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Abstract

This paper reports on a family of computationally practicalclassifiers
that converge to the Bayes error at near-minimax optimal rates for a va-
riety of distributions. The classifiers are based ondyadic classification
trees(DCTs), which involve adaptively pruned partitions of the feature
space. A key aspect of DCTs is their spatial adaptivity, which enables lo-
cal (rather than global) fitting of the decision boundary. Our risk analysis
involves a spatial decomposition of the usual concentration inequalities,
leading to a spatially adaptive, data-dependent pruning criterion. For any
distribution on(X,Y ) whose Bayes decision boundary behaves locally
like a Lipschitz smooth function, we show that the DCT error converges
to the Bayes error at a rate within a logarithmic factor of theminimax
optimal rate. We also study DCTs equipped with polynomial classifica-
tion rules at each leaf, and show that as the smoothness of theboundary
increases their errors converge to the Bayes error at a rate approaching
n−1/2, the parametric rate. We are not aware of any other practicalclassi-
fiers that provide similar rate of convergence guarantees. Fast algorithms
for tree pruning are discussed.

1 Introduction

We previously studieddyadic classification trees, equipped with simple binary decision
rules at each leaf, in [1]. There we applied standard structural risk minimization to derive
a pruning rule that minimizes the empirical error plus a complexity penalty proportional to
the square root of the size of the tree. Our main result concerned the rate of convergence
of the expected error probability of our pruned dyadic classification tree to the Bayes error
for a certain class of problems. This class, which essentially requires the Bayes decision
boundary to be locally Lipschitz, had previously been studied by Mammen and Tsybakov
[2]. They showed the minimax rate of convergence for this class to ben−1/d, wheren is
the number of labeled training samples, andd is the dimension of each sample. They also
demonstrated a classification rule achieving this rate, butthe rule requires minimization
of the empirical error over the entire class of decision boundaries, an infeasible task in
practice. In contrast, DCTs are computationally efficient,but converge at a slower rate of
n−1/(d+1).



In this paper we exhibit a new pruning strategy that is both computationally efficient and
realizes the minimax rate to within a log factor. Our approach is motivated by recent results
from Kearns and Mansour [3] and Mansour and McAllester [4]. Those works develop a
theory of local uniform convergence, which allows the errorto be decomposed in a spatially
adaptive way (unlike conventional structural risk minimization). In essence, the associated
pruning rules allow a more refined partition in a region wherethe classification problem
is harder (i.e., near the decision boundary). Heuristic arguments and anecdotal evidence
in both [3] and [4] suggest that spatially adaptive penalties lead to improved performance
compared to “global” penalties. In this work, we give theoretical support to this claim (for
a specific kind of classification tree, the DCT) by showing a superior rate of convergence
for DCTs pruned according to spatially adaptive penalties.

We go on to study DCTs equipped with polynomial classification rules at each leaf. This
provides more flexible classifiers that can take advantage ofadditional smoothness in the
Bayes decision boundary. We call such a classifier a polynomial-decorated DCT (PDCT).
PDCTs can be practically implemented by employing polynomial kernel SVMs at each
leaf node of a pruned DCT. For any distribution whose Bayes decision boundary behaves
locally like a Hölder-γ smooth function, we show that the PDCT error converges to the
Bayes error at a rate no slower thanO((log n/n)γ/(d+2γ−2)). As γ → ∞ the rate tends to
within a log factor of the parametric rate,n−1/2.

Perceptron trees, tree classifiers having linear splits at each node, have been investigated by
many authors and in particular we point to the works [5,6]. Those works consider optimiza-
tion methods and generalization errors associated with perceptron trees, but do not address
rates of approximation and convergence. A key aspect of PDCTs is their spatial adaptiv-
ity, which enables local (rather than global) polynomial fitting of the decision boundary.
Traditional polynomial kernel-based methods are not capable of achieving such rates of
convergence due to their lack of spatial adaptivity, and it is unlikely that other kernels can
solve this problem for the same reason. Consider approximating a Hölder-γ smooth func-
tion on a bounded domain with a single polynomial. Then the error in approximation is
O(1), a constant, which is the best one could hope for in learning aHölder smooth bound-
ary with a traditional polynomial kernel scheme. On the other hand, if we partition the
domain into hypercubes of side lengthO(1/m) and fit an individual polynomial on each
hypercube, then the approximation error decays likeO(m−γ). Letting m grow with the
sample sizen guarantees that the approximation error will tend to zero. On the other hand,
pruning back the partition helps to avoid overfitting. This is precisely the idea behind the
PDCT.

