine the label Y Tj ∈ {−1, 1} associated to each cell, where Y Tj = 1 indicates that the j-th cell
is of the desired type.

In clinical practice this is accomplished through a manual process known as “gating.” The data are
visualized through a sequence of two-dimensional scatter plots, where at each stage a line segment
or polygon is manually drawn to eliminate a portion of the unwanted cells. Because of the variability
in flow cytometry data, this process is difficult to quantify in terms of a small subset of simple rules.
Instead, it requires domain-specific knowledge and iterative refinement. Modern clinical laboratories
routinely see dozens of cases per day, so it would be desirable to automate this process.

Since clinical laboratories maintain historical databases, we can assume access to a number (N ) of
historical patients that have already been expert-gated. Because of biological and technical varia-
tions in flow cytometry data, the distributions P (i)

XY of the historical patients will vary. For example,
Fig. 1 shows exemplary two-dimensional scatter plots for two different patients, where the shaded
cells correspond to lymphocytes. Nonetheless, there are certain general trends that are known to
hold for all flow cytometry measurements. For example, lymphocytes are known to exhibit low
levels of the “side-scatter” (SS) attribute, while expressing high levels of the attribute CD45 (see
column 2 of Fig. 1). More generally, virtually every cell type of interest has a known tendency
(e.g., high or low) for most measured attributes. Therefore, it is reasonable to assume that there is an
underlying distribution (on distributions) governing flow cytometry data sets, that produces roughly
similar distributions thereby making possible the automation of the gating process.

3 Formal Setting

Let X denote the observation space and Y = {−1, 1} the output space. Let PX×Y denote the set
of probability distributions on X × Y , PX the set of probability distributions on X , and PY|X the
set of conditional probabilities of Y given X (also known as Markov transition kernels from X to
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Figure 1: Two-dimensional projections of multi-dimensional flow cytometry data. Each row corre-
sponds to a single patient. The distribution of cells differs from patient to patient. Lymphocytes, a
type of white blood cell, are marked dark (blue) and others are marked bright (green). These were
manually selected by a domain expert.

Y ) which we also call “posteriors” in this work. The disintegration theorem (see for instance [9],
Theorem 6.4) tells us that (under suitable regularity properties, e.g., X is a Polish space) any element
PXY ∈ PX×Y can be written as a product PXY = PX•PY |X , with PX ∈ PX , PY |X ∈ PY |X . The
space PX×Y is endowed with the topology of weak convergence and the associated Borel σ-algebra.

It is assumed that there exists a distribution µ on PX×Y , where P (1)
XY , . . . , P

(N)
XY are i.i.d. realizations

from µ, and the sample Si is made of ni i.i.d. realizations of (X,Y ) following the distribution P (i)
XY .

Now consider a test distribution PTXY and test sample ST = (XT
j , Y

T
j )1≤j≤nT , whose labels are

not observed. A decision function is a function f : PX × X 7→ R that predicts Ŷi = f(P̂X , Xi),
where P̂X is the associated empirical X distribution. If ` : R× Y 7→ R+ is a loss, then the average
loss incurred on the test sample is 1

nT

∑nT
i=1 `(Ŷ

T
i , Y

T
i ) . Based on this, we define the average

generalization error of a decision function over test samples of size nT ,

E(f, nT ) := EPTXY ∼µEST∼(PTXY )⊗nT

[
1
nT

nT∑
i=1

`(f(P̂TX , X
T
i ), Y Ti )

]
. (1)

In important point of the analysis is that, at training time as well as at test time, the marginal dis-
tribution PX for a sample is only known through the sample itself, that is, through the empirical
marginal P̂X . As is clear from equation (1), because of this the generalization error also depends on
the test sample size nT . As nT grows, P̂TX will converge to PTX . This motivates the following gen-
eralization error when we have an infinite test sample, where we then assume that the true marginal
PTX is observed:

E(f,∞) := EPTXY ∼µE(XT ,Y T )∼PTXY

[
`(f(PTX , X

T ), Y T )
]
. (2)

To gain some insight into this risk, let us decompose µ into two parts, µX which generates the
marginal distribution PX , and µY |X which, conditioned on PX , generates the posterior PY |X . De-
note X̃ = (PX , X). We then have

E(f,∞) = EPX∼µXEPY |X∼µY |XEX∼PXEY |X∼PY |X
[
`(f(X̃), Y )

]
= EPX∼µXEX∼PXEPY |X∼µY |XEY |X∼PY |X

[
`(f(X̃), Y )

]
= E(X̃,Y )∼Qµ

[
`(f(X̃), Y )

]
.