2 Dyadic Classification Trees

In this section we review our earlier results on dyadic classification trees. LetX be a
d-dimensional observation, andY ∈ {0, 1} its class label. AssumeX ∈ [0, 1]d. This
is a realistic assumption for real-world data, provided appropriate translation and scaling
has been applied. DCTs are based on the concept of acyclic dyadic partition(CDP). Let
P = {R1, . . . , Rk} be a tree-structured partition of the input space, where each Ri is a
hyperrectangle with sides parallel to the coordinate axes.Given an integer̀, let [`]d denote
the element of{1, . . . , d} that is congruent tò modulod. If Ri ∈ P is a cell at depth
j in the tree, letR(1)

i andR
(2)
i be the rectangles formed by splittingRi at its midpoint

along coordinate[j + 1]d. A CDP is a partitionP constructed according to the rules:
(i) The trivial partitionP = [0, 1]d is a CDP; (ii) If {R1, . . . , Rk} is a CDP, then so is
{R1, . . . , Ri−1, R

(1)
i , R

(2)
i , Ri+1, . . . , Rk}, where1 ≤ i ≤ d. The term “cyclic” refers to

how the splits cycle through the coordinates of the input space as one traverses a path down
the tree. We define adyadic classification tree(DCT) to be a cyclic dyadic partition with
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Figure 1: Example of a dyadic classification tree whend = 2. (a) Training samples from
two classes, and Bayes decision boundary. (b) Initial dyadic partition. (c) Pruned dyadic
classification tree. Polynomial-decorated DCTs, discussed in Section 4, are similar in struc-
ture, but a polynomial decision rule is employed at each leafof the pruned tree, instead of
a simple binary label.

a class label (0 or 1) assigned to each node in the tree. We use the notationT to denote a
DCT. Figure 1 (c) shows an example of a DCT in the two-dimensional case.

Previously we presented a rule for pruning DCTs with consistency and rate of convergence
properties. In this section we review those results, setting the stage for our main result in
the next section. Letm = 2J be a dyadic integer, and defineT0 to be the DCT that has
every leaf node at depthdJ . Then each leaf ofT0 corresponds to a cube of side length1/m,
andT0 hasmd total leaf nodes. Assume a training sample of sizen is given, and each node
of T0 is labeled according to a majority vote with respect to the training data reaching that
node. A subtreeT of T0 is referred to as aprunedsubtree, denotedT ≤ T0, if T includes
the root ofT0, if every internal node ofT has both its children inT , and if the nodes ofT
inherit their labels fromT0. Thesizeof a treeT , denoted|T |, is the number of leaf nodes.

We defined the complexity penalized dyadic classification treeT ′
n to be the solution of

T ′
n = arg min

T≤T0

ε̂(T ) + αn

√
|T |, (1)

whereαn =
√

32 log(en)/n, andε̂(T ) is the empirical error, i.e., the fraction of training
data misclassified byT . (The solution to this pruning problem can be computed efficiently
[7].) We showed that ifX ∈ [0, 1]d with probability one, andmd = o(n/ log n), then
E{ε(T ′

n)} → ε∗ with probability one (i.e.,T ′
n is consistent). Here,ε(T ) = P{T (X) 6=

Y } is the true error probability forT , andε∗ is the Bayes error, i.e., the minimum error
probability over all classifiers (not just trees). We also demonstrated a rate of convergence
result forT ′

n, under certain assumptions on the distribution of(X,Y ). Let us recall the
definition of this class of distributions. Again, letX ∈ [0, 1]d with probability one.

Definition 1 Let c1, c2 > 0, and letm0 be a dyadic integer. DefineF = F(c1, c2,m0) to
be the collection of all distributions on(X,Y ) such that

A1 (Bounded density):For any measurable setA, P{X ∈ A} ≤ c1λ(A), whereλ denotes
the Lebesgue measure.

A2 (Regularity):For all dyadic integersm ≥ m0, if we subdivide the unit cube into cubes
of side length1/m, The Bayes decision boundary passes through at mostc2m

d−1

of the resultingmd cubes.

These assumptions are satisfied when the density ofX is essentially bounded with respect
to Lebesgue measure, and when the Bayes decision boundary for the distribution on(X,Y )
behaves locally like a Lipschitz function. See, for example, the boundary fragment class
of [2] with γ = 1 therein.



In [1], we showed that if the distribution of(X,Y ) belongs toF , and m ∼
(n/ log n)1/(d+1), then E{ε(T ′

n)} − ε∗ = O((log n/n)
1/(d+1)

). However, this upper
bound on the rate of convergence is not tight. The results of Mammen and Tsybakov [2]
show that the minimax rate of convergence,infφn

supF E{ε(φn)} − ε∗, is on the order of
n−1/d (hereφn ranges over all possible discrimination rules). In the nextsection, we in-
troduce a new strategy for pruning DCTs, which leads to an improved rate of convergence
of (log n/n)1/d (i.e., within a logarithmic factor of the minimax rate). We are not aware of
other practically implementable classifiers that can achieve this rate.

3 Improved Tree Pruning with Spatially Adaptive Penalties

An improved rate of convergence is achieved by pruning the initial tree T0 using a new
complexity penalty. Given a nodev in a treeT , let Tv denote the subtree ofT rooted atv.
Let S denote the training data, and letnv denote the number of training samples reaching
nodev. Let R denote a pruned subtree ofT . In the language of [4],R is called aroot
fragment. Let L(R) denote the set of leaf nodes ofR.

Consider the pruning rule that selects

Tn = arg min
T≤T0

(
ε̂(T ) + min

R≤T
∆(T, S,R)

)
, (2)

where

∆(T, S,R) =
∑

v∈L(R)

1

n

[√
48nv|Tv| log(2n) +

√
48nvd log(m)

]
.

Observe that the penalty is data-dependent (sincenv depends onS) and spatially adaptive
(choosingR ≤ T to minimize∆). The penalty can be interpreted as follows. The first
term in the penalty is written

∑
v∈L(R) p̂v

√
48|Tv| log(2n)/nv, wherep̂v = nv/n. This

can be viewed as an empirical average of the complexity penalties for each of the subtrees
Tv, which depend on thelocal data associated with each subtree. The second term can be
interpreted as the “cost” of spatially decomposing the bound on the generalization error.

The penalty has the following property. Consider pruning one of two subtrees, both with the
same size, and assume that both options result in the same increase in the empirical error.
Then the subtree with more data is selected for pruning. Since deeper nodes typically have
less data, this shows that the penalty favors unbalanced trees, which may promote higher
resolution (deeper leaf nodes) in the vicinity of the decision boundary. In contrast, the
pruning rule (1) penalizes balanced and unbalanced trees (with the same size) equally.

The following theorem bounds the expected error ofTn. This kind of bound is known as
an index of resolvability result [3,8]. Recall thatm specifies the depth of the initial treeT0.

Theorem 1 If m ∼ (n/ log n)1/d, then

E{ε(Tn) − ε∗} ≤ min
T≤T0

{
(ε(T ) − ε∗) + E

[
min
R≤T

∆(T, S,R)

]}
+ O

(√
log n

n

)
.

The first term in braces on the right is the approximation error. The remaining terms on the
right-hand side bound the estimation error. Since the boundholds for allT , one feature of
the pruning rule (2) is thatTn performs at least as well as the subtreeT ≤ T0 that minimizes
the bound. This theorem may be applied to give us our desired rate of convergence result.

Theorem 2 Assume the density of(X,Y ) belongs toF . If m ∼ (n/ log n)1/d, then

E{ε(Tn)} − ε∗ = O((log n/n)1/d).



In other words, the pruning rule (2) comes within a log factorof the minimax rate. These
theorems are proved in the last section.

4 Faster Rates for Smoother Boundaries

In this section we extend Theorem 2 to the case of smoother decision boundaries. De-
fine F(γ, c1, c2,m0) ⊂ F(c1, c2,m0) to be those distributions on(X,Y ) satisfying the
following additional assumption. Hereγ ≥ 1 is fixed.
A3 (γ-regularity):Subdivide[0, 1]d into cubes of side length1/m, m ≥ m0. Within each

cube the Bayes decision boundary is described by a function (one coordinate is a
function of the others) with Ḧolder regularityγ.

The collectionG contains all distributions whose Bayes decision boundaries behave locally
like the graph of a function with Ḧolder regularityγ. The “boundary fragments” class of
Mammen and Tsybakov is a special case of boundaries satisfyingA1 andA3.

We propose a classifier, called a polynomial-decorated dyadic classification tree (PDCT),
that achieves fast rates of convergence for distributions satisfying A3. Given a positive
integerr, a PDCT of degreer is a DCT, with class labels at each leaf node assigned by a
degreer polynomial classifier.

Consider the pruning rule that selects

Tn,r = arg min
T≤T0

(
ε̂(T ) + min

R≤T
∆r(T, S,R)

)
, (3)

where

∆r(T, S,R) =
∑

v

1

n

[√
48nvVd,r|Tv| log(2n) +

√
48nv(d + γ) log(m)

]
.