HereQµ is the distribution that generates X̃ by first drawing PX according to µX , and then drawing
X according to PX . Similarly, Y is generated, conditioned on X̃ , by first drawing PY |X according
to µY |X , and then drawing Y from PY |X . From this last expression, we see that the risk is like a
standard binary classification risk based on (X̃, Y ) ∼ Qµ. Thus, we can deduce several properties
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that are known to hold for binary classification risks. For example, if the loss is the 0/1 loss, then
f∗(X̃) = 2η̃(X̃)− 1 is an optimal predictor, where η̃(X̃) = EY∼Qµ

Y |X̃

[
1{Y=1}

]
. More generally,

E(f,∞)− E(f∗,∞) = EX̃∼Qµ
X̃

[
1{sign(f(X̃)) 6=sign(f∗(X̃))}|2η̃(X̃)− 1|

]
.

Our goal is a learning rule that asymptotically predicts as well as the global minimizer of (2), for
a general loss `. By the above observations, consistency with respect to a general ` (thought of
as a surrogate) will imply consistency for the 0/1 loss, provided ` is classification calibrated [10].
Despite the similarity to standard binary classification in the infinite sample case, we emphasize that
the learning task here is different, because the realizations (X̃ij , Yij) are neither independent nor
identically distributed.

Finally, we note that there is a condition where for µ-almost all test distribution PTXY , the classifier
f∗(PTX , .) (where f∗ is the global minimizer of (2)) coincides with the optimal Bayes classifier for
PTXY , although no labels from this test distribution are observed. This condition is simply that the
posterior PY |X is (µ-almost surely) a function of PX . In other words, with the notation introduced
above, µY |X(PX) is a Dirac delta for µ-almost all PX . Although we will not be assuming this
condition throughout the paper, it is implicitly assumed in the motivating application presented in
Section 2, where an expert labels the data points by just looking at their marginal distribution.

Lemma 3.1. For a fixed distribution PXY , and a decision function f : X → R, let us denote
R(f, PXY ) = E(X,Y )∼PXY [`(f(X), Y )] and

R∗(PXY ) := min
f :X→R

R(f, PXY ) = min
f :X→R

E(X,Y )∼PXY [`(f(X), Y )]

the corresponding optimal (Bayes) risk for the loss function `. Assume that µ is a distribution on
PX×Y such that µ-a.s. it holds PY |X = F (PX) for some deterministic mapping F . Let f∗ be a
minimizer of the risk (2). Then we have for µ-almost all PXY :

R(f∗(PX , .), PXY ) = R∗(PXY )

and
E(f∗,∞) = EPXY ∼µ [R∗(PXY )] .

Proof. Straightforward. Obviously for any f : PX × X → R, one has for all PXY :
R(f(PX , .), PXY ) ≥ R∗(PXY ). For any fixed PX ∈ PX , consider PXY := PX • F (PX) and
g∗(PX) a Bayes classifier for this joint distribution. Pose f(PX , x) := g∗(PX)(x). Then f coin-
cides for µ-almost PXY with a Bayes classifier for PXY , achieving equality in the above inequality.
The second equality follows by taking expectation over PXY ∼ µ.

4 Learning Algorithm

We consider an approach based on positive semi-definite kernels, or simply kernels for short. Back-
ground information on kernels, including the definition, normalized kernels, universal kernels, and
reproducing kernel Hilbert spaces (RKHSs), may be found in [11]. Several well-known learning
algorithms, such as support vector machines and kernel ridge regression, may be viewed as min-
imizers of a norm-regularized empirical risk over the RKHS of a kernel. A similar development
also exists for multi-task learning [3]. Inspired by this framework, we consider a general kernel
algorithm as follows.