HereVd,r =
(
d+r

r

)
is theV C dimension of the collection of degreer polynomial classifiers

in d dimensions. Also, the notationT ≤ T0 in (3) is rough. We actually consider a search
over all pruned subtrees ofT0, and with all possible configurations of degreer polynomial
classifiers at the leaf nodes.

An index of resolvability result analgous to Theorem 1 forTn,r can be derived. Moreover,
If r = dγe − 1, then a decision boundary with Hölder regularityγ is well approximated by
a PDCT of degreer. In this case,Tn,r converges to the Bayes risk at rates bounded by the
next theorem.

Theorem 3 Assume the density of(X,Y ) belongs toG and thatr = dγe − 1. If m ∼
(n/ log n)1/(d+2γ−2), then

E{ε(Tn,r)} − ε∗ = O((log n/n)γ/(d+2γ−2)).

Note that in the caseγ = 1 this result coincides with the near-minimax rate in Theorem2.
Also notice that asγ → ∞, the rate of convergence comes within a logarithmic factor of
the parametric raten−1/2. The proof is discussed in the final section.

5 Efficient Algorithms

The optimally pruned subtreeTn of rule (2) can be computed exactly inO(|T0|2) opera-
tions. This follows from a simple bottom-up dynamic programming algorithm, which we



describe below, and uses a method for “square-root” pruningstudied in [7]. In the context
of Theorem 2, we have|T0| = md ∼ n, so the algorithm runs in timeO(n2).

Note that an algorithm for finding the optimalR ≤ T was provided in [4]. We now describe
an algorithm for finding both the optimalT ≤ T0 andR ≤ T solving (2). Given a node
v ∈ T0, let T ∗

v be the subtree ofT0 rooted atv that minimizes the objective function of (2),
and letR∗

v be the associated subtree that minimizes∆(T ∗
v , S,R). The problem is solved

by findingT ∗
root andR∗

root using a bottom-up procedure.

If v is a leaf node ofT0, then clearlyT ∗
v = R∗

v = {v}. If v is an internal node, denote
the children ofv by u andw. There are three cases forT ∗

v andR∗
v: (i) |T ∗

v | = |R∗
v| = 1,

in which caseT ∗
v = R∗

v = {v}; (ii) |T ∗
v | ≥ |R∗

v| > 1, in which caseT ∗
v andR∗

v can be
computed by mergingT ∗

u with T ∗
w andR∗

u with R∗
w, respectively; (iii)|T ∗

v | > |R∗
v| = 1, in

which caseR∗
v = {v}, andT ∗

v is determined by solving a square root pruning problem, just
like the one in (1). At each node, these three candidates are determined, andT ∗

v andR∗
v

are the candidates minimizing the objective function (empirical error plus penalty) at each
node. Using the first algorithm in [7], the overall pruning procedure may be accomplished
in (|T0|2) operations.

Determining the optimally pruned degreer PDCT is more challenging. The problem re-
quires the construction, at each node ofT0, a polynomial classifier of degreer having
minimum empirical error. Unfortunately, this task is computationally infeasible for large
sample sizes. As an alternative, we recommend the use of polynomial support vector ma-
chines. SVMs are well known for their good generalization ability in practical problems.
Moreover, linear SVMs in perceptron trees have been shown towork well [6].

6 Conclusions

A key aspect of DCTs is their spatial adaptivity, which enables local (rather than global)
fitting of the decision boundary. Our risk analysis involvesa spatial decomposition of the
usual concentration inequalities, leading to a spatially adaptive, data-dependent pruning
criterion that promotes unbalanced trees that focus on the decision boundary. For distri-
butions on(X,Y ) whose Bayes decision boundary behave locally like a Hölder-γ smooth
function, we show that the PDCT error converges to the Bayes error at a rate no slower
thanO((log n/n)γ/(d+2γ−2)). Polynomial kernel methods are not capable of achieving
such rates due to their lack of spatial adaptivity. Whenγ = 1, the DCT convergence rate is
within a logarithmic factor of the minimax optimal rate. Asγ → ∞ the rate tends to within
a log factor ofn−1/2, the parametric rate. However, the rates forγ > 1 are not within a
logarithmic factor of the minimax rate [2]. It may be possible to tighten the bounds further.
On the other hand, near-minimax rates might not be achievable using rectangular partitions,
and more flexible partitioning schemes, such as adaptive triangulations, may be required.

7 Proof Sketches

The key to proving Theorem 1 is the following result, which isa modified version of a
theorem of Mansour and McAllester [4].