Consider the loss function ` : R × Y → R+. Let k be a kernel on PX × X , and let Hk be the
associated RKHS. For the sample Si let P̂ (i)

X denote the corresponding empirical distribution of the
Xijs. Also consider the extended input space PX × X and the extended data X̃ij = (P̂ (i)

X , Xij).
Note that P̂ (i)

X plays a role similar to the task index in multi-task learning. Now define

f̂λ = arg min
f∈Hk

1
N

N∑
i=1

1
ni

ni∑
j=1

`(f(X̃ij), Yij) + λ ‖f‖2 . (3)
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For the hinge loss, by the representer theorem [12] this optimization problem reduces to a quadratic
program equivalent to the dual of a kind of cost-sensitive SVM, and therefore can be solved using
existing software packages. The final predictor has the form

f̂λ(P̂X , x) =
N∑
i=1

ni∑
j=1

αijYijk((P̂ (i)
X , Xij), (P̂X , x))

where the αij are nonnegative and mostly zero. See [11] for details.

In the rest of the paper we will consider a kernel k on PX ×X of the product form

k((P1, x1), (P2, x2)) = kP (P1, P2)kX(x1, x2), (4)

where kP is a kernel on PX and kX a kernel on X . Furthermore, we will consider kernels on
PX of a particular form. Let k′X denote a kernel on X (which might be different from kX ) that is
measurable and bounded. We define the following mapping Ψ : PX → Hk′X :

PX 7→ Ψ(PX) :=
∫
X
k′X(x, ·)dPX(x). (5)

This mapping has been studied in the framework of “characteristic kernels” [13], and it has been
proved that there are important links between universality of k′X and injectivity of Ψ [14, 15].

Note that the mapping Ψ is linear. Therefore, if we consider the kernel kP (PX , P ′X) =
〈Ψ(PX),Ψ(P ′X)〉, it is a linear kernel on PX and cannot be a universal kernel. For this reason,
we introduce yet another kernel K onHk′X and consider the kernel on PX given by

kP (PX , P ′X) = K (Ψ(PX),Ψ(P ′X)) . (6)

Note that particular kernels inspired by the finite dimensional case are of the form

K(v, v′) = F (‖v − v′‖), (7)

or
K(v, v′) = G(〈v, v′〉), (8)

where F,G are real functions of a real variable such that they define a kernel. For example, F (t) =
exp(−t2/(2σ2)) yields a Gaussian-like kernel, while G(t) = (1 + t)d yields a polynomial-like
kernel. Kernels of the above form on the space of probability distributions over a compact space X
have been introduced and studied in [16]. Below we apply their results to deduce that k is a universal
kernel for certain choices of kX , k′X , and K.

5 Learning Theoretic Study

Although the regularized estimation formula (3) defining f̂λ is standard, the generalization error
analysis is not, since the X̃ij are neither identically distributed nor independent. We begin with a
generalization error bound that establishes uniform estimation error control over functions belonging
to a ball of Hk . We then discuss universal kernels, and finally deduce universal consistency of the
algorithm. To simplify somewhat the analysis, we assume below that all training samples have the
same size ni = n. Also let Bk(r) denote the closed ball of radius r, centered at the origin, in the
RKHS of the kernel k. We consider the following assumptions on the loss and kernels:

(Loss) The loss function ` : R× Y → R+ is L`-Lipschitz in its first variable and bounded by B`.
(Kernels-A) The kernels kX , k′X and K are bounded respectively by constants B2

k, B
2
k′ ≥ 1, and

B2
K . In addition, the canonical feature map ΦK : Hk′X → HK associated to K satisfies a

Hölder condition of order α ∈ (0, 1] with constant LK, on Bk′X (Bk′) :

∀v, w ∈ Bk′X (Bk′) : ‖ΦK(v)− ΦK(w)‖ ≤ LK ‖v − w‖α . (9)

Sufficient conditions for (9) are described in [11]. As an example, the condition is shown to hold
with α = 1 when K is the Gaussian-like kernel on Hk′X . The boundedness assumptions are also
clearly satisfied for Gaussian kernels.
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Theorem 5.1 (Uniform estimation error control). Assume conditions (Loss) and (Kernels-A) hold.
If P (1)

XY , . . . , P
(N)
XY are i.i.d. realizations from µ, and for each i = 1, . . . , N , the sample Si =

(Xij , Yij)1≤j≤n is made of i.i.d. realizations from P
(i)
XY , then for any R > 0, with probability at

least 1− δ:

sup
f∈Bk(R)

∣∣∣∣∣∣ 1
N

N∑
i=1

1
n

n∑
j=1

`(f(X̃ij), Yij)− E(f,∞)

∣∣∣∣∣∣
≤ c

(
RBkL`

(
Bk′LK

(
logN + log δ−1

n

)α
2

+BK
1√
N

)
+B`

√
log δ−1

N

)
, (10)

where c is a numerical constant, and Bk(R) denotes the ball of radius R ofHk .