Lemma 1 Let δ ∈ (0, 1). With probability at least1 − δ, everyT ≤ T0 satisfies

ε(T ) ≤ ε̂(T ) + min
R≤T

f(T, S,R, δ),

where

f(T, S,R, δ) =
∑

v∈L(R)

1

n

[√
48nv|Tv| log(2n)



+
√

24nv[d log(m) + log(3/δ)] + 2[d log(m) + log(3/δ)]
]

Our primary modification to the lemma is to replace one local uniform deviation inequality
(which holds for countable collections of classifiers [4, Lemma 4]) with another (which
holds for infinite collections of classifiers [3, Lemma 2]). This eases our extension to
polynomial-decorated DCTs in Section 4, by allowing us to avoid tedious quantization
arguments.

To prove Theorem 1, define the eventΩm to be the collection of all training samplesS
such that for allT ≤ T0, the bound of Lemma 1 holds, withδ = 3/md. By that lemma,
P(Ωm) ≥ 1 − 3/md. Let T ≤ T0 be arbitrary. We have

E{ε(Tn) − ε(T )}
= P (Ωm)E{ε(Tn) − ε(T ) |Ωm} + P (Ωc

m)E{ε(Tn) − ε(T ) |Ωc
m}

≤ E{ε(Tn) − ε(T ) |Ωm} +
3

md
.

GivenS ∈ Ωm, we know

ε(Tn) ≤ ε̂(Tn) + min
R≤Tn

f(Tn, S,R, 3m−d)

= ε̂(Tn) + min
R≤Tn

∆(Tn, S,R) +
4d log(m)

n

≤ ε̂(T ) + min
R≤T

∆(T, S,R) +
4d log(m)

n
,

where the last inequality comes from the definition ofTn.

From Chernoff’s inequality, we knowP{ε̂(T ) ≥ ε(T ) + t} ≤ e−2nt2 . By applying this
bound, and the factE{Z} ≤

∫∞

0
P{Z > t} dt, the theorem is proved. 2

7.1 Proof of Theorem 2

By Theorem 1, it suffices to find a treeT ∗ ≤ T0 such that

E

[
min

R≤T∗

∆(T ∗, S,R)

]
+ (ε(T ∗) − ε∗) = O

((
log n

n

) 1

d

)
.

DefineT ∗ to be the tree obtained by pruning backT0 at every node (thought of as a region
of space) that does not intersect the Bayes decision boundary. It can be shown without
much difficulty thatε(T ∗)− ε∗ = O((log n/n)1/d) [9, Lemma 1]. It remains to bound the
estimation error.

Recall thatT0 (and henceT ∗) has depthJd, whereJ = log2(m). DefineR∗ to be the
pruned subtree ofT ∗ consisting of all nodes inT ∗ up to depthj0d, wherej0 = J −
(1/d) log2(J) (truncated if necessary). LetΩv be the set of all training samples such that√

nv ≤ 2
√

npv. Let Ω be the set of all training samplesS such thatS ∈ Ωv for all
v ∈ L(R∗).

Now

E

[
min

R≤T∗

∆(T ∗, S,R)

]

≤ P(Ω)E

[
min

R≤T∗

∆(T ∗, S,R)|Ω
]

+ P(Ωc)E

[
min

R≤T∗

∆(T ∗, S,R)|Ωc

]
.



It can be shown, by applying the union bound, A2, and a theoremof Okamoto [10], that
P(Ωc) = O((log n/n)1/d). Moreover, the second expectation on the right is easily seen to
beO(1) by considering the root fragment consisting of only the rootnode. Hence it remains
to bound the first term on the right-hand side. We useP(Ω) ≤ 1, and focus on bounding the
expectation. It can be shown, assumingS ∈ Ω, that∆(T ∗, S,R∗) = O((log n/n)1/d). It
suffices to bound the first term of∆(T ∗, S,R∗), which clearly dominates the second term.
The first term, consisting of a sum of terms over the leaf nodesof R∗, is dominated by the
sum of those terms over the leaf nodes ofR∗ at depthj0d. The number of such nodes may
be bounded by assumption A2. The remaining expression is bounded using assumptions
A1 and A2, as well as the definitions ofT ∗, R∗, andΩ.

7.2 Proof of Theorem 3

The estimation error is increased by a constant∝
√

Vd,r, so its asymptotic analysis remains
unchanged. The only significant change is in the analysis of the approximation error. The
treeT ∗ is defined as in the previous proof. Recall the leaf nodes ofT ∗ at maximum depth
are cells of side length1/m. By a simple Taylor series argument, the approximation error
ε(T ∗) − ε∗ behaves likem−γ . The remainder of the proof is essentially the same as the
proof of Theorem 2.
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