Proof sketch. The full proofs of this and other results are given in [11]. We give here a brief
overview. We use the decomposition

sup
f∈Bk(R)

∣∣∣∣∣∣ 1
N

N∑
i=1

1
ni

ni∑
j=1

`(f(X̃ij), Yij)− E(f,∞)

∣∣∣∣∣∣
≤ sup
f∈Bk(R)

∣∣∣∣∣∣ 1
N

N∑
i=1

1
ni

ni∑
j=1

(
`(f(P̂ (i)

X , Xij), Yij)− `(f(P (i)
X , Xij), Yij)

)∣∣∣∣∣∣
+ sup
f∈Bk(R)

∣∣∣∣∣∣ 1
N

N∑
i=1

1
ni

ni∑
j=1

`(f(P (i)
X , Xij), Yij)− E(f,∞)

∣∣∣∣∣∣ =: (I) + (II).

Bounding (I), using the Lipschitz property of the loss function, can be reduced to controlling∥∥∥f(P̂ (i)
X , .)− f(P (i)

X , .)
∥∥∥
∞
,

conditional toP (i)
X , uniformly for i = 1, . . . , N . This can be obtained using the reproducing property

of the kernel k, the convergence of Ψ(P̂ (i)
X ) to Ψ(P (i)

X ) as a consequence of Hoeffding’s inequality
in a Hilbert space, and the other assumptions (boundedness/Hölder property) on the kernels.

Concerning the control of the term (II), it can be decomposed in turn into the convergence con-
ditional to (P (i)

X ), and the convergence of the conditional generalization error. In both cases, a
standard approach using the Azuma-McDiarmid’s inequality [17] followed by symmetrization and
Rademacher complexity analysis on a kernel space [18, 19] can be applied. For the first part, the
random variables are the (Xij , Yij) (which are independent conditional to (P (i)

X )); for the second
part, the i.i.d. variables are the (P (i)

X ) (the (Xij , Yij) being integrated out).

To establish that k is universal on PX ×X , the following lemma is useful.

Lemma 5.2. Let Ω,Ω′ be two compact spaces and k, k′ be kernels on Ω,Ω′, respectively. If k, k′
are both universal, then the product kernel

k((x, x′), (y, y′)) := k(x, y)k′(x′, y′)

is universal on Ω× Ω′.

Several examples of universal kernels are known on Euclidean space. We also need universal kernels
on PX . Fortunately, this was recently investigated [16]. Some additional assumptions on the kernels
and feature space are required:

(Kernels-B) kX , k′X , K, and X satisfy the following: X is a compact metric space; kX is universal
on X ; k′X is continuous and universal on X ; K is universal on any compact subset ofHk′X .
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Adapting the results of [16], we have the following.
Theorem 5.3 (Universal kernel). Assume condition (Kernels-B) holds. Then, for kP defined as in
(6), the product kernel k in (4) is universal on PX×X . Furthermore, the assumption on K is fulfilled
if K is of the form (8), where G is an analytical function with positive Taylor series coefficients, or if
K is the normalized kernel associated to such a kernel.

As an example, suppose that X is a compact subset of Rd. Let kX and k′X be Gaussian kernels on
X . TakingG(t) = exp(t), it follows that K(PX , P ′X) = exp(〈Ψ(PX),Ψ(P ′X)〉Hk′

X

) is universal on
PX . By similar reasoning as in the finite dimensional case, the Gaussian-like kernel K(PX , P ′X) =
exp(− 1

2σ2 ‖Ψ(PX)−Ψ(P ′X)‖2Hk′
X

) is also universal on PX . Thus the product kernel is universal.

Corollary 5.4 (Universal consistency). Assume the conditions (Loss), (Kernels-A), and (Kernels-
B) are satisfied. Assume that N,n grow to infinity in such a way that N = O(nγ) for some γ > 0.

Then, if λj is a sequence such that λj → 0 and λj
√

j
log j →∞, it holds that

E(f̂λmin(N,nα) ,∞)→ inf
f :PX×X→R

E(f,∞)

in probability.

6 Experiments

We demonstrate the proposed methodology for flow cytometry data auto-gating, described above.
Peripheral blood samples were obtained from 35 normal patients, and lymphocytes were classified
by a domain expert. The corresponding flow cytometry data sets have sample sizes ranging from
10,000 to 100,000, and the proportion of lymphocytes in each data set ranges from 10 to 40%. We
tookN = 10 of these data sets for training, and the remaining 25 for testing. To speed training time,
we subsampled the 10 training data sets to have 1000 data points (cells) each. Adopting the hinge
loss, we used the SVMlight [20] package to solve the quadratic program characterizing the solution.

kP Train Test
Pooling (τ = 1) 1.41 2.32
MTL (τ = 0.01) 1.59 2.64
MTL (τ = 0.5) 1.34 2.36
Proposed 1.32 2.29

Table 1: The misclassification rates (%) on
training data sets and test data sets for dif-
ferent kP . The proposed method adapts the
decision function to the test data (through
the marginal-dependent kernel), account-
ing for its improved performance.

The kernels kX , k′X , and K are all taken to be Gaus-
sian kernels with respective bandwidths σX , σ′X , and
σ. We set σX such that σ2

X equals 10 times the average
distance of a data point to its nearest neighbor within
the same data set. The second bandwidth was defined
similarly, while the third was set to 1. The regulariza-
tion parameter λ was set to 1.

For comparison, we also considered three other
options for kP . These kernels have the form
kP (P1, P2) = 1 if P1 = P2, and kP (P1, P2) = τ
otherwise. When τ = 1, the method is equivalent to
pooling all of the training data together in one data set,
and learning a single SVM classifier. This idea has
been previously studied in the context of flow cytome-
try by [21]. When 0 < τ < 1, we obtain a kernel like what was used for multi-task learning (MTL)
by [3]. Note that these kernels have the property that if P1 is a training data set, and P2 a test data set,
then P1 6= P2 and so kP (P1, P2) is simply a constant. This implies that the learning rules produced
by these kernels do not adapt to the test distribution, unlike the proposed kernel. In the experiments,
we take τ = 1 (pooling), 0.01, and 0.5 (MTL).

The results are shown in Fig. 2 and summarized in Table 1. The middle column of the table reports
the average misclassification rate on the training data sets. Here we used those data points that
were not part of the 1000-element subsample used for training. The right column shows the average
misclassification rate on the test data sets.

7 Discussion

Our approach to learning marginal predictors relies on the extended input pattern X̃ = (PX , X).
Thus, we study the natural algorithm of minimizing a regularized empirical loss over a reproducing
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Figure 2: The misclassification rates (%) on training data sets and test data sets for different kP . The
last 25 data sets separated by dotted line are not used during training.

kernel Hilbert space associated with the extended input domain PX×X . We also establish universal
consistency, using a novel generalization error analysis under the inherent non-iid sampling plan,
and a construction of a universal kernel on PX × X . For the hinge loss, the algorithm may be
implemented using standard techniques for SVMs. The algorithm is applied to flow cytometry auto-
gating, and shown to improve upon kernels that do not adapt to the test distribution.

Several future directions exist. From an application perspective, the need for adaptive classifiers
arises in many applications, especially in biomedical applications involving biological and/or tech-
nical variation in patient data. For example, when electrocardiograms are used to monitor cardiac
patients, it is desirable to classify each heartbeat as irregular or not. However, irregularities in a test
patient’s heartbeat will differ from irregularities of historical patients, hence the need to adapt to the
test distribution [22].

We can also ask how the methodology and analysis can be extended to the context where a small
number of labels are available for the test distribution, as is commonly assumed in transfer learning.
In this setting, two approaches are possible. The simplest one is to use the same optimization prob-
lem (3), wherein we include additionally the labeled examples of the test distribution. However, if
several test samples are to be treated in succession, and we want to avoid a full, resource-consuming
re-training using all the training samples each time, an interesting alternative is the following: learn
once a function f0(PX , x) using the available training samples via (3); then, given a partially labeled
test sample, learn a decision function on this sample only via the usual kernel norm regularized em-
pirical loss minimization method, but replace the usual regularizer term ‖f‖2 by ‖f − f0(Px, .)‖2
(note that f0(Px, .) ∈ Hk). In this sense, the marginal-adaptive decision function learned from the
training samples would serve as a “prior” for learning on the test data.

It would also be of interest to extend the proposed methodology to a multi-class setting. In this case,
the problem has an interesting interpretation in terms of “learning to cluster.” Each training task may
be viewed as a data set that has been clustered by a teacher. Generalization then entails the ability
to learn the clustering process, so that clusters may be assigned to a new unlabeled data set.

Future work may consider other asymptotic regimes, e.g., where {ni}, nT do not tend to infinity,
or they tend to infinity much slower than N . It may also be of interest to develop implementations
for differentiable losses such as the logistic loss, allowing for estimation of posterior probabilities.
Finally, we would like to specify conditions on µ, the distribution-generating distribution, that are
favorable for generalization (beyond the simple condition discussed in Lemma 3.1).

Acknowledgments

G. Blanchard was supported by the European Community’s 7th Framework Programme under
the PASCAL2 Network of Excellence (ICT-216886) and under the E.U. grant agreement 247022
(MASH Project). G. Lee and C. Scott were supported in part by NSF Grant No. 0953135.

8



References
[1] S. Thrun, “Is learning the n-th thing any easier than learning the first?,” Advances in Neural

Information Processing Systems, pp. 640–646, 1996.
[2] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, pp. 41–75, 1997.
[3] T. Evgeniou and M. Pontil, “Learning multiple tasks with kernel methods,” J. Machine Learn-

ing Research, pp. 615–637, 2005.
[4] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning under covariate shift,” J.

Machine Learning Research, pp. 2137–2155, 2009.
[5] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Dataset Shift in

Machine Learning, The MIT Press, 2009.
[6] R. K. Ando and T. Zhang, “A high-performance semi-supervised learning method for text

chunking,” Proceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics (ACL 05), pp. 1–9, 2005.

[7] A. Rettinger, M. Zinkevich, and M. Bowling, “Boosting expert ensembles for rapid concept
recall,” Proceedings of the 21st National Conference on Artificial Intelligence (AAAI 06), vol.
1, pp. 464–469, 2006.

[8] A. Arnold, R. Nallapati, and W.W. Cohen, “A comparative study of methods for transductive
transfer learning,” Seventh IEEE International Conference on Data Mining Workshops, pp.
77–82, 2007.

[9] O. Kallenberg, Foundations of Modern Probability, Springer, 2002.
[10] P. Bartlett, M. Jordan, and J. McAuliffe, “Convexity, classification, and risk bounds,” J. Amer.

Stat. Assoc., vol. 101, no. 473, pp. 138–156, 2006.
[11] G. Blanchard, G. Lee, and C. Scott, “Supplemental material,” NIPS 2011.
[12] I. Steinwart and A. Christmann, Support Vector Machines, Springer, 2008.
[13] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A kernel approach to com-

paring distributions,” in Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
R. Holte and A. Howe, Eds., 2007, pp. 1637–1641.

[14] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A kernel method
for the two-sample-problem,” in Advances in Neural Information Processing Systems 19,
B. Schölkopf, J. Platt, and T. Hoffman, Eds., 2007, pp. 513–520.

[15] B. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. Lanckriet, “Hilbert space
embeddings and metrics on probability measures,” Journal of Machine Learning Research,
vol. 11, pp. 1517–1561, 2010.

[16] A. Christmann and I. Steinwart, “Universal kernels on non-standard input spaces,” in Advances
in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, Eds., 2010, pp. 406–414.

[17] C. McDiarmid, “On the method of bounded differences,” Surveys in Combinatorics, vol. 141,
pp. 148–188, 1989.

[18] V. Koltchinskii, “Rademacher penalties and structural risk minimization,” IEEE Transactions
on Information Theory, vol. 47, no. 5, pp. 1902 – 1914, 2001.

[19] P. Bartlett and S. Mendelson, “Rademacher and Gaussian complexities: Risk bounds and
structural results,” Journal of Machine Learning Research, vol. 3, pp. 463–482, 2002.

[20] T. Joachims, “Making large-scale SVM learning practical,” in Advances in Kernel Methods -
Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, Eds., chapter 11, pp. 169–
184. MIT Press, Cambridge, MA, 1999.

[21] J. Toedling, P. Rhein, R. Ratei, L. Karawajew, and R. Spang, “Automated in-silico detection of
cell populations in flow cytometry readouts and its application to leukemia disease monitoring,”
BMC Bioinformatics, vol. 7, pp. 282, 2006.

[22] J. Wiens, Machine Learning for Patient-Adaptive Ectopic Beat Classication, Masters The-
sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 2010.

9


